KR100495881B1 - The Manufacturing Method of Aluminum Magnesium Boride via Spark Plasma Sintering - Google Patents

The Manufacturing Method of Aluminum Magnesium Boride via Spark Plasma Sintering Download PDF

Info

Publication number
KR100495881B1
KR100495881B1 KR10-2003-0004817A KR20030004817A KR100495881B1 KR 100495881 B1 KR100495881 B1 KR 100495881B1 KR 20030004817 A KR20030004817 A KR 20030004817A KR 100495881 B1 KR100495881 B1 KR 100495881B1
Authority
KR
South Korea
Prior art keywords
aluminum
almgb
aluminum magnesium
magnesium boride
boride
Prior art date
Application number
KR10-2003-0004817A
Other languages
Korean (ko)
Other versions
KR20040067610A (en
Inventor
안선용
김경배
강신후
Original Assignee
한국야금 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국야금 주식회사 filed Critical 한국야금 주식회사
Priority to KR10-2003-0004817A priority Critical patent/KR100495881B1/en
Publication of KR20040067610A publication Critical patent/KR20040067610A/en
Application granted granted Critical
Publication of KR100495881B1 publication Critical patent/KR100495881B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/06Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable
    • B60N2/07Slide construction
    • B60N2/0722Constructive details
    • B60N2/0727Stop members for limiting sliding movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/02Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable
    • B60N2/04Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable
    • B60N2/06Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable
    • B60N2/08Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles the seat or part thereof being movable, e.g. adjustable the whole seat being movable slidable characterised by the locking device

Abstract

방전 플라스마 소결법(SPS, Spark Plasma Sintering)을 이용한 알루미늄 마그네슘 보라이드(AlMgB14) 제조 방법이 개시되어 있다. 본 발명에 따르면, 알루미늄 마그네슘 보라이드(AlMgB14)는 각각 1mole% 알루미늄(Al), 1mole% 마그네슘(Mg), 그리고 14mole% 보론(B)으로 구성된 계를 8~12시간 볼 밀링하여 혼합한 다음, 혼합 분말을 그라파이트 몰드에 충진한 후 30~60mmtorr의 아르곤 분위기 하의 900~1400oC 온도에서 10~30분 동안 방전 플라스마 소결하여 제조하는 것으로, 기존의 제조 공정과 비교하여 제조 원가가 절감되고 수집율이 증가됨과 아울러 제조 공정이 단순해지는 효과.가 있는 것이다.Disclosed is a method for producing aluminum magnesium boride (AlMgB 14 ) using a discharge plasma sintering method (SPS, Spark Plasma Sintering). According to the present invention, aluminum magnesium boride (AlMgB 14 ) is a ball mill of 8 to 12 hours each of the mixture consisting of 1 mole% aluminum (Al), 1 mole% magnesium (Mg), and 14 mole% boron (B) and then mixed After filling the graphite powder with graphite powder, it is produced by sintering plasma for 10 ~ 30 minutes at 900 ~ 1400 o C temperature under argon atmosphere of 30 ~ 60mmtorr. In addition to increasing the rate, the manufacturing process is simplified.

Description

방전 플라스마 소결법에 의한 알루미늄 마그네슘 보라이드의 제조 방법{The Manufacturing Method of Aluminum Magnesium Boride via Spark Plasma Sintering}      The manufacturing method of aluminum magnesium boride via spark plasma sintering

본 발명은 알루미늄 마그네슘 보라이드(AlMgB14)의 제조 방법에 관한 것으로써 보다 상세하게는, 방전 플라스마 소결법(SPS)을 이용한 알루미늄 마그네슘 보라이드(AlMgB14) 제조 방법에 대한 것이다.The present invention relates to a method for producing aluminum magnesium boride (AlMgB 14 ), and more particularly, to a method for producing aluminum magnesium boride (AlMgB 14 ) using a discharge plasma sintering method (SPS).

알루미늄 마그네슘 보라이드(AlMgB14)는 우수한 내마모성, 높은 고온 강도 및 탄성율 등 우수한 기계적 특성 때문에 비절삭용 공구재료, 금속 절삭용 또는 내마모성 부품으로 널리 사용되고 있다. 그러나, 고온 안정상인 알루미늄 마그네슘 보라이드(AlMgB14)을 종래의 분말 제조 방법으로 합성하는 것은 매우 어려운 것으로 알려져 있다. 이는 알루미늄(Al)과 마그네슘(Mg)의 폭발적인 산화 반응 때문에 고진공 혹은 강한 환원 분위기가 필요하고, 마그네슘(Mg)의 낮은 기화 온도(1100℃) 때문에 온도의 부가에 한계가 있기 때문이다.Aluminum magnesium boride (AlMgB 14 ) is widely used as a non-cutting tool material, metal cutting or wear-resistant parts because of its excellent mechanical properties such as excellent wear resistance, high temperature strength and elastic modulus. However, it is known that it is very difficult to synthesize aluminum magnesium boride (AlMgB 14 ), which is a high temperature stable phase, by a conventional powder production method. This is because a high vacuum or strong reducing atmosphere is required due to the explosive oxidation reaction of aluminum (Al) and magnesium (Mg), and the addition of temperature is limited due to the low vaporization temperature (1100 ° C.) of magnesium (Mg).

초기 알루미늄 마그네슘 보라이드(AlMgB14)의 결정구조를 연구하던 사람들에 의해 소개된 용탕법에 의한 제조 방법은 다음과 같다. 즉, 알루미늄 용탕에 마그네슘(Mg)과 보론(B)을 각각 알루미나(Al2O3) 도가니에 넣어 800~1500℃ 정도에서 9~16시간 정도의 긴 시간동안 열처리한 후 남은 합성물과 알루미늄(Al) 잔량을 뜨거운 염산을 이용하여 알루미늄(Al)을 녹이고 남은 검은 결정들을 수집하는 방법이다. 이 검은 결정들이 알루미늄 마그네슘 보라이드(AlMgB14)로 이를 이용하여 연구를 하였으나 제조 방법상의 어려움과 수집율이 너무 적어 실험 수준에서 벗어나지 못했다.The manufacturing method by the molten metal method introduced by those who studied the crystal structure of the initial aluminum magnesium boride (AlMgB 14 ) is as follows. That is, magnesium (Mg) and boron (B) were put in an aluminum molten metal in an alumina (Al 2 O 3 ) crucible, respectively, and the remaining composites and aluminum (Al) after heat treatment for a long time of about 9 to 16 hours at about 800 to 1500 ° C. ) The remaining amount is dissolved in aluminum (Al) using hot hydrochloric acid, and the remaining black crystals are collected. These black crystals were studied using aluminum magnesium boride (AlMgB 14 ), but the manufacturing process was difficult because of the difficulty and the collection rate.

또한, 미국합중국특허 제6,099,605호에는 알루미늄 마그네슘 보라이드(AlMgB14)에 기계적 합금(Mechanical alloying)과 핫 프레스(Hot press)를 이용하여 티탄륨 보라이드(TiB2), 알루미늄 나이트라이드(AlN) 또는 보론 나이트라이드(BN)등 첨가물을 도핑하여 경도를 증가시키는 방법이 소개되어 있다. 그러나, 이러한 핫 프레스(Hot press) 방법은 합성 시 마그네슘(Mg)의 기화를 막기 위해 과잉의 마그네슘(Mg) 첨가로 인한 챔버 및 발열체의 오염 등을 피할 수 없으며, 또한 수집율이 적어 상업화에 적합하지 않다.In addition, U.S. Patent No. 6,099,605 discloses titanium magnesium boride (TiB 2 ), aluminum nitride (AlN) or aluminum magnesium boride (AlMgB 14 ) using mechanical alloying and hot presses. A method of increasing hardness by doping additives such as boron nitride (BN) has been introduced. However, this hot press method is not suitable for commercialization due to the low collection rate and avoid the contamination of the chamber and heating element due to the addition of excess magnesium (Mg) to prevent the vaporization of magnesium (Mg) during synthesis Not.

이와는 달리, 본 발명에서 사용한 방전 플라스마 소결법(SPS)은 앞에서 소개된 용탕법 및 핫 프레스(Hot press) 공정에 의한 알루미늄 마그네슘 보라이드(AlMgB14) 제조의 한계를 극복할 수 있는 신공정 방법이다. 이 방법은 분당 100 ℃ 이상의 급속도 승온이 가능하여 마그네슘(Mg)의 용융 후의 본격적인 기화를 차단할 수 있을 뿐만 아니라, 승온이 시작되는 순간부터 극히 짧은 시간 안에 각 분말의 틈에서 플라스마가 형성되면서 스퍼터링이 일어나기 때문에 합성이 매우 수월하다. 즉 다량의 보론(B) 분말 사이에서 잘 퍼져있는 알루미늄(Al)과 마그네슘(Mg) 분말이 극단의 시간에 형성된 고온 플라스마에 의해 원자 단위로 스퍼터링하여 고온 안정적인 상인 알루미늄 마그네슘 보라이드(AlMgB14)가 합성되는 것이다.In contrast, the discharge plasma sintering method (SPS) used in the present invention is a new process method capable of overcoming the limitations of aluminum magnesium boride (AlMgB 14 ) production by the above-mentioned melt method and hot press process. This method can rapidly increase the temperature above 100 ℃ per minute to prevent full-scale vaporization after the melting of magnesium (Mg), as well as the formation of plasma in the gap of each powder within a very short time from the beginning of the temperature rise sputtering occurs This makes synthesis very easy. That is, aluminum magnesium boride (AlMgB 14 ), which is a high-temperature stable phase, is sputtered in atomic units by high temperature plasma formed in extreme time by aluminum (Al) and magnesium (Mg) powders that are widely spread among a large amount of boron (B) powder. It is synthesized.

현재, 물리적 증기 증착(PVD) 방법인 스퍼터링법을 이용하여 알루미늄 마그네슘 보라이드(AlMgB14) 박막을 코팅하는 방법이 연구 진행 중이다. 그러나, 본 발명에서 사용한 방전 플라스마 소결법(SPS)으로 알루미늄 마그네슘 보라이드(AlMgB14)를 제조한 경우는 국내외적으로 보고된 바 없다.Currently, a method of coating an aluminum magnesium boride (AlMgB 14 ) thin film by sputtering, which is a physical vapor deposition (PVD) method, is being studied. However, the production of aluminum magnesium boride (AlMgB 14 ) by the discharge plasma sintering method (SPS) used in the present invention has not been reported at home and abroad.

본 발명은 상기에서 언급된 종래 기술인 용탕법 및 핫 프레스(Hot press) 방법에 의한 알루미늄 마그네슘 보라이드(AlMgB14) 제조의 한계를 해결하기 위한 것으로써, 종래의 방법보다 용이하면서도 간단한 방법으로 알루미늄 마그네슘 보라이드(AlMgB14) 분말을 합성하는 방법을 제공하기 위한 것이며, 특히, 방전 플라스마 소결(SPS)를 사용하여 보다 용이하게 알루미늄 마그네슘 보라이드(AlMgB14) 분말을 제조하는 방법을 제공하는데 그 목적이 있다.The present invention is to solve the limitation of the aluminum magnesium boride (AlMgB 14 ) production by the above-mentioned prior art molten metal and hot press method, it is easier and simpler than the conventional method aluminum aluminum magnesium To provide a method for synthesizing boride (AlMgB 14 ) powder, and in particular, to provide a method for producing aluminum magnesium boride (AlMgB 14 ) powder more easily by using discharge plasma sintering (SPS). have.

상기 목적을 달성하기 위하여 본 발명은,The present invention to achieve the above object,

알루미늄(Al), 마그네슘(Mg), 보론(B)을 몰비 1 : 1: 14로 혼합하여 8~12시간동안 아르곤(Ar) 분위기의 금속용기에서 볼 밀링하여 혼합한 후, 이 혼합 분말을 그라파이트 몰드에 충진한 다음, 30~60mtorr 아르곤(Ar) 분위기 하의 900oC~1400oC 온도에서 10분~30분 동안 방전 플라스마 소결하여 알루미늄 마그네슘 보라이드(AlMgB14) 제조하는 방법을 제공한다. 여기에서 상기 금속 용기는 Al, Mg 및 Fe 중 하나 또는 그 이상의 금속 내지 합금 용기를 사용함이 바람직하다.Aluminum (Al), magnesium (Mg) and boron (B) were mixed in a molar ratio of 1: 1: 14 and ball milled in an argon (Ar) atmosphere for 8 to 12 hours, and then mixed with graphite. After filling the mold, and discharge plasma sintered for 10 minutes to 30 minutes at 900 ° C ~ 1400 ° C temperature under 30 ~ 60 mtorr argon (Ar) atmosphere provides a method for producing aluminum magnesium boride (AlMgB 14 ). Herein, the metal container is preferably one or more metal to alloy containers of Al, Mg, and Fe.

이하에서는 본 발명의 실시 예를 보다 상세하게 살펴본다.Hereinafter, an embodiment of the present invention will be described in more detail.

우선, 알루미늄(Al, -325mesh, 99.5% 순도), 마그네슘 (Mg, -325mesh, 99.6% 순도)및 보론(B, <1um , 99.9% 순도)를 몰비 1 : 1 : 14의 비율로 측량한 후 아르곤(Ar) 분위기의 금속 용기에서 8~12 시간 동안 볼 밀링한다. 이때 아르곤(Ar) 분위기의 사용은 마그네슘(Mg)과 알루미늄(Al)의 산화 방지에 목적이 있다. 또한, 볼 밀링 시간을 12시간 초과하면 볼 메디아 또는 용기로부터의 불순물 첨가 및 알루미늄(Al)과 마그네슘(Mg)의 산화를 최소화하기 어려우며, 8시간 미만 수행하는 경우 균일한 혼합체를 얻을 수 없기 때문에 8~12시간이 바람직하다.First, aluminum (Al, -325mesh, 99.5% purity), magnesium (Mg, -325mesh, 99.6% purity) and boron (B, <1um, 99.9% purity) were measured at a molar ratio of 1: 1: 1: 14. Ball mill in an argon (Ar) atmosphere for 8 to 12 hours. At this time, the use of argon (Ar) atmosphere is aimed at preventing oxidation of magnesium (Mg) and aluminum (Al). In addition, if the ball milling time exceeds 12 hours, it is difficult to minimize the addition of impurities from the ball media or the container and the oxidation of aluminum (Al) and magnesium (Mg). -12 hours are preferable.

상기한 바와 같이 볼 밀링을 통해서 알루미늄(Al), 마그네슘(Mg) 및 보론(B)의 균일한 혼합 분말을 얻은 후 이들 혼합 분말을 그라파이트 몰드에 충진한다. As described above, a uniform mixed powder of aluminum (Al), magnesium (Mg) and boron (B) is obtained through ball milling, and then the mixed powder is filled into a graphite mold.

그 다음, 분당 100℃이상의 승온 속도로 승온하여 30~60mtorr 아르곤 분위기 하의 900oC~1400oC 온도에서 10분~30분 동안 방전 플라스마 소결(SPS)하면 1㎛ 이하의 알루미늄 마그네슘 보라이드(AlMgB14) 분말을 얻을 수 있다.Then, after heating up at a temperature increase rate of 100 ° C. or more per minute and discharging plasma sintering (SPS) for 10 minutes to 30 minutes at a temperature of 900 ° C. to 1400 ° C. under a temperature of 30 to 60 mtorr argon, aluminum magnesium boride of less than 1 μm (AlMgB 14 ) A powder can be obtained.

이때, 승온 속도는 100℃ 이상하여 마그네슘(Mg)의 용융 후의 본격적인 기화를 차단하도록 하고, 노내의 진공도는 플라스마의 용이한 형성이 가능하도록 30~60mtorr의 아르곤 분위기가 바람직하다.At this time, the temperature increase rate is 100 ℃ or more to block the full-scale vaporization after melting of magnesium (Mg), the degree of vacuum in the furnace is preferably an argon atmosphere of 30 ~ 60mtorr so that the plasma can be easily formed.

또한, 소결 온도 및 시간의 바람직한 선택에 대해 상세히 설명하면 다음과 같다. In addition, the preferred selection of the sintering temperature and time will be described in detail as follows.

즉, 소결 온도 및 시간이 각각 900℃ 및 10분 미만인 경우 확산 구동력이 작아 합성 반응이 충분히 보장되지 못하여 알루미늄 마그네슘 보라이드(AlMgB14) 합성되지 않으며, 또한, 소결 온도 및 시간이 각각 1400℃ 및 30분을 초과하는 경우 알루미늄(Al), 마그네슘(Mg)의 기화가 유발되고, 합성 분말 간에 넥킹(Necking)이 발생하여 바람직하지 않다.That is, when the sintering temperature and time is less than 900 ℃ and 10 minutes, respectively, the diffusion driving force is small, the synthesis reaction is not sufficiently guaranteed, aluminum magnesium boride (AlMgB 14 ) is not synthesized, and the sintering temperature and time are 1400 ℃ and 30, respectively If it is more than minutes, vaporization of aluminum (Al) and magnesium (Mg) is caused, and necking occurs between synthetic powders, which is not preferable.

상기한 바와 같이 공정이 단순화된 방전 플라스마 소결(SPS) 방법으로 1㎛ 이하의 균일한 입자를 갖는 알루미늄 마그네슘 보라이드(AlMgB14) 분말을 용이하게 제조할 수 있다. 도면 1은 방전 플라스마 소결(SPS) 방법에 의해 제조된 알루미늄 마그네슘 보라이드(AlMgB14) 분말 SEM 사진으로 제조된 분말이 미세하고 균일한 입자 형상을 갖음을 알 수 있다.As described above, aluminum magnesium boride (AlMgB 14 ) powder having uniform particles of 1 μm or less may be easily manufactured by the discharge plasma sintering (SPS) method. 1 shows that the aluminum magnesium boride (AlMgB 14 ) powder SEM photograph prepared by the discharge plasma sintering (SPS) method has a fine and uniform particle shape.

상기와 같은 방법으로 알루미늄 마그네슘 보라이드(AlMgB14)를 제조하면 그 공정이 매우 단순할 뿐만 아니라 제조된 분말이 미세함으로 인해 알루미늄 마그네슘 보라이드(AlMgB14)를 필요로 하는 공구재료, 금속 절삭용 부품이나 내마모성 부품을 경제적으로 용이하게 제조할 수 있게 된다.When the aluminum magnesium boride (AlMgB 14 ) is manufactured by the above method, the process is very simple, and because of the fine powder, the tool material and metal cutting parts requiring aluminum magnesium boride (AlMgB 14 ) are fine. However, wear-resistant parts can be manufactured easily and economically.

상기에서는 본 발명을 실시 예를 통하여 상세히 설명하였지만 본 발명은 이에 한정되는 것이 아니고 이하의 특허 청구범위 기재 내용으로부터 다양한 수정 및 변형이 있을 수 있음을 당업자들은 이해할 수 있을 것이다.Although the present invention has been described in detail by way of examples, those skilled in the art will understand that the present invention is not limited thereto and that various modifications and variations can be made from the following claims.

제 1 도는 방전 플라스마 소결법에 제조된 알루미늄 마그네슘 보라이드 분말의 SEM 사진SEM Picture of Aluminum Magnesium Boride Powder Prepared by the First Discharge Plasma Sintering Method

Claims (3)

(정정)알루미늄 마그네슘 보라이드(AlMgB14)의 제조 방법에 있어서, 알루미늄(Al), 마그네슘(Mg), 및 보론(B)을 각각 몰비 1 : 1 : 14로 혼합한 다음, 8~12시간 동안 아르곤(Ar) 분위기의 금속 용기에서 볼 밀링하여 혼합하고, 여기서 상기 금속용기는 Al, Mg 및 Fe로 구성된 그룹으로부터 선택된 1 이상의 성분으로 구성된 금속 내지 합금 용기이며, 상기 혼합물을 그라파이트 몰드에 충진한 다음 분당 100℃ 이상으로 승온하여, 30~60mtorr의 아르곤 분위기에서 900~1400℃의 온도로 10~30분 방전 플라스마 소결(SPS)함을 특징으로 하는 알루미늄 마그네슘 보라이드(AlMgB14)의 제조 방법.(Correction) In the manufacturing method of aluminum magnesium boride (AlMgB 14 ), aluminum (Al), magnesium (Mg), and boron (B) were mixed in a molar ratio of 1: 1: 14, respectively, and then 8 to 12 hours. Ball milling in a metal container with argon (Ar) atmosphere and mixing , wherein the metal container is a metal to alloy container consisting of one or more components selected from the group consisting of Al, Mg and Fe, and then filling the mixture into a graphite mold A method of producing aluminum magnesium boride (AlMgB 14 ), wherein the temperature is increased to 100 ° C. or more per minute and discharge plasma sintered (SPS) for 10 to 30 minutes at a temperature of 900 to 1400 ° C. in an argon atmosphere of 30 to 60 mtorr. (삭제)(delete) (삭제)(delete)
KR10-2003-0004817A 2003-01-24 2003-01-24 The Manufacturing Method of Aluminum Magnesium Boride via Spark Plasma Sintering KR100495881B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0004817A KR100495881B1 (en) 2003-01-24 2003-01-24 The Manufacturing Method of Aluminum Magnesium Boride via Spark Plasma Sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0004817A KR100495881B1 (en) 2003-01-24 2003-01-24 The Manufacturing Method of Aluminum Magnesium Boride via Spark Plasma Sintering

Publications (2)

Publication Number Publication Date
KR20040067610A KR20040067610A (en) 2004-07-30
KR100495881B1 true KR100495881B1 (en) 2005-06-16

Family

ID=37357115

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0004817A KR100495881B1 (en) 2003-01-24 2003-01-24 The Manufacturing Method of Aluminum Magnesium Boride via Spark Plasma Sintering

Country Status (1)

Country Link
KR (1) KR100495881B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101576891B1 (en) * 2014-09-29 2015-12-14 주식회사 지노이드 METHOD OF MANUFACTURING POLYCRYSTALINE ZnS CERAMICS FOR LONG WAVE INFRARED TRANSMITTANCE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786883B (en) * 2009-12-30 2012-10-03 山东大学 Functionally-gradient ceramic knife tool with layer-by-layer nested structure and preparation method thereof
CN112091211B (en) * 2020-08-20 2021-09-10 上海交通大学 Preparation method of diffusion multi-element joint

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987005A (en) * 1995-09-18 1997-03-31 Mamoru Omori Martensitic transformation type ceramic solid solution, its production and high toughness composite material
JPH11209839A (en) * 1998-01-23 1999-08-03 Kubota Corp High strength aluminum alloy powder excellent in workability, preformed body thereof, forming method therefor, and manufacture of high strength aluminum alloy member
JPH11286701A (en) * 1998-04-03 1999-10-19 Kansai Electric Power Co Inc:The Stellite number 6 sintered material and stellite number 6 combined sintered material
KR20000073464A (en) * 1999-05-11 2000-12-05 박호군 Preparation of carbide or boride ceramic powder by self-propagation high temparature synthesis
US6432855B1 (en) * 1999-06-07 2002-08-13 Iowa State University Reseach Foundation, Inc,. Superabrasive boride and a method of preparing the same by mechanical alloying and hot pressing
EP1249844A1 (en) * 1999-10-15 2002-10-16 Mitsubishi Heavy Industries, Ltd. Manufacturing method for spent fuel storage member and mixed powder
KR100439386B1 (en) * 2000-07-12 2004-07-09 미츠비시 쥬고교 가부시키가이샤 Aluminum composite powder, the manufacturing method of that, aluminum composite material, and the manufacturing method of the parts of spent fuel storage system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987005A (en) * 1995-09-18 1997-03-31 Mamoru Omori Martensitic transformation type ceramic solid solution, its production and high toughness composite material
JPH11209839A (en) * 1998-01-23 1999-08-03 Kubota Corp High strength aluminum alloy powder excellent in workability, preformed body thereof, forming method therefor, and manufacture of high strength aluminum alloy member
JPH11286701A (en) * 1998-04-03 1999-10-19 Kansai Electric Power Co Inc:The Stellite number 6 sintered material and stellite number 6 combined sintered material
KR20000073464A (en) * 1999-05-11 2000-12-05 박호군 Preparation of carbide or boride ceramic powder by self-propagation high temparature synthesis
US6432855B1 (en) * 1999-06-07 2002-08-13 Iowa State University Reseach Foundation, Inc,. Superabrasive boride and a method of preparing the same by mechanical alloying and hot pressing
EP1249844A1 (en) * 1999-10-15 2002-10-16 Mitsubishi Heavy Industries, Ltd. Manufacturing method for spent fuel storage member and mixed powder
KR100439386B1 (en) * 2000-07-12 2004-07-09 미츠비시 쥬고교 가부시키가이샤 Aluminum composite powder, the manufacturing method of that, aluminum composite material, and the manufacturing method of the parts of spent fuel storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101576891B1 (en) * 2014-09-29 2015-12-14 주식회사 지노이드 METHOD OF MANUFACTURING POLYCRYSTALINE ZnS CERAMICS FOR LONG WAVE INFRARED TRANSMITTANCE

Also Published As

Publication number Publication date
KR20040067610A (en) 2004-07-30

Similar Documents

Publication Publication Date Title
Haemers et al. Synthesis protocols of the most common layered carbide and nitride MAX phases
US8430978B2 (en) Sputtering target and method for production thereof
JP5051168B2 (en) Nitride-dispersed Ti-Al target and method for producing the same
KR100689597B1 (en) Iron silicide sputtering target and method for production thereof
JP2006097037A (en) Magnesium alloy and its production method
KR100495881B1 (en) The Manufacturing Method of Aluminum Magnesium Boride via Spark Plasma Sintering
US20040067837A1 (en) Ceramic materials in powder form
US8105467B2 (en) High strength sputtering target for forming phosphor film in electroluminescence element
JP3731041B2 (en) High corrosion resistance magnesium alloy and method for producing high corrosion resistance magnesium material
WO2006103930A1 (en) Method for producing material containing aluminum nitride
CN1249261C (en) Noncrystalline alloy based composite material containing boride particles
CN103119186A (en) CrTi-based alloy and sputtering target material, perpendicular magnetic recording medium, and processes for producing same
CN112919470B (en) Production process of titanium silicon carbide
JPH05195199A (en) Production of boride base super hard coating thin film excellent in wear resistance and corrosion resistance
JP4060803B2 (en) Method for producing zirconium boride powder
CN111547781B (en) High-strength metal wear-resistant compound material and preparation method thereof
CN113373414B (en) Preparation method and application of aluminum scandium alloy sputtering target
JP3553496B2 (en) Titanium carbide based alloys of hard materials, their preparation and use
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JP3015009B1 (en) Titanium silicide target and method of manufacturing the same
JP2003128466A (en) Sintered boride and method for making the same
JPS63171877A (en) Composit target material
JP2978052B2 (en) Composition for powder metallurgy and method for producing the same
JPH0829923B2 (en) Silicon nitride powder
JP2001179508A (en) Cutting tool

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee