JPH0829923B2 - Silicon nitride powder - Google Patents

Silicon nitride powder

Info

Publication number
JPH0829923B2
JPH0829923B2 JP1318158A JP31815889A JPH0829923B2 JP H0829923 B2 JPH0829923 B2 JP H0829923B2 JP 1318158 A JP1318158 A JP 1318158A JP 31815889 A JP31815889 A JP 31815889A JP H0829923 B2 JPH0829923 B2 JP H0829923B2
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride powder
powder
amount
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1318158A
Other languages
Japanese (ja)
Other versions
JPH03177307A (en
Inventor
紘一 内野
美幸 中村
征彦 中島
秀樹 広津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1318158A priority Critical patent/JPH0829923B2/en
Publication of JPH03177307A publication Critical patent/JPH03177307A/en
Publication of JPH0829923B2 publication Critical patent/JPH0829923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、易焼結性で抗折強度と靭性に優れた焼結体
を構造することができる窒化ケイ素粉末に関する。窒化
ケイ素は高温構造材料としてガスタービン部材、ノズ
ル、軸受等に利用されている。
Description: TECHNICAL FIELD The present invention relates to a silicon nitride powder capable of forming a sintered body which is easily sintered and is excellent in bending strength and toughness. Silicon nitride is used as a high temperature structural material for gas turbine members, nozzles, bearings and the like.

〔従来の技術〕[Conventional technology]

従来、窒化ケイ素粉末の製法としては、(1)金属ケ
イ素直接窒化法、(2)シリカ還元窒化法、(3)ハロ
ゲン化ケイ素法が知られている。これらの方法でつくら
れる粉末は、製造履歴が異なるためか、金属不純物量や
酸素量あるいは粒径、比表面積が同程度であっても、粉
末の焼結性や焼結後の焼結体の特性たとえば抗折強度に
大きな違いがある。
Conventionally, as a method for producing a silicon nitride powder, there are known (1) metal silicon direct nitriding method, (2) silica reduction nitriding method, and (3) silicon halide method. Probably because the powders produced by these methods have different production histories, even if the amount of metal impurities, the amount of oxygen, the particle size, and the specific surface area are the same, the sinterability of the powder and the sintered body after sintering are There is a big difference in characteristics such as bending strength.

一般的には、(1)方法で製造さた粉末の易焼結性で
あるが抗折強度が低い、(2)の方法の粉末は難焼結性
である、(3)の方法の粉末は中間的な性能を示すとい
われている。
Generally, the powder produced by the method (1) is easily sinterable but has a low bending strength, the powder produced by the method (2) is hardly sintered, and the powder produced by the method (3). Is said to exhibit intermediate performance.

固溶酸素量については、(1)の方法の粉末は粉砕工
程を経るため、通常、2重量%をこえる場合が多く、少
なくても1.5重量%は含まれている。(1)の方法で不
純物除去のために酸処理等を工程を通すと固溶酸素量は
低減するがそれでも1.0重量%未満にすることは難し
い。一方、(2)の方法の粉末でも、原料としてシリカ
粉末を用いるためにシリカの残留があり、固溶酸素量は
2重量%をこえるのが普通である。
Regarding the amount of solid solution oxygen, the powder of the method (1) undergoes a pulverizing step, and therefore, it is often more than 2% by weight, and at least 1.5% by weight is contained. When the acid treatment or the like is carried out through the steps for removing impurities by the method (1), the amount of dissolved oxygen is reduced, but it is still difficult to make it less than 1.0% by weight. On the other hand, even in the case of the powder of the method (2), since silica powder is used as a raw material, silica remains, and the amount of dissolved oxygen is usually over 2% by weight.

結晶形態については、α相とβ相の2種類が存在して
いるが、一般的な窒化ケイ素の焼結機構、すなわちα相
が液相に一旦溶解し、その後過飽和となりβ相として析
出するとの観点にたって、α相含有率は高い方が望まし
いといわれている。しかし、α→β転移に伴なう柱状の
結晶の析出時に柱状結晶の成長が均一ではなく、異常粒
成長が起こり微細な緻密化が阻害される欠点がある。
Regarding the crystal morphology, there are two types of α phase and β phase, but the general sintering mechanism of silicon nitride, that is, α phase once dissolves in the liquid phase, then becomes supersaturated and precipitates as β phase From the viewpoint, it is said that a higher α phase content is desirable. However, there is a drawback that the columnar crystal growth is not uniform during the precipitation of the columnar crystal accompanying the α → β transition, and abnormal grain growth occurs to prevent fine densification.

特開平1−145380号公報には、β相が30〜100%の範
囲において、β化率と粒径との関係について提案されて
いる。しかし、この方法では、酸素含有量が多いため、
焼結の際にα→β転移が低温より起こり易くなり、また
焼結助剤が形成する粒界相の量も多くなって窒化ケイ素
の溶解性が変化し、アスペクト比の非常に小さいβ柱状
晶しか生成しないので靭性が向上しないという問題があ
った。
Japanese Unexamined Patent Publication No. 1-145380 proposes the relationship between the β conversion rate and the particle size in the range of 30 to 100% β phase. However, in this method, since the oxygen content is high,
The α → β transition is more likely to occur at low temperatures during sintering, and the amount of grain boundary phase formed by the sintering aid also increases to change the solubility of silicon nitride, resulting in a β-columnar shape with a very small aspect ratio. Since only crystals are generated, there is a problem that toughness is not improved.

〔発明が解決しようとする課題〕 本発明の目的は、上記課題を解決した窒化ケイ素粉末
を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a silicon nitride powder that solves the above problems.

〔課題を解決するための手段〕[Means for solving the problem]

すなわち、本発明は、α相70%以下、β相30%以上の
窒化ケイ素粉末であって、固溶酸素量が0.5重量%未
満、0.2μm以下の微粉量が6容量%以下であることを
特徴とする窒化ケイ素粉末である。
That is, the present invention provides a silicon nitride powder having an α phase of 70% or less and a β phase of 30% or more, a solid solution oxygen amount of less than 0.5% by weight, and a fine powder amount of 0.2 μm or less of 6% by volume or less. It is a characteristic silicon nitride powder.

以下、本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail.

まず、本発明の窒化ケイ素粉末のα相の割合は70%以
下でβ相の割合は30%以上である。α相の割合が70%を
越えると、α→β転移に伴なう柱状晶の析出時に異常粒
成長が起こり、柱状結晶が不均一となり、アスペクト比
の大きいものが晶出し、緻密化が阻害される。
First, in the silicon nitride powder of the present invention, the proportion of α phase is 70% or less and the proportion of β phase is 30% or more. If the proportion of α phase exceeds 70%, abnormal grain growth occurs during the precipitation of columnar crystals accompanied by α → β transition, the columnar crystals become non-uniform, and those with a large aspect ratio crystallize, preventing densification. To be done.

本発明におけるα相の割合は、X線回折により、α相
としてI102とI210、β相として、I101とI210のピーク強
度を求め次式により算出した。
The ratio of the α phase in the present invention was calculated by the following formula by obtaining the peak intensities of I 102 and I 210 as the α phase and I 101 and I 210 as the β phase by X-ray diffraction.

次に、本発明の窒化ケイ素粉末の固溶酸素量は0.5重
量%未満である。固溶酸素量が0.5重量%未満である。
固溶酸素量が0.5重量%以上では、焼結の際にα→β転
移が低温から起こりやすくなり、また焼結助剤が形成す
る粒界相の量も多くなって窒化ケイ素の溶解性が変化
し、アスペクト比の小さいβ柱状晶しか生成しないので
焼結性は改良されるが靭性は向上しない。
Next, the amount of dissolved oxygen of the silicon nitride powder of the present invention is less than 0.5% by weight. The amount of dissolved oxygen is less than 0.5% by weight.
When the amount of solid solution oxygen is 0.5% by weight or more, the α → β transition is likely to occur at a low temperature during sintering, and the amount of the grain boundary phase formed by the sintering aid is increased, so that the solubility of silicon nitride is increased. The sinterability is improved but the toughness is not improved because only β columnar crystals having a small aspect ratio are formed.

また、本発明において、0.2μm以下の微粉量が6容
量%を超えると焼結体の窒化ケイ素粒子のアスペクト比
が小さくなり、抗折強度と靭性の改善効果が認められな
くなる。
Further, in the present invention, when the amount of fine powder of 0.2 μm or less exceeds 6% by volume, the aspect ratio of the silicon nitride particles of the sintered body becomes small, and the bending strength and toughness improving effects cannot be recognized.

本発明の窒化ケイ素粉末は、平均粒子径は1.2〜0.4μ
m、比表面積は6〜14m2/g、金属不純物等にFe、Al及び
Caの合計は2000ppm以下であることが、所期の目的を達
成するのに望ましい。
The silicon nitride powder of the present invention has an average particle size of 1.2 to 0.4 μ.
m, specific surface area 6 to 14 m 2 / g, metallic impurities such as Fe, Al and
It is desirable that the total amount of Ca is 2000 ppm or less in order to achieve the intended purpose.

次に、本発明の窒化ケイ素粉末を製造する方法につい
て説明する。
Next, a method for producing the silicon nitride powder of the present invention will be described.

本発明の窒化ケイ素粉末は、種々の方法で製造するこ
とができるが、α相の割合(以下、α分率という)、固
溶酸素量、平均粒子径及び比表面積等の特性を自由に調
整することができるハロゲン化ケイ素法が最も適してい
る。例えば、種としてα分率10%以下で比表面積12m2/g
程度の窒化ケイ素粉末を、生成する窒化ケイ素粉末100
重量部あたり3〜20重量部を中間体イミドに添加し、酸
素分圧10-5atm以下に調整し、温度1500〜1600℃の条件
下で結晶化することにより製造することができる。
The silicon nitride powder of the present invention can be produced by various methods, but the characteristics such as the α phase ratio (hereinafter referred to as α fraction), the amount of dissolved oxygen, the average particle size and the specific surface area can be freely adjusted. The silicon halide method which can be used is most suitable. For example, as a seed with an α fraction of 10% or less, a specific surface area of 12 m 2 / g
Silicon nitride powder, producing about 100 silicon nitride powder
It can be produced by adding 3 to 20 parts by weight per part by weight to the intermediate imide, adjusting the oxygen partial pressure to 10 -5 atm or less, and crystallizing at a temperature of 1500 to 1600 ° C.

金属ケイ素の直接窒化法では、例えば、α分率10%以
下で比表面積12m2/g程度の窒化ケイ素粉末を88μm以下
の金属ケイ素粉末100重量部あたり5〜15重量部添加混
合し、窒化供試体のカサ比重を0.7〜1.2程度にして窒化
する。窒化は、窒素とアンモニアの混合ガス雰囲気下、
窒素分圧を0.9atm以上に調整し、20〜50℃/hの速度で昇
温し、温度1400〜1500℃の条件下で行う。なお、窒化時
にアルカリ金属及びアルカリ類金属のハロゲン化物より
選ばれた1種又は2種以上を気体の状態で、連続的、間
欠的又は一時的に供給することにより、より低固溶酸素
で靭性の高い窒化ケイ素粉末を製造することができる。
In the direct nitriding method of metallic silicon, for example, 5 to 15 parts by weight of silicon nitride powder having an α fraction of 10% or less and a specific surface area of about 12 m 2 / g is added and mixed per 100 parts by weight of metallic silicon powder of 88 μm or less, and nitriding is performed. Nitrid the bulk density of the specimen to about 0.7 to 1.2. Nitriding is performed in a mixed gas atmosphere of nitrogen and ammonia,
The nitrogen partial pressure is adjusted to 0.9 atm or more, the temperature is raised at a rate of 20 to 50 ° C / h, and the temperature is 1400 to 1500 ° C. It should be noted that during nitriding, one or more selected from alkali metal and alkali metal halides are continuously, intermittently or temporarily supplied in a gaseous state in a gaseous state, so that the solid solution oxygen is lower and the toughness is lower. It is possible to manufacture a high-quality silicon nitride powder.

さらには、金属ケイ素の直接窒化法によって得られた
従来の窒化ケイ素粉末(例えば電気化学工業株式会社製
「SN−G2」)を、窒素雰囲気下、1600〜1700℃の温度で
熱処理するか、又はα分率の異なる窒化ケイ素粉末を混
合することによっても本発明の窒化ケイ素粉末を製造す
ることができる。
Furthermore, conventional silicon nitride powder obtained by the direct nitriding method of metallic silicon (for example, "SN-G2" manufactured by Denki Kagaku Kogyo Co., Ltd.) is heat-treated at a temperature of 1600 to 1700 ° C under a nitrogen atmosphere, or The silicon nitride powder of the present invention can also be manufactured by mixing silicon nitride powders having different α fractions.

〔実施例〕〔Example〕

以下、実施例と比較例をあげてさらに具体的に説明す
る。
Hereinafter, more detailed description will be given with reference to Examples and Comparative Examples.

実施例1〜9 比較例1〜3 四塩化ケイ素とアンモニアをモル比1:6で200℃以下の
温度で反応させ、シリコンジイミドと塩化アンモニウム
を含む中間体を合成した。その中間体に、第1表に示す
ように、種粉として、α分率が異なる比表面積12m2/gの
窒化ケイ素粉末を添加量を変えて添加し、それを窒化ケ
イ素ルツボに入れ、窒素ガス流通下、500℃の温度に保
持して脱塩化アンモニウム処理を行った。
Examples 1 to 9 Comparative Examples 1 to 3 Silicon tetrachloride and ammonia were reacted at a molar ratio of 1: 6 at a temperature of 200 ° C. or lower to synthesize an intermediate containing silicon diimide and ammonium chloride. As shown in Table 1, to the intermediate, silicon nitride powder having a specific surface area of 12 m 2 / g with different α fraction was added as a seed powder at different addition amounts, and the powder was put into a silicon nitride crucible and nitrogen was added. Under a gas flow, the temperature was kept at 500 ° C. for deammonium chloride treatment.

次いで、それを1500℃以上の温度に昇温し、シリコン
ジイミドを分解して窒化ケイ素粉末とするが、その際、
種粉の種類(α分率)及び生成窒化ケイ素100重量部に
対する種の添加量(重量部)及び分解時の雰囲気中の酸
素分圧を変化させて、第1表に示すように、α分率、比
表面積、固溶酸素量及び粒度(平均粒子径と0.2μm下
の微粉量)の異なる粉末を製造した。
Next, it is heated to a temperature of 1500 ° C. or higher to decompose the silicon diimide into silicon nitride powder, at which time,
By changing the kind of seed powder (α fraction), the amount of seed added to 100 parts by weight of generated silicon nitride (parts by weight), and the oxygen partial pressure in the atmosphere during decomposition, as shown in Table 1, Powders having different rates, specific surface areas, amounts of dissolved oxygen and particle sizes (average particle size and fine powder amount under 0.2 μm) were produced.

第1表の窒化ケイ素粉末に、市販の平均粒子径1.2μ
mのY2O3と平均粒子径1.4μmのAl2O3をそれぞれ内割で
5重量%と2重量%を添加し、さらに1.1.1−トリクロ
ロエタンを加えて4時間ボールミルで湿式混合し、乾燥
後、100kg/cm2の成形圧で6×10×60mmの形状に金型成
形した後2700kg/cm2の成形圧でCIP成形した。それらの
成形体を、窒素雰囲気の常圧下、1800℃の温度で4時間
保持して焼結体を製造した。
Commercially available average particle size of 1.2μ
m Y 2 O 3 and Al 2 O 3 having an average particle size of 1.4 μm were added in an amount of 5% by weight and 2% by weight, respectively, 1.1.1-trichloroethane was further added, and the mixture was wet mixed in a ball mill for 4 hours, After drying, it was molded with a molding pressure of 100 kg / cm 2 into a shape of 6 × 10 × 60 mm, and then CIP molded with a molding pressure of 2700 kg / cm 2 . These compacts were kept at a temperature of 1800 ° C. for 4 hours under a normal pressure of a nitrogen atmosphere to produce a sintered compact.

得られた焼結体を3×4×40mmに切削加工し、焼結体
密度、常温における3点曲げ強度及び靭性値を測定し
た。それらの結果を第1表に示す。
The obtained sintered body was cut into a size of 3 × 4 × 40 mm, and the density of the sintered body, the three-point bending strength at room temperature, and the toughness value were measured. The results are shown in Table 1.

実施例10〜17 比較例4〜9 Si純度が99.9重量%で粒子径が88μm下の金属ケイ素
粉末100重量部にα分率が10%で比表面積12m2/gの窒化
ケイ素粉末10重量部を添加混合し、それを用いて、第2
表に示すカサ比重を有し、かつ縦150×横150mmで第2表
に示す厚みを有する窒化供試体を成型して電気炉で窒化
した。窒化条件は第2表に示すとおりであり、昇温温度
は1100〜1450℃の温度における値である。
Examples 10 to 17 Comparative Examples 4 to 9 10 parts by weight of silicon nitride powder having a Si purity of 99.9% by weight and a particle size of 88 μm and 100 parts by weight of metal silicon powder having an α fraction of 10% and a specific surface area of 12 m 2 / g. Is added and mixed, and it is used to
A nitriding specimen having a bulk specific gravity shown in the table and a length of 150 mm × width of 150 mm and a thickness shown in Table 2 was molded and nitrided in an electric furnace. The nitriding conditions are as shown in Table 2, and the temperature rising temperature is a value at a temperature of 1100-1450 ° C.

得られた窒化ケイ素インゴットは、ジョークラッシャ
ー及びトップグラインダーで0.2mm下に粉砕し、それを
内容積1のボールミルに50g、4φFeボール0.5、水
100gを入れてさらに20時間湿式粉砕してから塩酸とフッ
酸で処理し、濾過・乾燥・解砕を行って窒化ケイ素粉末
を製造した。
The obtained silicon nitride ingot was crushed by a jaw crusher and a top grinder to a size of 0.2 mm, and it was crushed in a ball mill with an internal volume of 1 50 g, 4φ Fe ball 0.5, water.
100 g was put and wet pulverized for another 20 hours, then treated with hydrochloric acid and hydrofluoric acid, filtered, dried and crushed to produce a silicon nitride powder.

得られた窒化ケイ素粉末は、実施例1と同様に焼結体
を製造し、物性を測定した。それらの結果を第2表に示
す。
With the obtained silicon nitride powder, a sintered body was produced in the same manner as in Example 1, and the physical properties were measured. The results are shown in Table 2.

実施例18〜23 比較例10〜12 金属ケイ素直接窒化法によって得られた市販の窒化ケ
イ素粉末(電気化学工業株式会社製「SN−G2」)を、熱
処理温度と時間を変化させて粉体特性の異なる種々の粉
末を製造した。第3表にそれらの特性を示す。得られた
窒化ケイ素粉末は、実施例1と同様に焼結体を製造し、
物性を測定した。それらの結果を第3表に示す。
Examples 18 to 23 Comparative Examples 10 to 12 Commercially available silicon nitride powder (“SN-G2” manufactured by Denki Kagaku Kogyo Co., Ltd.) obtained by a direct metal nitriding method was used to change the heat treatment temperature and time to obtain powder characteristics. Of various powders were produced. Table 3 shows those characteristics. The obtained silicon nitride powder was used to produce a sintered body in the same manner as in Example 1,
Physical properties were measured. The results are shown in Table 3.

実施例24〜32 比較例13〜15 第4表に示すようにα分率の低い窒化ケイ素粉末Aと
α分率の高い窒化ケイ素粉末βとを混合し窒化ケイ素粉
末を製造した。第4表にそれらの粉体特性を示す。得ら
れた窒化ケイ素粉末は、実施例1と同様に焼結体を製造
し、物性を測定した。それらの結果を第4表に示す。
Examples 24 to 32 Comparative Examples 13 to 15 As shown in Table 4, silicon nitride powder A having a low α fraction and silicon nitride powder β having a high α fraction were mixed to produce silicon nitride powder. Table 4 shows the powder characteristics. With the obtained silicon nitride powder, a sintered body was produced in the same manner as in Example 1, and the physical properties were measured. The results are shown in Table 4.

なお、各例に示した物性値は次の方法によって測定し
た。
The physical property values shown in each example were measured by the following methods.

(1) 固溶酸素量(重量%):測定機はLECO社製TC−
136型O/N同時分析計を用いた。算出方法は特開平1−18
3407号公報によった。
(1) Solid solution oxygen amount (wt%): LECO Co. TC-
A 136-type O / N simultaneous analyzer was used. The calculation method is JP-A-1-18
According to Japanese Patent No. 3407.

(2) 比表面積(m2/g):湯浅アイオニクス社製のカ
ンターソーブJr BET 1点法による。
(2) Specific surface area (m 2 / g): According to Cantersorb Jr BET 1-point method manufactured by Yuasa Ionics.

(3) 平均粒子径(μm):堀場製作所社製CACA−70
0による。
(3) Average particle diameter ([mu] m): manufactured by HORIBA, Ltd. C A C A -70
Depends on 0.

(4) α分立(%):理学電機社製のガイガーフラッ
クスRAD−II B型のX線回折による。
(4) α separation (%): By X-ray diffraction of Geiger flux RAD-II B type manufactured by Rigaku Denki KK

(5) Fe、Al及びCaの合計(ppm):JIS−G−1322に
準拠した。
(5) Sum of Fe, Al and Ca (ppm): In accordance with JIS-G-1322.

(6) 焼結体密度(g/cm3):アルキメデス法によ
る。
(6) Sintered body density (g / cm 3 ): By Archimedes method.

(7) 3点曲げ強度(MPa):島津製作所製オートグ
ラフAG−2000Aを用いて測定した。
(7) Three-point bending strength (MPa): Measured using Shimadzu's Autograph AG-2000A.

(8) 靭性値(MPa・m1/2):Indentation Fraccture
Methodによる。
(8) Toughness (MPa ・ m 1/2 ): Indentation Fraccture
Depends on Method.

(K1Cφ/Ha1/2)(H/Eφ)2/5=0.129(c/a)−3/29 E……ヤング率、H……硬度、a……圧痕長さ、c……
亀裂長さ、φ=3、荷重は20kg、荷重印加時間15秒間 〔発明の効果〕 本発明の窒化ケイ素粉末は、焼結性に優れているため
に、常温曲げ強度(抗折強度)900MPa以上、靭性値8.5M
Pa・m1/2以上の焼結体を得ることができる。
(K 1C φ / Ha 1/2 ) (H / E φ) 2/5 = 0.129 (c / a) −3/2 9 E …… Young's modulus, H …… Hardness, a …… Indentation length, c… …
Crack length, φ = 3, load is 20 kg, load application time is 15 seconds [Effect of the invention] Since the silicon nitride powder of the present invention is excellent in sinterability, bending strength at room temperature (bending strength) of 900 MPa or more , Toughness value 8.5M
It is possible to obtain a sintered body having a Pa · m 1/2 or more.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−255510(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-255510 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】α相70%以下、β相30%以上の窒化ケイ素
粉末であって、固溶酸素量が0.5重量%未満、0.2μm以
下の微粉量が6容量%以下であることを特徴とすると窒
化ケイ素粉末。
1. A silicon nitride powder having an α phase of 70% or less and a β phase of 30% or more, wherein the amount of dissolved oxygen is less than 0.5% by weight and the amount of fine powder of 0.2 μm or less is 6% by volume or less. And then it is silicon nitride powder.
JP1318158A 1989-12-07 1989-12-07 Silicon nitride powder Expired - Fee Related JPH0829923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318158A JPH0829923B2 (en) 1989-12-07 1989-12-07 Silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1318158A JPH0829923B2 (en) 1989-12-07 1989-12-07 Silicon nitride powder

Publications (2)

Publication Number Publication Date
JPH03177307A JPH03177307A (en) 1991-08-01
JPH0829923B2 true JPH0829923B2 (en) 1996-03-27

Family

ID=18096131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318158A Expired - Fee Related JPH0829923B2 (en) 1989-12-07 1989-12-07 Silicon nitride powder

Country Status (1)

Country Link
JP (1) JPH0829923B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565425B2 (en) * 2000-09-20 2004-09-15 日立金属株式会社 Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
JP4089974B2 (en) * 2004-04-27 2008-05-28 日立金属株式会社 Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
WO2015194552A1 (en) * 2014-06-16 2015-12-23 宇部興産株式会社 Silicon nitride powder, silicon nitride sintered body and circuit substrate, and production method for said silicon nitride powder
EP4067302A4 (en) * 2019-11-28 2024-05-15 Tokuyama Corporation Method for manufacturing silicon nitride sintered compact
WO2023176500A1 (en) * 2022-03-16 2023-09-21 株式会社 東芝 Silicon nitride sintered body and wear-resistant member using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255510A (en) * 1989-03-29 1990-10-16 Shin Etsu Chem Co Ltd Fine powder of low-oxygen high-beta type silicon nitride and production thereof

Also Published As

Publication number Publication date
JPH03177307A (en) 1991-08-01

Similar Documents

Publication Publication Date Title
US5149381A (en) Method of making a composite powder comprising nanocrystallites embedded in an amorphous phase
JPH0829923B2 (en) Silicon nitride powder
US5126295A (en) Silicon nitride powder, silicon nitride sintered body and processes for their production
JPS61256905A (en) Fine hexagonal boron nitride power having high purity and its preparation
JPS6111886B2 (en)
KR100456797B1 (en) FABRICATION METHOD OF NANOCRYSTALLINE TiN/Ti-M COMPOSITE POWDER VIA REACTION MILLING
JP3438928B2 (en) Method for producing silicon nitride powder
JP2003112977A (en) Method for producing high purity silicon nitride powder
US5258170A (en) Process for producing silicon carbide platelets
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JP3268020B2 (en) Method for producing silicon nitride powder
JPS6041634B2 (en) Method for manufacturing high-density silicon nitride reaction sintered body
JP3285621B2 (en) Method for producing silicon nitride powder
JP3251060B2 (en) Silicon nitride powder
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
JP3250677B2 (en) Silicon nitride powder
JP2661743B2 (en) Method for producing silicon nitride ingot and silicon nitride powder
JPS6227003B2 (en)
JPH0648838A (en) Silicon nitride powder
JPS5997507A (en) Manufacture of high purity silicon nitride powder consisting of isometric particles
JPS6227004B2 (en)
JPS60195008A (en) Production of silicon nitride powder
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPH0555444B2 (en)
JP2569074B2 (en) α-Silicon nitride powder and method for producing the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees