JP3424156B2 - Manufacturing method of high strength aluminum alloy member - Google Patents

Manufacturing method of high strength aluminum alloy member

Info

Publication number
JP3424156B2
JP3424156B2 JP01105798A JP1105798A JP3424156B2 JP 3424156 B2 JP3424156 B2 JP 3424156B2 JP 01105798 A JP01105798 A JP 01105798A JP 1105798 A JP1105798 A JP 1105798A JP 3424156 B2 JP3424156 B2 JP 3424156B2
Authority
JP
Japan
Prior art keywords
powder
aluminum alloy
grain size
plastic working
alloy member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01105798A
Other languages
Japanese (ja)
Other versions
JPH11209839A (en
Inventor
農士 黒石
茂 壺井
摂央 藤野
正規 吉野
Original Assignee
中小企業総合事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中小企業総合事業団 filed Critical 中小企業総合事業団
Priority to JP01105798A priority Critical patent/JP3424156B2/en
Publication of JPH11209839A publication Critical patent/JPH11209839A/en
Application granted granted Critical
Publication of JP3424156B2 publication Critical patent/JP3424156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用エンジン
部材などの各種装置・機器部材として有用な高強度アル
ミニウム合金部材を経済的に有利に製造するための、加
工性に優れたアルミニウム合金粉末又は該合金粉末とセ
ラミックス粉末との混合物を原料粉末とする高強度アル
ミニウム合金部材の熱間塑性加工による製造方法に関す
る。
The present invention relates to the for advantageously produced economically useful high strength aluminum alloy member as various devices and equipment members such as automotive engine components, aluminum alloy powder having excellent workability or The alloy powder and
The present invention relates to a method for producing a high-strength aluminum alloy member by hot plastic working , the raw material powder being a mixture with Lamix powder .

【0002】[0002]

【従来の技術】アルミニウム合金は、比重が鉄の約3分
の1と小さく、軽量素材として広く使用されている。し
かし、耐熱性,耐摩耗性などの機械性質は鉄系材料に及
ばない。その特性改善策として、近年粉末冶金法による
新しいアルミニウム合金の開発が進められている。これ
は、合金元素を多量に添加したアルミニウム合金溶湯を
ガスマトマイズ等の急冷噴霧処理に付して粉末となし、
熱間押出し法等で所要形状に成形加工するものである。
粉末冶金法によれば、溶解・鋳造法では製造困難な、S
i,Fe,Mn,Ni 等を多量に含有するアルミニウム合金部材
を製造することができ、合金元素量の富化効果として、
優れた機能特性がもたらされる。
2. Description of the Related Art Aluminum alloy has a specific gravity as small as about one third of iron and is widely used as a lightweight material. However, the mechanical properties such as heat resistance and wear resistance are inferior to those of iron-based materials. As a characteristic improvement measure, in recent years, development of a new aluminum alloy by powder metallurgy is in progress. This is an aluminum alloy melt with a large amount of alloy elements added to it by subjecting it to a powder by subjecting it to a quenching spray treatment such as gas atomization,
It is formed into a required shape by a hot extrusion method or the like.
According to the powder metallurgy method, it is difficult to manufacture by the melting and casting method.
It is possible to manufacture an aluminum alloy member containing a large amount of i, Fe, Mn, Ni, etc., and as an effect of enriching the amount of alloy elements,
Provides excellent functional properties.

【0003】[0003]

【発明が解決しようとする課題】このように粉末冶金法
の適用によりアルミニウム合金部品の機械性質を高める
ことが可能となるが、いまだ未だ広く普及するに至って
いない。その理由は、原料粉末を含む加工コストが高い
ことにある。その要因の第1は、原料粉末の製造歩留り
が低いことである。ガス等を冷却媒体とする粉末製造法
では、粒子径50μm以下の粉末しか対象とならず、そ
れを越える粗い粒子は分級除去する必要があり、粉末の
収率は約30%程度と極端に低くなるのである。
As described above, it is possible to improve the mechanical properties of aluminum alloy parts by applying the powder metallurgy method, but it has not yet become widespread. The reason is that the processing cost including the raw material powder is high. The first of the factors is that the manufacturing yield of the raw material powder is low. In the powder manufacturing method using a gas or the like as a cooling medium, only powders having a particle diameter of 50 μm or less are targeted, and coarse particles exceeding them need to be classified and removed, and the powder yield is extremely low at about 30%. It will be.

【0004】第2の要因は、粉末の加工性が悪いことで
ある。すなわち多量の合金元素を含有する粉末は硬質で
しかも耐熱性を有するため、成形加工は一般に約500
℃以上の温度域で、加工応力200MPa以上の高加圧
力を必要とする。また、高圧加工のために金型の耐用寿
命も短く、複雑形状の部品を精度よく成形することも困
難となる。本発明は、上記問題を解決することを目的と
するものであり、アルミニウム合金粉末又は該合金粉末
とセラミックス粉末との混合粉末を原料とし、高速度・
低加圧力の圧縮塑性加工条件下に機械性質にすぐれたア
ルミニウム合金部材を経済的に有利に製造する方法を提
供する。
The second factor is the poor workability of the powder. That is, since the powder containing a large amount of alloying elements is hard and has heat resistance, the molding process is generally performed at about 500
A high pressure force of 200 MPa or more is required in the temperature range of ℃ or more. Further, because of the high-pressure processing, the service life of the die is short, and it becomes difficult to accurately form a component having a complicated shape. The present invention is intended to solve the above problems, and aluminum alloy powder or the alloy powder
High-speed
It has excellent mechanical properties under the compression plastic working condition of low pressure.
Provided is a method for economically producing a aluminum alloy member .

【0005】[0005]

【課題を解決するための手段】本発明のアルミニウム合
部材の製造方法は、Fe,Cr,Ni,Zr,Mnの
遷移金属元素より選ばれる1種ないし2種以上の元素:
1〜15wt%,Si:10〜30wt%,Cu:0.5〜
5wt%,Mg:1〜5wt%,残部実質的にAlからな
り、2μm以下の微細結晶粒径を有し,粉体粒子径50
μm以上であるアルミニウム合金粉末を放電プラズマ焼
結により固化してなる予備成形体を、該アルミニウム合
金の液相線直下の温度域において、10 −2 /sec以上の
歪み速度で圧縮塑性加工することよりなる上記アルミ
ニウム合金粉末は、所望により、セラミックス粉末粒子
が配合される。セラミックス粉末は、粒径5μm以下の
微細粉末であり、配合量は1〜10vol%の範囲に調整
される。
The method for producing an aluminum alloy member according to the present invention comprises one or more elements selected from transition metal elements of Fe, Cr, Ni, Zr and Mn:
1 to 15 wt%, Si: 10 to 30 wt%, Cu: 0.5 to
5% by weight, Mg: 1 to 5% by weight, the balance being substantially Al, having a fine crystal grain size of 2 μm or less, and a powder particle size of 50
Discharge plasma firing of aluminum alloy powder of μm or more
The preformed body that is solidified by binding is
10 −2 / sec or more in the temperature range just below the liquidus line of gold
It consists of compression plastic working at a strain rate . Ceramic powder particles are blended with the above aluminum alloy powder, if desired. The ceramic powder is a fine powder having a particle size of 5 μm or less, and the compounding amount is adjusted to be in the range of 1 to 10 vol%.

【0006】上記アルミニウム合金粉末およびこれにセ
ラミックス粉末を配合した混合粉末(以下、両者を単に
アルミニウム合金と称することもある)は、粉体のま
ま、または適宜形状の固化体(焼結体)に予備成形され
たうえ、圧縮塑性加工により目的とする製品部材に成形
される。予備成形体の形成は、後記するように、放電プ
ラズマ焼結法により好適に達成される。
The above-mentioned aluminum alloy powder and a mixed powder obtained by blending ceramic powder with the aluminum alloy powder (both may be simply referred to as an aluminum alloy hereinafter) may be a powder or a solidified body (sintered body) of an appropriate shape. After being preformed, it is formed into a desired product member by compression plastic working. The formation of the preformed body is suitably achieved by the spark plasma sintering method, as described later.

【0007】本発明のアルミニウム合金粉末およびその
予備成形体は、高速超塑性特性を有する。後述のよう
に、液相線直下の温度域で、歪み加工速度(ε)10-2
/sec以上の高速加工を行うことができ、この加工条件下
に、伸び率約200%以上の高延性を示し、その変形流
動応力は約20MPa以下と著しく低い。合金元素を多
量に含むアルミニウム合金は、一般に硬質かつ耐熱性の
ため、通常結晶材の塑性加工は、500℃以上の高温域
で200MPa以上の高加工力を必要とし、また超塑性
を利用した加工プロセス(結晶粒径: 約10〜100 μm)
を適用した場合でも、その加工速度は約10-3〜10-4/sec
と低く、10-2/sec以上の高速加工は不可能であり生産性
に劣る。本発明のアルミニウム合金粉末およびその予備
成形体は、上記合金粉末の化学組成,超微細結晶構造お
よび粉体粒径の効果として、高速度・低加圧力下の効率
的な圧縮塑性加工を実現している。
The aluminum alloy powder of the present invention and its preform have high-speed superplastic properties. As will be described later, the strain processing speed (ε) is 10 -2 in the temperature range just below the liquidus line.
It is possible to perform high-speed processing of not less than / sec, and under this processing condition, elongation is high at about 200% or more, and its deformation flow stress is extremely low at about 20 MPa or less. Aluminum alloys containing a large amount of alloying elements are generally hard and heat resistant, so plastic working of crystalline materials usually requires a high working force of 200 MPa or more in a high temperature range of 500 ° C. or more, and processing using superplasticity. Process (crystal grain size: about 10 to 100 μm)
Even when applied, the processing speed is about 10 -3 to 10 -4 / sec
It is low, and high-speed machining of 10 -2 / sec or more is impossible and productivity is poor. INDUSTRIAL APPLICABILITY The aluminum alloy powder and its preform of the present invention realize efficient compression plastic working under high speed and low pressure as an effect of the chemical composition, ultrafine crystal structure and powder grain size of the above alloy powder. ing.

【0008】[0008]

【発明の実施の形態】アルミニウム合金粉末の化学組成
を前記のように規定したのは、構造部材等として要求さ
れる機械的性質を保証すると共に、超塑性特性を確保す
るためである。すなわち、Si,Cu,Mg等は、強
度,耐熱性,耐摩耗性等を高める元素であり、その含有
量が上記下限値に満たないと、材質改善効果が不足し、
他方上限値を超えると、材質が硬脆化し超塑性特性を確
保し得なくなる。
BEST MODE FOR CARRYING OUT THE INVENTION The chemical composition of the aluminum alloy powder is defined as described above in order to ensure the mechanical properties required for structural members and the like and to secure the superplastic characteristics. That is, Si, Cu, Mg, etc. are elements that enhance strength, heat resistance, wear resistance, etc. If the content thereof is less than the above lower limit value, the material improvement effect is insufficient,
On the other hand, if the upper limit is exceeded, the material becomes hard and brittle, and superplastic properties cannot be secured.

【0009】Fe,Cr,Ni,ZrおよびMnの遷移
金属元素は、機械性質の改善に奏効する元素であるが、
本発明の狙いは、その添加効果として超塑性特性を高め
ることにある。つまり、これらの元素はAlと化合し、
微細な化合物相として析出することによりアルミニウム
合金の結晶成長を抑制し、超塑性特性の発現に必要な微
細結晶構造を得ることを可能にする。含有量(2種以上
を複合含有する場合は合計量)を1wt%以上とするの
は、その添加効果を十分ならしめるためであり、10wt
%を上限とするのは、それを超えると、材料の硬質化を
きたし超塑性特性が損なわれるからである。
The transition metal elements Fe, Cr, Ni, Zr and Mn are effective elements for improving mechanical properties.
The purpose of the present invention is to enhance the superplastic property as an effect of the addition. That is, these elements combine with Al,
Precipitation as a fine compound phase suppresses the crystal growth of the aluminum alloy, and makes it possible to obtain the fine crystal structure necessary for the expression of superplasticity properties. The content (the total amount when two or more kinds are contained together) is set to 1 wt% or more in order to make the addition effect sufficient, and 10 wt%
The upper limit of% is that if it exceeds the upper limit, the material becomes hard and the superplastic property is impaired.

【0010】アルミニウム合金粉末の結晶粒径は2μm
以下であることを要する。このような超微細構造として
いるのは、高速超塑性を確保するためである。またその
粉体粒子径を50μm以上に制限しているのは、粉末の
圧縮性,成形性、および塑性変形能を良好にするためで
ある。超急冷凝固により製造される粉末は、微細なほ
ど、歪み硬化が大きく、また圧縮塑性加工における粒子
界面の摩擦抵抗が増大し、塑性変形能が低下するからで
ある。この超微細結晶構造および粉体粒径を有するアル
ミニウム合金粉末は、スピニング・ウォーター・アトマ
イゼイション・プロセス(SWAP法:Spining Water atomi
zation Process)の噴霧処理(冷却速度:104 ℃/sec以
上) により収率よく得ることができる。
The grain size of the aluminum alloy powder is 2 μm
The following is required. The reason for having such an ultrafine structure is to ensure high-speed superplasticity. Further, the reason why the powder particle diameter is limited to 50 μm or more is to improve the compressibility, moldability, and plastic deformability of the powder. This is because the finer the powder produced by ultra rapid solidification, the larger the strain hardening, the more the frictional resistance at the grain interface in the compression plastic working increases, and the lower the plastic deformability. Aluminum alloy powder with this ultra-fine crystal structure and powder grain size is produced by the spinning water atomization process (SWAP method: Spining Water atomi
It can be obtained in good yield by spraying the zation process (cooling rate: 10 4 ° C / sec or more).

【0011】上記アルミニウム合金粉末は、所望により
セラミックス粉末が配合される。セラミックス粒子は、
アルミニウム合金マトリックス中に分散して製品部材の
機械性質を高めるとともに、マトリックスのアルミニウ
ム合金の結晶成長を抑制する。セラミックスの材種は、
酸化物系,窒化物系,炭化物系,硼化物系などであり、
その1種ないし複数種が適宜選択使用される。殊に、炭
化けい素(SiC),アルミナ(Al2 3 ),窒化けい素
(Si3 4 )等の単独または複合使用は効果的であ
る。
Ceramic powder is blended with the aluminum alloy powder, if desired. Ceramic particles are
It disperses in the aluminum alloy matrix to enhance the mechanical properties of the product member and suppresses the crystal growth of the aluminum alloy of the matrix. The grade of ceramics is
Oxides, nitrides, carbides, borides, etc.
One kind or plural kinds thereof are appropriately selected and used. Particularly, it is effective to use silicon carbide (SiC), alumina (Al 2 O 3 ), silicon nitride (Si 3 N 4 ) or the like alone or in combination.

【0012】セラミックス粉末は、粒径5μm以下の微
細粒子であることを要する。これより粗大な粒径では、
アルミニウム合金粉末の超塑性特性の低下をきたし、高
速超塑性加工が困難となり、また仕上げ加工(機械加
工)も困難となるからである。その配合量を、1〜10
vol%とするのは、1 vol%に満たないと、配合効果に
乏しく、他方10 vol%を越えて多量に配合すると、合
金の脆化を招き高速超塑性特性が損なわれるからであ
る。
The ceramic powder needs to be fine particles having a particle size of 5 μm or less. For coarser grain sizes,
This is because the superplastic characteristics of the aluminum alloy powder are deteriorated, high-speed superplastic processing becomes difficult, and finish processing (machining) becomes difficult. The blending amount is 1 to 10
If the content is less than 1 vol%, the compounding effect is poor, and if the content exceeds 10 vol%, a large amount is compounded, which causes embrittlement of the alloy and impairs high-speed superplastic properties.

【0013】本発明のアルミニウム合金粉末(単体粉末
またはセラミックスとの混合粉末)は、製品部材の成形
(鍛造等の圧縮塑性加工)に先立って、適宜形状の成形
固化体(焼結体)とするのが好ましい。粉末のまま圧縮
塑性加工に付して目的部材を得ることも可能ではある
が、予備成形することは、圧縮塑性加工の効率を高める
のに有利である。
The aluminum alloy powder (single powder or mixed powder with ceramics) of the present invention is formed into a compacted solidified body (sintered body) having an appropriate shape prior to molding (compression plastic working such as forging) of product members. Is preferred. Although it is possible to obtain the target member by subjecting the powder to compression plastic working as it is, preforming is advantageous for increasing the efficiency of compression plastic working.

【0014】その予備成形は、放電プラズマ焼結法(SP
S 法: Spark plasma Sintering)により好適に行われ
る。放電プラズマ焼結は、パルス通電を利用して加圧焼
結するものであり、粉体粒子間隙に発生する瞬間・断続
的な火花放電による高温プラズマの高エネルギを利用し
た内部発熱方式の焼結法である。粉体試料内の放電点
は、電流・電圧印加のオン・オフの繰り返しに伴って試
料全体に移動分散する。この内部発熱による均一な加熱
効果により、短時間かつ低温度(結晶粒成長・粗大化が
抑制防止される)の処理条件下に均質な焼結を達成する
ことができる。
The preforming is performed by the spark plasma sintering method (SP
S method: Spark plasma Sintering). In spark plasma sintering, pressure sintering is performed using pulsed current, and internal heat generation type sintering that uses the high energy of high-temperature plasma due to the momentary and intermittent spark discharge that occurs in the powder particle gap. Is the law. Discharge points in the powder sample move and disperse throughout the sample as the current / voltage application is repeatedly turned on and off. Due to the uniform heating effect due to this internal heat generation, it is possible to achieve homogeneous sintering under a processing condition of a short time and at a low temperature (preventing the growth and coarsening of crystal grains from being suppressed).

【0015】上記焼結処理温度は500℃以下に規制す
るのが好ましい。結晶粒の成長粗大化を防止し、微細結
晶構造に基づく高速超塑性特性を保持するためである。
処理温度は、パルス電流,オン・オフ周期,処理時間等
により容易に制御することができる。また、加圧力は約
70〜180MPaの範囲が適当である。加圧力がこれ
より低いと、高温焼結が必要となり、結晶粒の成長粗大
化の不都合をきたす。他方180MPaを超える高圧力
とする必要はなく、それ以上の加圧力の増加は金型の消
耗を助長するので好ましくない。
The sintering treatment temperature is preferably regulated to 500 ° C. or lower. This is to prevent the growth and coarsening of the crystal grains and to maintain the high-speed superplasticity property based on the fine crystal structure.
The processing temperature can be easily controlled by the pulse current, ON / OFF cycle, processing time and the like. Further, the applied pressure is appropriately in the range of about 70 to 180 MPa. If the pressing force is lower than this, high temperature sintering is required, which causes the disadvantage of coarsening the growth of crystal grains. On the other hand, it is not necessary to make the pressure higher than 180 MPa, and an increase in the applied pressure further accelerates the wear of the mold, which is not preferable.

【0016】放電プラズマ焼結処理において、アルミニ
ウム合金粉末の結晶中に、各種の金属間化合物(Cu-Al,
Mg-Si,Al-Cu-Fe,Al-Mn等)を析出生成する。本発明のア
ルミニウム合金粉末は、合金元素を多量に含有している
が、SWAP法等の超急冷凝固処理(冷却速度: 104
/sec以上)で製造されるため、析出物の生成は殆どな
く,析出しても生成量は少なく、過飽和の固溶状態にあ
る。放電プラズマ焼結過程で、これらの元素は金属間化
合物として析出する。その焼結処理は、低温・短時間の
条件下に達成されるので、析出化合物相は微細(粒径1
μm以下)であり、粉末の超塑性特性を損なうことな
く、またアルミニウム合金製品の機械性質の強化に寄与
する。
In the spark plasma sintering process, various intermetallic compounds (Cu-Al,
Mg-Si, Al-Cu-Fe, Al-Mn, etc.) are formed by precipitation. Although the aluminum alloy powder of the present invention contains a large amount of alloying elements, it is subjected to ultra-rapid solidification treatment such as SWAP method (cooling rate: 10 4 ° C).
/ sec) or more), almost no precipitate is formed, and even if it is precipitated, the amount of formation is small and it is in a supersaturated solid solution state. During the spark plasma sintering process, these elements are precipitated as intermetallic compounds. Since the sintering process is accomplished under conditions of low temperature and short time, the precipitated compound phase is fine (grain size 1
.mu.m or less), and contributes to strengthening the mechanical properties of the aluminum alloy product without impairing the superplastic properties of the powder.

【0017】本発明のアルミニウム合金粉末(単体粉末
もしくはセラミックスとの混合粉末)および予備成形体
の圧縮塑性加工は、該合金の液相線(T liq ) 直下の温
度域において、歪み加工速度10-2/sec以上の条件下に
行われる。塑性加工温度(T)の最適領域は、 Tliq
35℃≦T≦T liq −10℃である。図1は、アルミニウム
合金粉末(予備成形体)の超塑性特性とその流動変形応
力(歪み加工速度: 10-1/sec) を示している(供試材:
化学組成(wt%) Si 17.1,Cu 0.96, Mg 1.86, Fe 1.92, N
i 1.0, Mo 0.56, Al Bal,結晶粒径 2μm, 粉体粒径 50
μm,液相線 550℃)。図示のように、液相線直下の
温度域(約515〜540℃)での高歪み速度加工にお
いて、伸び率200%以上の高延性を示し、その変形流
動応力は20MPa以下と著しく低い。
[0017] and compressive plastic working of the preform (mixed powder of elemental powder or ceramic) aluminum alloy powder of the present invention, in the temperature range just below the alloy liquidus (T liq), strain machining speed 10 - It is performed under the condition of 2 / sec or more. The optimum range of plastic working temperature (T) is T liq
35 ° C. ≦ T ≦ T liq −10 ° C. Figure 1 shows the superplasticity characteristics of aluminum alloy powder (preform) and its flow deformation stress (strain processing speed: 10 -1 / sec) (test material:
Chemical composition (wt%) Si 17.1, Cu 0.96, Mg 1.86, Fe 1.92, N
i 1.0, Mo 0.56, Al Bal, crystal grain size 2 μm, powder grain size 50
μm, liquidus line 550 ℃). As shown in the drawing, in the high strain rate processing in the temperature range (about 515 to 540 ° C.) immediately below the liquidus line, it exhibits high ductility with an elongation rate of 200% or more, and its deformation flow stress is remarkably low of 20 MPa or less.

【0018】このように本発明のアルミニウム合金粉末
およびその予備成形体は、高速度・低加圧力下の効率的
な圧縮塑性加工を可能とし、粉末冶金法による各種部材
の生産性を高め、また金型の損耗を軽減緩和してその耐
用寿命の改善に奏効すると共に、複雑形状の部材の形状
精度を高めることを可能にするものである。
As described above, the aluminum alloy powder of the present invention and its preform enable efficient compression plastic working under high speed and low pressure, and enhance the productivity of various members by powder metallurgy. It is possible to reduce and alleviate the wear of the mold, improve the service life of the mold, and increase the accuracy of the shape of a member having a complicated shape.

【0019】[0019]

【実施例】アルミニウム合金粉末(単体粉末および混合
粉末)を予備成形し、鍛造加工に付して部材を製作す
る。 (1)アルミニウム合金粉末 SWAP法による粉末およびガスアトマイズ法による粉
末を使用。SWAP粉末の粉体粒径は 50 〜420 μmで
あり、ガスアトマイズ粉末は、粗大粒径(粉体粒径:50
〜420 μm)と微細粒径(同: <50μm)の2種を用意
した。 (2)セラミックス粉末 a: 炭化けい素(SiC) b: アルミナ(Al2 3 ) c: 窒化けい素(Si3 4
EXAMPLE Aluminum alloy powder (single powder and mixed powder) is preformed and subjected to forging to manufacture a member. (1) Aluminum alloy powder A powder obtained by the SWAP method and a powder obtained by the gas atomizing method are used. The SWAP powder has a particle size of 50 to 420 μm, and the gas atomized powder has a coarse particle size (powder particle size: 50
~ 420 μm) and a fine particle size (the same: <50 μm) were prepared. (2) Ceramic powder a: Silicon carbide (SiC) b: Alumina (Al 2 O 3 ) c: Silicon nitride (Si 3 N 4 )

【0020】(3)予備成形(成形固化体の形成) 放電プラズマ焼結または熱間押出加工法により、円柱状
ブロック(φ 60 ×30l,mm )を形成。 〔SPS焼結焼結処理〕 焼結温度 400℃, 処理時間 20 min,加圧力 1.5tf/cm
2 。 〔熱間押出成形〕成形温度 480℃, 押出比 11 。
(3) Preforming (Formation of Formed Solidified Body) A cylindrical block (φ 60 × 30 l, mm) is formed by spark plasma sintering or hot extrusion processing. [SPS Sintering / Sintering] Sintering temperature 400 ℃, processing time 20 min, pressure 1.5tf / cm
2 . [Hot extrusion molding] Molding temperature 480 ℃, extrusion ratio 11.

【0021】(4)圧縮塑性加工 油圧プレス機により、ピストン部材(外径: 62, 長さ:
65, 肉厚: 天部3,側部5, mm)を成形。 加工速度: 10-1/sec 加工温度: 液相線−35〜10℃
(4) By a compression plastic working hydraulic press machine, a piston member (outer diameter: 62, length:
65, wall thickness: molded top 3, side 5, 5). Machining speed: 10 -1 / sec Machining temperature: Liquidus −35 to 10 ℃

【0022】原料粉末、成形・加工条件、加工結果等を
表1および表2に示す。表中、「合金粉末の種類」欄の
「W」はSWAP粉末、「G」はガスアトマイズ粉末であ
り、は粉体粒径: 50〜420 μm, は粉体粒径: <50
μmである。また、W粉末の結晶粒径≦1μm、G粉末
の結晶粒径≧1μm,G粉末の結晶粒径<1μmで
ある。「鍛造結果」は、鍛造で得られた部材の目視観察
およびカラーチェックによる検査結果であり、○マーク
は割れがなく健全な品質であることを示している。同欄
の空白(No.114, No.115)は、予備成形工程で、鍛造に
供し得る予備成形体を形成できず、鍛造を実施できなか
ったものである。
The raw material powders, molding / processing conditions, processing results, etc. are shown in Tables 1 and 2. In the table, “W” in the “Type of alloy powder” is SWAP powder, “G” is gas atomized powder, is powder particle size: 50 to 420 μm, is powder particle size: <50
μm. Also, the crystal grain size of W powder ≦ 1 μm, the crystal grain size of G powder ≧ 1 μm, and the crystal grain size of G powder <1 μm. The "forging result" is an inspection result by visual observation and a color check of the member obtained by forging, and the mark "○" indicates that there is no crack and the quality is sound. The blanks (No. 114, No. 115) in the same column indicate that the forging could not be carried out in the preforming step because a preform which could be used for forging could not be formed.

【0023】比較例において、No.101(アルミ合金粉末
のSi量過多),No.103(Cu量過多),No.105(Mg
量過多),No.107(遷移金属元素量過多)の鍛造部材に
割れが発生したのは、合金元素の過剰含有により合金粉
末が硬質化し、材料の割れ感受性が高くなったからであ
る。No.102(アルミ合金粉末のSi量不足),No.104
(Cu量不足),No.106(Mg量不足),No.108(遷移
金属元素量不足)は、合金粉末の元素含有量の不足によ
る結晶粒径の粗大化のため、加工応力の低い鍛造条件に
も拘らず、割れが発生している。これは最適加工速度領
域が低速度側へ移行したことによる。No.109およびNo.1
10の鍛造部材に割れが発生しているのは、前者ではセラ
ミックス粉末が過剰に配合され、後者ではセラミックス
粒径が粗大であることにより、それぞれ予備成形体の超
塑性特性が損なわれたからである。
In the comparative example, No. 101 (excessive amount of Si in aluminum alloy powder), No. 103 (excessive amount of Cu), No. 105 (Mg)
Excessive amount) and No. 107 (excessive amount of transition metal element) caused cracks in the forged member because the alloy powder was hardened by the excessive content of the alloying element and the cracking susceptibility of the material increased. No.102 (insufficient amount of Si in aluminum alloy powder), No.104
(Insufficient amount of Cu), No. 106 (insufficient amount of Mg), No. 108 (insufficient amount of transition metal element) are forging with low processing stress due to coarsening of the crystal grain size due to insufficient element content of the alloy powder. Despite the conditions, cracks have occurred. This is because the optimum processing speed region has shifted to the low speed side. No.109 and No.1
The reason why the forged parts of 10 are cracked is that the ceramic powder was excessively compounded in the former case and the ceramic particle size was coarse in the latter case, so that the superplastic characteristics of the preformed body were impaired. .

【0024】No.111〔微細結晶のSWAP粉末(粉体粒径≧
50μm)使用〕の鍛造部材に割れが発生しているのは、
予備成形(熱間押出)過程で結晶粒が粗大化し、予備成
形体の超塑性変形能が低下したからである。No.112の鍛
造部材の割れ発生は、合金粉末(ガスアトマイズ粉末)
の結晶粒が粗大(粒径>2 μm)で、予備成形体の超塑
性変形能が低いことによる。No.113に示すように、予備
成形法として放電プラズマ焼結を適用しても、予備成形
体の超塑性変形能は低く、鍛造加工での割れを回避する
ことができない。また、No.114およびNo.115のように、
合金粉末として微細粉末(粉体粒径<50μm)を使用す
る場合は、粉体の圧縮性, 成形性が悪く、鍛造に供し得
る予備成形体を形成することができない。
No. 111 [Fine crystal SWAP powder (powder particle size ≧
50 μm) Use] has cracks in the forged member,
This is because the crystal grains become coarse during the preforming (hot extrusion) process, and the superplastic deformability of the preform is reduced. No.112 forged parts cracked due to alloy powder (gas atomized powder)
Due to the coarse crystal grains (grain size> 2 μm) and the low preplasticability of the preform. As shown in No. 113, even if spark plasma sintering is applied as a preforming method, the preforming body has a low superplastic deformability, and cracking during forging cannot be avoided. Also, like No. 114 and No. 115,
When a fine powder (powder particle size <50 μm) is used as the alloy powder, the powder has poor compressibility and moldability, and a preform that can be used for forging cannot be formed.

【0025】他方、発明例では、高加工速度(加工速
度:10 -1/sec)の条件下に、20MPa以下の低加圧力
で、効率よく鍛造加工を達成し割れのない健全な部品を
得ている。機械特性も良好であり、例えばNo.2の部材の
引張強さは、398MPa, No.5のそれは376MPa
と、自動車エンジン用ピストン部材等の構造部材に要求
される改良された高強度を有している。
On the other hand, in the invention example, under the condition of high working speed (working speed: 10 -1 / sec), the forging process was efficiently achieved with the low pressurizing force of 20 MPa or less, and the sound parts without cracks were obtained. ing. Mechanical properties are also good, for example, the tensile strength of No. 2 member is 398 MPa, that of No. 5 is 376 MPa.
And the improved high strength required for structural members such as piston members for automobile engines.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明によれば、高強度を要求される各
種構造部材、例えば自動車エンジンのピストン,ギア
ー、その他の各種電機・精密機械部品などを、高速度・
低加圧力の加工条件下に効率よく製造することができ
る。高速度加工は、生産性の大幅な向上を可能とし、低
加工応力は、金型の損耗の軽減・耐用寿命の向上に奏効
すると共に、製品形状精度を高め、ネットシェイプ加工
による材料歩留りの向上・工程の短縮等の効果をもたら
す。このように、本発明は、高強度アルミニウム合金部
材の機能特性を高めると共に、省エネルギー・コストダ
ウン等に大きく寄与するものである。
According to the present invention, various structural members that are required to have high strength, such as pistons and gears of automobile engines, and other various electric machines and precision machine parts, can be processed at high speed.
It can be efficiently manufactured under processing conditions of low pressure. High-speed machining enables a significant improvement in productivity, and low machining stress is effective in reducing die wear and improving the service life, while improving product shape precision and improving material yield through net-shape machining.・ The effect of shortening the process is brought about. As described above, the present invention not only enhances the functional characteristics of the high-strength aluminum alloy member, but also greatly contributes to energy saving and cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルミニウム合金粉末の塑性変形能と加工温度
の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the plastic deformability of aluminum alloy powder and the processing temperature.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 21/02 C22C 21/02 32/00 32/00 R (72)発明者 吉野 正規 茨城県龍ケ崎市向陽台5−6 株式会社 クボタ 基盤技術研究所内 (56)参考文献 特開 平5−70879(JP,A) 特開 平2−285044(JP,A) 特開 平5−93205(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 1/04 - 1/05 C22C 21/00 - 21/18,32/00 B22F 3/14,3/24 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22C 21/02 C22C 21/02 32/00 32/00 R (72) Inventor Yoshino Tadashi 5-6 Mukaidai, Ryugasaki-shi, Ibaraki Co., Ltd. Kubota Institute for Fundamental Technology (56) References JP-A-5-70879 (JP, A) JP-A-2-285044 (JP, A) JP-A-5-93205 (JP, A) (58) Fields investigated ( Int.Cl. 7 , DB name) C22C 1/04-1/05 C22C 21/00-21 / 18,32 / 00 B22F 3 / 14,3 / 24

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fe,Cr,Ni,Zr,Mnの遷移金
属元素より選ばれる1種ないし2種以上の元素:1〜1
5wt%,Si:10〜30wt%,Cu:0.5〜5wt
%,Mg:1〜5wt%,残部実質的にAlからなり、結
晶粒径2μm以下,粉体粒子径50μm以上であるアル
ミニウム合金粉末を放電プラズマ焼結により固化してな
る予備成形体を、該アルミニウム合金の液相線直下の温
度域において、10−2/sec以上の歪み速度で圧縮塑性
加工することよりなる高強度アルミニウム合金部材の製
造方法。
1. One or more elements selected from transition metal elements of Fe, Cr, Ni, Zr and Mn: 1 to 1
5wt%, Si: 10-30wt%, Cu: 0.5-5wt
%, Mg: 1 to 5 wt%, the balance consisting essentially of Al, and a preformed body obtained by solidifying aluminum alloy powder having a crystal grain size of 2 μm or less and a powder grain size of 50 μm or more by spark plasma sintering. A method for producing a high-strength aluminum alloy member, which comprises performing compression plastic working at a strain rate of 10 −2 / sec or more in a temperature range immediately below a liquidus line of an aluminum alloy.
【請求項2】 Fe,Cr,Ni,Zr,Mnの遷移金
属元素より選ばれる1種ないし2種以上の元素:1〜1
5wt%,Si:10〜30wt%,Cu:0.5〜5wt
%,Mg:1〜5wt%,残部実質的にAlからなり、結
晶粒径2μm以下,粉体粒子径50μm以上であるアル
ミニウム合金粉末に、粒径5μm以下のセラミックス粉
末1〜10vol%が配合された混合粉末を放電プラズマ
焼結処理により固化してなる予備成形体を、該アルミニ
ウム合金の液相線直下の温度域において、10−2/sec
以上の歪み速度で圧縮塑性加工することよりなる高強度
アルミニウム合金部材の製造方法。
2. One or more elements selected from transition metal elements of Fe, Cr, Ni, Zr and Mn: 1 to 1
5wt%, Si: 10-30wt%, Cu: 0.5-5wt
%, Mg: 1 to 5 wt%, the balance substantially consisting of Al, and a crystal grain size of 2 μm or less, a powder grain size of 50 μm or more, and an aluminum alloy powder of 1 to 10 vol% of a ceramic powder of 5 μm or less. A preformed body obtained by solidifying the mixed powder obtained by spark plasma sintering treatment was used for 10 −2 / sec in a temperature range immediately below the liquidus line of the aluminum alloy.
A method for producing a high-strength aluminum alloy member, which comprises performing compression plastic working at the above strain rate.
【請求項3】 セラミックス粉末は、アルミナ,炭化け
い素,窒化けい素から選ばれる1種ないし2種以上の粉
末である請求項2に記載の高強度アルミニウム合金部材
の製造方法。
3. The method for producing a high-strength aluminum alloy member according to claim 2, wherein the ceramic powder is one or more kinds of powder selected from alumina, silicon carbide, and silicon nitride.
【請求項4】 放電プラズマ焼結処理温度が500℃以
下である請求項1ないし請求項3のいずれか1項に記載
の高強度アルミニウム合金部材の製造方法。
4. The method for producing a high-strength aluminum alloy member according to claim 1, wherein the discharge plasma sintering treatment temperature is 500 ° C. or lower.
【請求項5】 圧縮塑性加工を、TLiq−35℃≦T≦T
Liq−10℃[T:圧縮塑性加工温度、TLiq:アルミ
ニウム合金の液相線温度]の温度域で行なう請求項1な
いし請求項4のいずれか1項に記載の高強度アルミニウ
ム合金部材の製造方法。
5. The compression plastic working is performed by T Liq −35 ° C. ≦ T ≦ T.
Production of the high-strength aluminum alloy member according to any one of claims 1 to 4, which is carried out in a temperature range of Liq -10 ° C [T: compression plastic working temperature, T Liq : liquidus temperature of aluminum alloy]. Method.
JP01105798A 1998-01-23 1998-01-23 Manufacturing method of high strength aluminum alloy member Expired - Fee Related JP3424156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01105798A JP3424156B2 (en) 1998-01-23 1998-01-23 Manufacturing method of high strength aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01105798A JP3424156B2 (en) 1998-01-23 1998-01-23 Manufacturing method of high strength aluminum alloy member

Publications (2)

Publication Number Publication Date
JPH11209839A JPH11209839A (en) 1999-08-03
JP3424156B2 true JP3424156B2 (en) 2003-07-07

Family

ID=11767400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01105798A Expired - Fee Related JP3424156B2 (en) 1998-01-23 1998-01-23 Manufacturing method of high strength aluminum alloy member

Country Status (1)

Country Link
JP (1) JP3424156B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131882A (en) * 2011-12-05 2013-06-05 贵州华科铝材料工程技术研究有限公司 Aluminum alloy degassing modification method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100495881B1 (en) * 2003-01-24 2005-06-16 한국야금 주식회사 The Manufacturing Method of Aluminum Magnesium Boride via Spark Plasma Sintering
JP5665037B2 (en) 2007-03-26 2015-02-04 独立行政法人物質・材料研究機構 Binary aluminum alloy powder sintered material and method for producing the same
CN102312139B (en) * 2009-11-19 2012-11-14 江苏麟龙新材料股份有限公司 Hot-dip cast aluminium alloy containing Al-Zn-Si-RE-Mg and preparation method thereof
WO2013041305A1 (en) * 2011-09-22 2013-03-28 Peak-Werkstoff Gmbh Method for producing components from mmcs (metal matrix composites) using overspray powder
CA3059286A1 (en) 2017-04-05 2018-10-11 Amag Casting Gmbh Starting material, use thereof, and additive manufacturing process using said starting material
CN107267812A (en) * 2017-05-16 2017-10-20 苏州莱特复合材料有限公司 A kind of reinforced aluminum matrix composites and its gravity casting method
CN109930050A (en) * 2017-12-19 2019-06-25 宜兴市江华环保科技有限公司 A kind of water process flow blocking plate material
CN109158585A (en) * 2018-07-26 2019-01-08 华南理工大学 A kind of lightweight binary aluminum matrix composite and preparation method thereof
FR3086873B1 (en) * 2018-10-05 2022-05-27 C Tec Constellium Tech Center METHOD FOR MANUFACTURING AN ALUMINUM ALLOY PART
CN114807687A (en) * 2022-04-11 2022-07-29 潍柴动力股份有限公司 Aluminum alloy micro powder, insert ring containing aluminum alloy micro powder and piston containing insert ring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103131882A (en) * 2011-12-05 2013-06-05 贵州华科铝材料工程技术研究有限公司 Aluminum alloy degassing modification method
CN103131882B (en) * 2011-12-05 2016-03-30 贵州华科铝材料工程技术研究有限公司 A kind of aluminium alloy degasification Modification Manners

Also Published As

Publication number Publication date
JPH11209839A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
AU629541B2 (en) Aluminum based metal matrix composites
EP2376248B1 (en) Method for the manufacture of a metal part
JP3424156B2 (en) Manufacturing method of high strength aluminum alloy member
JP2546660B2 (en) Method for producing ceramics dispersion strengthened aluminum alloy
JP6738212B2 (en) Aluminum alloy forged product and manufacturing method thereof
US6022508A (en) Method of powder metallurgical manufacturing of a composite material
EP0600474A1 (en) High heat resisting and high abrasion resisting aluminum alloy
US4923676A (en) Aluminium alloy parts, such as in particular rods, having an improved fatigue strength and production process
JP3419582B2 (en) Method for producing high-strength aluminum-based composite material
JPH11293374A (en) Aluminum alloy with resistance to heat and wear, and its production
EP2327808A1 (en) Magnesium-based composite material having ti particles dispersed therein, and method for production thereof
JP3355190B2 (en) Method of manufacturing nozzle of fuel valve and nozzle
JP2019183191A (en) Aluminum alloy powder and manufacturing method therefor, aluminum alloy extrusion material and manufacturing method therefor
JP2003096531A (en) Piston for internal combustion engine
WO2001023629A1 (en) Preliminarily formed article and formed article and parts for internal-combustion engine
DE102014002583B3 (en) Method for producing a wear-resistant light metal component
JP2003055747A (en) Sintered tool steel and production method therefor
JP3388476B2 (en) Aluminum-based composite sliding material and method for producing the same
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JP2917999B2 (en) Method for producing high-strength aluminum alloy compact
JPH08193236A (en) Aluminum alloy with high toughness and wear resistance and its production
JPH07278714A (en) Aluminum powder alloy and its production
JPH07305132A (en) High elasticity aluminum alloy excellent in toughness
JP2003253306A (en) METHOD FOR MANUFACTURING COMPACT OF Al-Si ALLOY BY COMPRESSION PLASTIC WORKING

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees