JPS6041634B2 - Method for manufacturing high-density silicon nitride reaction sintered body - Google Patents

Method for manufacturing high-density silicon nitride reaction sintered body

Info

Publication number
JPS6041634B2
JPS6041634B2 JP56073123A JP7312381A JPS6041634B2 JP S6041634 B2 JPS6041634 B2 JP S6041634B2 JP 56073123 A JP56073123 A JP 56073123A JP 7312381 A JP7312381 A JP 7312381A JP S6041634 B2 JPS6041634 B2 JP S6041634B2
Authority
JP
Japan
Prior art keywords
density
sintered body
sintering
silicon nitride
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56073123A
Other languages
Japanese (ja)
Other versions
JPS57188465A (en
Inventor
二朗 市川
正実 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Central Glass Co Ltd
Original Assignee
Daido Steel Co Ltd
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd, Central Glass Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP56073123A priority Critical patent/JPS6041634B2/en
Publication of JPS57188465A publication Critical patent/JPS57188465A/en
Publication of JPS6041634B2 publication Critical patent/JPS6041634B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、窒化珪素反応焼結体の高密度のものの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high density silicon nitride reaction sintered body.

窒化珪素Sj、N、の製品のうち、反応焼結体とよ
ばれるものは、ふつう、Si粉末の成形体または(Si
+Si3N4)粉末混合物の成形体に窒素ガスを作用さ
せて窒化しつつ焼結することにより製造されている。
Among the products of silicon nitride Sj, N, there are products called reaction sintered bodies.
What is exposed is usually a molded body of Si powder or (Si
+Si3N4) It is manufactured by applying nitrogen gas to a molded body of a powder mixture to nitridize it and sinter it.

この種の製品は、耐熱衝撃性、硬度、高温での電気絶縁
性および化学的安定性にすぐれているうえ、反応焼結時
の収縮がほとんどなく、寸法精度が高く得られるという
利点があるため、耐火材料、耐摩耗材料、耐食材料、絶
縁材料などの用途に広く使用されている。 従来の窒化
珪素反応焼結体の欠点は、機械的に弱いことであつて、
曲げ強度は20に9fIrfI1ft程度、高 くても
30に9fl−止まりであり、耐熱構造用材料としては
不満足なことである。
This type of product has excellent thermal shock resistance, hardness, electrical insulation properties at high temperatures, and chemical stability, as well as having the advantage of almost no shrinkage during reaction sintering and high dimensional accuracy. It is widely used in applications such as fireproof materials, wear-resistant materials, corrosion-resistant materials, and insulation materials. The disadvantage of conventional silicon nitride reaction sintered bodies is that they are mechanically weak.
The bending strength is about 20.9fIrfI1ft, and at most it is only 30.9fl-, which is unsatisfactory as a heat-resistant structural material.

これは、珪素を完全に窒化して得た製品でも、20〜3
0%の気孔率をも・つ比較的低密度の焼結体でしかない
ことが原因である。より高密度の反応焼結体を製造でき
れば、常温から高温にわたつて強度をはじめとする諸特
性を改善できるから、高温でも強度が低下しないという
特徴を生かして、耐熱構造用材料としてきフわめて有用
なものとなる。 反応焼結体の密度を向上させるために
これまでとられた対策は、Si(またはSi+Si3N
4)成形体の密度を高めることてある。
Even for products obtained by completely nitriding silicon, this is 20 to 3
This is because it is a relatively low-density sintered body with a porosity of 0%. If a reaction sintered body with higher density can be produced, it will be possible to improve various properties such as strength from room temperature to high temperature, so it can be used as a material for heat-resistant structures by taking advantage of its characteristic of not losing strength even at high temperatures. It becomes very useful. Measures taken so far to improve the density of reaction sintered bodies include Si (or Si+Si3N)
4) The density of the molded body may be increased.

具体的には、まず粉末成形圧力の増大であるが、実用で
きる限度で高い圧力を加えても、窒化後の製品の密度は
、せいぜい2.39y1cr1(理論密度の75%)で
しかない。粉末の粒度を調節して種々の粒径のものを配
合することも試みられたが、それでも反応焼結体の密度
は2.54y1a1が限界とされていた。さらに高密度
の反応焼結体を得る目的で、Si成形体の予備焼結、す
なわち窒化に先立つ不活性雰囲気中での焼結を導入して
、S1成形体の高密度の焼結体をつくることが提案され
た(特開昭52一121613号)。
Specifically, first of all, the powder compaction pressure is increased. Even if a high pressure is applied to the practical limit, the density of the product after nitriding is only 2.39y1cr1 (75% of the theoretical density) at most. Attempts have been made to adjust the particle size of the powder and blend powders with various particle sizes, but the density of the reaction sintered body was still limited to 2.54y1a1. In order to obtain a reaction sintered body with even higher density, pre-sintering of the Si molded body, that is, sintering in an inert atmosphere prior to nitriding, is introduced to create a high-density sintered body of the S1 molded body. It was proposed (Japanese Unexamined Patent Publication No. 52-121613).

それ以前の窒化珪素反応焼結体の製造においても、窒化
に先立つてアルゴン雰囲気中で約1200℃に加熱する
「k焼結」とよばれる工程を加えることがあつたが、こ
れはSi成形体の強度を高めてその窒化前の加工性を改
善する意図に出たものであつて、事実、Ar焼結では収
縮はほとんど起つていなかつた。
Previously, in the production of silicon nitride reaction sintered bodies, a process called "k sintering" was added, in which the silicon nitride was heated to approximately 1200°C in an argon atmosphere prior to nitriding; The purpose was to increase the strength of the steel and improve its workability before nitriding, and in fact, almost no shrinkage occurred during Ar sintering.

この点で、予備焼結の採用は、注目すべき考えといえる
。しかし、上記開示の方法は、予備焼結によるSi成形
体の高密度化を実効あるものとするために、平均粒径0
.2μ以下というきわめて微細なSi粉末を使用するこ
とを必須条件とする。
In this respect, the adoption of pre-sintering can be said to be a noteworthy idea. However, in the method disclosed above, in order to effectively increase the density of the Si molded body by preliminary sintering, the average grain size is 0.
.. It is essential to use extremely fine Si powder of 2μ or less.

そのような微粉末の製造が容易でないという問題はおく
としても、得られる反応焼結体の密度は、なお2。39
gIa1(理論密度の92%)が限度であつた。
Even leaving aside the problem that it is not easy to produce such a fine powder, the density of the resulting reaction sintered body is still 2.39.
The limit was gIa1 (92% of the theoretical density).

本発明者らは、予備焼結を利用するS1成形体の高密度
化をさらにおし進めることを意図して研究を重ねた結果
、今回、最高3.05yId(理論密度の96%)に達
するきわめて高密度の反応焼結体を得ることに成功した
ので、ここに開示する次第で.ある。微細なSl粉末を
用いて成形体をつくり、それを予備焼結して窒化する反
応焼結体の製造において到達し得る密度に上記の限界が
あるのは、予備焼結体の窒化の速度が遅く、かつその進
行がある程!度で飽和してしまい、長時間にわたる加熱
を続けても、かなりの量のSiが未反応のまま残留する
からであることが、本発明者らの検討により明らかとな
つた。
As a result of repeated research with the intention of further increasing the density of the S1 molded body using pre-sintering, the present inventors have now reached a maximum of 3.05yId (96% of the theoretical density). We have succeeded in obtaining an extremely high-density reaction sintered body, which we would like to disclose here. be. The above-mentioned limit to the density that can be achieved in the production of reaction sintered bodies in which a molded body is made using fine Sl powder, which is then pre-sintered and nitrided, is due to the nitriding rate of the pre-sintered body. It's slow and progressing! The inventors of the present invention have found that this is because Si is saturated at a certain temperature, and even if heating is continued for a long time, a considerable amount of Si remains unreacted.

この問題を克服するために本発明で採用した対く策は、
窒化を促進する添加剤として、特定の元素またはその化
合物を、一定量加えることである。
The measures adopted in the present invention to overcome this problem are as follows:
It involves adding a certain amount of a specific element or its compound as an additive that promotes nitriding.

すなわち、本発明の高密度窒化珪素反応焼結体の製造方
法は、Fe.CO.Ni..Cr.MO..MnlW.
.Ti..Zr..Ta..Nb,.V..Mg..C
a..Cu,.ZnおよびSnからえらんだ1種または
2種以上の元素またはその化合物を上記元素として(2
種以上の場合は合計量で)0.05〜0.85重量%、
ならびに硼素またはその化合物をBとして0.15〜5
.0重量%含有する珪素粉末を成形し、1100゜C以
上であつて珪素の融点よりは低い温度において、不活性
ガス雰囲気または真空中で焼結して、得られた珪素の予
備焼結体に1100〜1500℃の温度において窒素を
ノ作用させて窒化することからなる。市場で入手容易な
Si中には、少量のFeなどの不純物が含まれている。
That is, the method for producing a high-density silicon nitride reaction sintered body of the present invention is based on Fe. C.O. Ni. .. Cr. M.O. .. MnlW.
.. Ti. .. Zr. .. Ta. .. Nb,. V. .. Mg. .. C
a. .. Cu,. One or more elements selected from Zn and Sn or compounds thereof are used as the above elements (2
0.05 to 0.85% by weight (total amount if more than 1 species),
and boron or its compound as B from 0.15 to 5
.. Silicon powder containing 0% by weight is molded and sintered in an inert gas atmosphere or vacuum at a temperature of 1100°C or higher but lower than the melting point of silicon, and the resulting silicon pre-sintered body is It consists of nitriding by applying nitrogen at a temperature of 1100 to 1500°C. Si, which is easily available on the market, contains a small amount of impurities such as Fe.

従来その存在は、Si粉末成形体の焼結に際して液体を
生成し、焼結を容易にするものの結晶の急成長を招き、
結果として焼結体の気孔率を高くする点で好ましくない
と考えられ、不純物含有量を極力小さくすべきであると
されていた。しかし本発明者らは、Feなどの特性の不
純物のもつ窒化促進効果に着目して詳細に実験し、前記
した範囲内の量であれば、上記の弊害はあまり問題にな
らず、一方で窒化は大いに助けられるという事実を見出
したのである。
Conventionally, its presence has been associated with the generation of liquid during sintering of Si powder compacts, which facilitates sintering but leads to rapid crystal growth.
As a result, it was considered undesirable in terms of increasing the porosity of the sintered body, and it was considered that the impurity content should be kept as small as possible. However, the present inventors conducted detailed experiments focusing on the nitridation promoting effect of characteristic impurities such as Fe, and found that if the amount was within the above range, the above-mentioned adverse effects did not become much of a problem. I discovered that it can be of great help.

つまり、本発明は既成の観念とは逆に、適量の不純物を
積極物に利用して効果をおさめたことを特徴とする。硼
素にはその予備焼結時のS1粒の粗大化を防止する作用
があり、予備焼結体の高密度化に寄与するとともに、予
備焼結体中のSl粒子を微細化するため、窒化が容易に
進むようになるのである。この効果は、本発明者らがは
じめて得た知見である。前述のように、Si粉末中には
Feなど前掲の窒化促進元素が不純物として若干含まれ
ているから、まずそれを利用して、不足ならば必要に応
じて補えばよい。
In other words, the present invention is characterized in that, contrary to existing ideas, the effect is achieved by using an appropriate amount of impurities as a positive substance. Boron has the effect of preventing the S1 grains from becoming coarse during pre-sintering, contributing to higher density of the pre-sintered body, and also makes the Sl particles in the pre-sintered body finer. It will become easier to proceed. This effect is the first finding obtained by the present inventors. As mentioned above, since the Si powder contains a small amount of the aforementioned nitridation promoting elements such as Fe as impurities, it is sufficient to first utilize this and supplement as necessary if there is a deficiency.

従つて、本発明で[含有」とは、本来含有されていたも
の、添加により含有されるに至つたもの、およびその両
方のものを包括する意味である。これらの物質は、元素
状態であつても、また酸化物などの化合物であつてもよ
く、それら同志の化合物は、もちろん好ましいものであ
る。
Therefore, in the present invention, the term "contains" includes what is originally contained, what has come to be contained by addition, and both. These substances may be in an elemental state or may be a compound such as an oxide, and compounds of the same are, of course, preferred.

高温において揮発しやすいものは、当然ながらその歩留
りを考慮して用いなければならない。窒化促進効果をも
つ前記物質の含有量は、Si粉末に対し0.05重量%
以上ないと効果が得られない。
Naturally, materials that easily volatilize at high temperatures must be used in consideration of their yield. The content of the substance that has a nitriding promoting effect is 0.05% by weight based on the Si powder.
Otherwise, the effect will not be obtained.

この下限未満ては予備焼結体の密度が高くなることもあ
つて、Siを高度に窒化するのに要する時間が、実用的
といえないほど長くなる。一方、0.85%を超える含
有は、著しい粒成長を招き、予備焼結における高密度化
を妨げるので、避けなければならない。
Below this lower limit, the density of the pre-sintered body may become high, and the time required to nitridize Si to a high degree becomes impractically long. On the other hand, a content exceeding 0.85% causes significant grain growth and prevents high density during preliminary sintering, so it must be avoided.

好ましい範囲は使用元素により異なるが、ふつう0.1
〜1.5重量%である。硼素をも加えて、前記した効果
を期待するためには、少なくとも0.15重量%の含有
を必要とする。しかし硼素は窒化工程において窒化硼素
BNを生成し、これが多量になると反応焼結を阻害する
The preferred range varies depending on the element used, but is usually 0.1
~1.5% by weight. In order to expect the above-mentioned effects by adding boron, the content must be at least 0.15% by weight. However, boron generates boron nitride BN in the nitriding process, and when it becomes large, it inhibits reaction sintering.

そのため、5.呼量%以内に止めなければならない。存
在形態は、金属硼素、非晶質物、または金属硼化物など
のいずれであつてもよい。前記の窒化促進剤としてはた
らく元素との化合物をえらべば、両者を一挙に存在させ
ることができて好ましい。原料のSi粉末は、予備焼結
における高密度化を容易にするために、平均粒径が15
μ以下のものを使用すべきであつて、望ましいのは1μ
以下の微粉末である。
Therefore, 5. It must be stopped within % of the call volume. The existing form of boron may be metal boron, amorphous material, metal boride, or the like. It is preferable to select a compound with the element that acts as the nitriding promoter, since both can be present at once. The raw material Si powder has an average particle size of 15 to facilitate densification during preliminary sintering.
A value of less than μ should be used, preferably 1 μ
It is the following fine powder.

窒化促進剤の諸物質および硼素またはその化合物も、S
1粉末の粒度と同等またはそれ以下の微粒子であること
が望ましい。
Substances of nitriding accelerators and boron or its compounds are also
It is desirable that the particles have a particle size equal to or smaller than that of one powder.

S1粉末は、通常0.5〜数重量%の酸素を含有してお
り、これは加熱によりSiOなどとして揮散してしまう
ため、予備焼結や窒化に対してほとんど影響はないとさ
れているが、好ましい存在ではないので、酸処理などに
よつて除去するとよい。
S1 powder usually contains 0.5 to several percent by weight of oxygen, and this is said to have little effect on pre-sintering and nitriding because it volatilizes as SiO etc. when heated. , is not a desirable presence, so it is best to remove it by acid treatment or the like.

原料粉末または粉末混合物の成形は、常用のダイス成形
をはじめとして、等方圧成形、スリップキャスト、射出
成形など任意の手段によることができる。予備焼結する
成形体の密度は、その取扱いや加工を容易にするととも
に、予備焼結における焼結性を確保するために、0.8
2y1cT1(理論密度の35%)以上にすべきである
The raw material powder or powder mixture can be formed by any means such as conventional die forming, isostatic pressing, slip casting, and injection molding. The density of the compact to be pre-sintered is set to 0.8 in order to facilitate its handling and processing and to ensure sinterability during pre-sintering.
It should be greater than 2y1cT1 (35% of the theoretical density).

これより低い密度では、予備焼結により高密度化できて
も、均一な組織を有する焼結体を得ることが困難となる
。予備焼結の方法は、自由焼結のほか、一軸加圧焼結(
いわゆるホットブレス)、熱間等方圧焼結などの通常の
方法をとることができる。予備焼結は、1100゜C以
上の温度において行なう。
If the density is lower than this, it is difficult to obtain a sintered body having a uniform structure even if the density can be increased by preliminary sintering. In addition to free sintering, uniaxial pressure sintering (
Conventional methods such as so-called hot press sintering and hot isostatic pressure sintering can be used. Pre-sintering is carried out at a temperature of 1100°C or higher.

これより低い温度では、微細な粉末を使用しても高密度
化が期待できない。上限の温度は、もちろんSiの融点
である。雰囲気はアルゴンのような不活性ガスが好適で
あるが、真空であつてもよい。予備焼結の段階での高密
度化の程度は、焼結に伴う収縮量であられされる。
At temperatures lower than this, high density cannot be expected even if fine powder is used. The upper limit temperature is, of course, the melting point of Si. The atmosphere is preferably an inert gas such as argon, but may also be a vacuum. The degree of densification at the preliminary sintering stage is determined by the amount of shrinkage caused by sintering.

これは焼結する成形体の密度によつても同じではないが
、本発明で実現しようとする高密度反応焼結製品を与え
るには、体積収縮率にして、少なくとも5%必要である
。予備焼結体のもつ密度は、原料粉末の粒度、成形条件
および焼結条件により大きく異なり、その調整により理
論密度に近い値にすることも可能である。
Although this does not depend on the density of the compact to be sintered, a volumetric shrinkage rate of at least 5% is required in order to provide the high-density reaction sintered product that is intended to be achieved in the present invention. The density of the pre-sintered body varies greatly depending on the particle size of the raw material powder, molding conditions, and sintering conditions, and by adjusting the density, it is possible to obtain a value close to the theoretical density.

しかし、理論密度(3.18yIc!l)の窒化珪素反
応焼結体に対応するSi焼結体の密度は1.91g1d
(理論密度の82%)であり、これ以上の高密度に焼結
することは、その後の窒化が可能であるか否かを別にし
ても、意味がないことは自明である。予備焼結体の窒化
の困難さは、本発明者らの経験では、1.84yIc!
l(理論密度の79%)を超すと顕著になる。一方、密
度1.37yIc!l未満の予備焼結体から出発したの
では、反応焼結体の密度はたかだか2.29f1cT1
(理論密度の72%)にしかならないことも経験された
。従つて、予備焼結体がもつべき密度は、1.37〜1
.84yIc11の範囲にある。
However, the density of the Si sintered body corresponding to the silicon nitride reaction sintered body with the theoretical density (3.18yIc!l) is 1.91g1d.
(82% of the theoretical density), and it is obvious that sintering to a higher density than this is meaningless, regardless of whether or not subsequent nitriding is possible. According to the experience of the present inventors, the difficulty of nitriding the pre-sintered body is 1.84yIc!
It becomes noticeable when it exceeds 1 (79% of the theoretical density). On the other hand, the density is 1.37yIc! Starting from a pre-sintered body with a density of less than 1, the density of the reaction sintered body is at most 2.29f1cT1
(72% of the theoretical density) was also experienced. Therefore, the density that the pre-sintered body should have is between 1.37 and 1.
.. It is in the range of 84yIc11.

S1予備焼結体の窒化は、従来の窒化珪素反応焼結体の
製造に際して行なわれていたところと同じノようにして
実施できる。
The nitriding of the S1 preliminary sintered body can be carried out in the same manner as has been carried out in the production of conventional silicon nitride reaction sintered bodies.

すなわち、一般的には大気圧の窒素ガス雰囲気下で、1
100〜1500℃の温度に加熱する。温度は、110
0〜1350℃の低温側から段階的に昇温してゆくこと
もできる。反応速度を調節するためには、窒素の圧力を
減圧(最大1007分の1気圧程度まで)から加圧(最
高200呟圧)までの範囲で選択すればよい。なお、純
窒素ガスのほかにも、水素混合窒素ガスやアンモニアも
使用できる。窒化に要する時間は、予備焼結体の密度、
平均9粒径、窒化温度および雰囲気条件により、また許
容できる残留Si量により大きく異なるが、数時間から
2(4)時間程度である。
That is, in general, under a nitrogen gas atmosphere at atmospheric pressure, 1
Heat to a temperature of 100-1500°C. The temperature is 110
The temperature can also be raised stepwise from a low temperature side of 0 to 1350°C. In order to adjust the reaction rate, the nitrogen pressure may be selected within the range of reduced pressure (up to about 1/1007 atm) to increased pressure (up to 200 msec). In addition to pure nitrogen gas, hydrogen-mixed nitrogen gas and ammonia can also be used. The time required for nitriding depends on the density of the pre-sintered body,
Although it varies greatly depending on the average grain size, nitriding temperature, atmospheric conditions, and the allowable amount of residual Si, it is from several hours to about 2 (4) hours.

次に示す実施例にみるとおり、本発明の方法によれば、
未窒化残留Si量を実際上好ましい許容限度である0.
5重量%以下にすることが容易であり、最高3.05y
′Clt(理論密度の96%)の高密度をもつ反応焼結
体が製造できる。
As shown in the following examples, according to the method of the present invention,
The amount of unnitrided residual Si is set to 0.0, which is a practically preferable allowable limit.
Easy to reduce to 5% by weight or less, maximum 3.05y
A reactive sintered body having a high density of 'Clt (96% of the theoretical density) can be produced.

これは従来の技術では達成できかつた高さであり、その
焼結体の機械的強度もまた、一挙に従来品の2〜3倍の
高いレベルに到達する。このように、本発明により窒化
珪素の用途が大きく拡がる。
This is a height that could not be achieved with conventional technology, and the mechanical strength of the sintered body also reaches a level that is two to three times higher than that of conventional products. In this way, the present invention greatly expands the applications of silicon nitride.

実施例1 平均粒径0.15μであつて、0.0鍾量%のFeを含
有するSi粉末に、さらに1重量%のFe2O3と非結
晶硼素粉末0.4重量%とを添加して、ポリエチレン被
覆を施したボールミル中で湿式法により十分に混合した
Example 1 1% by weight of Fe2O3 and 0.4% by weight of amorphous boron powder were further added to Si powder having an average particle size of 0.15μ and containing 0.0% by weight of Fe, Thoroughly mixed by wet method in a polyethylene coated ball mill.

この粉末混合物をステンレス製ダイスを用いて、直径1
5?×高さ1hの円柱状体に成形した。
This powder mixture was diced using a stainless steel die with a diameter of 1 mm.
5? × It was molded into a cylindrical body with a height of 1 h.

成形体の密度は1.05y1d(理論密度の45%)て
あつた。成形体を1気圧のアルゴン雰囲気下に1370
℃×1時間の予備焼結をして、密度1.84yIC77
f(理論,密度の79%)の予備焼結体を得た。
The density of the compact was 1.05yld (45% of the theoretical density). The molded body was placed in an argon atmosphere of 1 atm at 1370°C.
Pre-sintered at ℃×1 hour, density 1.84yIC77
A pre-sintered body of f (theory, 79% of density) was obtained.

上記の予備焼結体を、1気圧の窒素ガス雰囲気下で、1
350℃×4(4)間→1380℃×80I寺間→14
50℃×201寺間の処理により窒化したところ、密度
3.05y1cd(理論密度の96%)の反応焼結体を
得た。
The above pre-sintered body was heated for 1 hour in a nitrogen gas atmosphere of 1 atm.
350℃ x 4 (4) → 1380℃ x 80I Terama → 14
When nitrided by 50°C x 201 Terama treatment, a reaction sintered body with a density of 3.05y1cd (96% of the theoretical density) was obtained.

その中の残留Si量は0.5重量%以下であつた。比較
例1実施例1において、硼素を加えなかつたほかは同様
にして用意した成形体に対して、1405゜CX1時間
の予備焼結を行なつて、密度1.83y1cI1(理論
密度の79%)の予備焼結体を得た。
The amount of residual Si therein was 0.5% by weight or less. Comparative Example 1 A molded body prepared in the same manner as in Example 1 except that no boron was added was pre-sintered at 1405°C for 1 hour, resulting in a density of 1.83y1cI1 (79% of the theoretical density). A preliminary sintered body was obtained.

これから密度3.05fIa1(理論密度の96%)の
反応焼結体を得るためには、1350℃X48時間→1
38(代)×120時間→1450℃X3O時間の条件
で窒化、すなわち、より長時間の焼結操作が必要であつ
た。
In order to obtain a reaction sintered body with a density of 3.05 fIa1 (96% of the theoretical density), it is necessary to
It was necessary to perform nitriding under the conditions of 38 (generations) x 120 hours → 1450° C. x 30 hours, that is, a longer sintering operation.

これは、実施例1における硼素の効果を示すものである
。実施例2 1実施例1のFe2α粉末および非晶質硼素粉末に代え
て下記の添加剤を用い、同じ条件で、成形→予備焼結一
窒化を行なつて、いずれも残留Si量0.5重量%以下
の完全に窒化した反応焼結体を製造できた。
This shows the effect of boron in Example 1. Example 2 1 Using the following additives in place of the Fe2α powder and amorphous boron powder of Example 1, forming → pre-sintering and mononitriding were performed under the same conditions, and the amount of residual Si was 0.5 in both cases. It was possible to produce a completely nitrided reaction sintered body of less than 1% by weight.

なお、予備焼結体の密度は、1.75〜1.8491c
T1(理論密度の75〜79%)、反応焼結体の密度は
2.85〜3.06yIc11(理論密度の屹〜96%
)であつた。 −ーーIノIロロ′八υ
υ.1Iυ.0Tυ.0実施例3実施
例1の原料組成および処理条件を採用して、直径約5h
×厚さ6?の反応焼結体を製造し、常温ての三点曲げ強
度を測定した。
In addition, the density of the preliminary sintered body is 1.75 to 1.8491c.
T1 (75~79% of the theoretical density), the density of the reaction sintered body is 2.85~3.06yIc11 (~96% of the theoretical density)
). ---I no I Roro'8υ
υ. 1Iυ. 0Tυ. 0 Example 3 Using the raw material composition and processing conditions of Example 1, a diameter of approximately 5 h was obtained.
×Thickness 6? A reaction sintered body was produced, and its three-point bending strength at room temperature was measured.

Claims (1)

【特許請求の範囲】 1 Fe、Co、Ni、Cr、Mo、Mn、W、Ti、
Zr、Ta、Nb、V、Mg、Ca、Cu、Znおよび
Snからえらんだ1種または2種以上の元素または化合
物を上記元素として(2種以上の場合は合計量で)0.
05〜0.85重量%、ならびに硼素またはその化合物
をBとして0.15〜5.0重量%含有する珪素粉末を
成形し、1100℃以上であつて珪素の融点よりは低い
温度において、不活性ガス雰囲気または真空中で焼結し
て、得られた珪素の予備焼結体に1100〜1500℃
の温度において窒素を作用させて窒化するとからなる高
密度窒化珪素反応焼結体の製造方法。 2 成形体の密度を0.82g/cm^3以上にえらぶ
特許請求の範囲第1項の製造方法。 3 予備焼結時の体積収縮率が5%以上となるように焼
結する特許請求の範囲第1項の製造方法。 4 予備焼結体の密度が1.37〜1.84g/cm^
3の範囲となるように焼結する特許請求の範囲第1項の
製造方法。
[Claims] 1 Fe, Co, Ni, Cr, Mo, Mn, W, Ti,
One or more elements or compounds selected from Zr, Ta, Nb, V, Mg, Ca, Cu, Zn, and Sn are used as the above elements (in the case of two or more, the total amount).0.
Silicon powder containing 0.05 to 0.85% by weight and 0.15 to 5.0% by weight of boron or its compound as B is molded and heated to an inert state at a temperature of 1100°C or higher but lower than the melting point of silicon. Sintered in a gas atmosphere or vacuum to obtain a silicon pre-sintered body at 1100-1500°C.
A method for producing a high-density silicon nitride reaction sintered body, which comprises nitriding by applying nitrogen at a temperature of . 2. The manufacturing method according to claim 1, wherein the density of the molded body is selected to be 0.82 g/cm^3 or more. 3. The manufacturing method according to claim 1, in which sintering is performed such that the volumetric shrinkage rate during preliminary sintering is 5% or more. 4 The density of the preliminary sintered body is 1.37 to 1.84 g/cm^
3. The manufacturing method according to claim 1, wherein the manufacturing method is sintered so as to be in the range of 3.
JP56073123A 1981-05-15 1981-05-15 Method for manufacturing high-density silicon nitride reaction sintered body Expired JPS6041634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56073123A JPS6041634B2 (en) 1981-05-15 1981-05-15 Method for manufacturing high-density silicon nitride reaction sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56073123A JPS6041634B2 (en) 1981-05-15 1981-05-15 Method for manufacturing high-density silicon nitride reaction sintered body

Publications (2)

Publication Number Publication Date
JPS57188465A JPS57188465A (en) 1982-11-19
JPS6041634B2 true JPS6041634B2 (en) 1985-09-18

Family

ID=13509140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56073123A Expired JPS6041634B2 (en) 1981-05-15 1981-05-15 Method for manufacturing high-density silicon nitride reaction sintered body

Country Status (1)

Country Link
JP (1) JPS6041634B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860675A (en) * 1981-09-30 1983-04-11 日本特殊陶業株式会社 Silicon nitride sintered body and manufacture
JPS59152271A (en) * 1983-02-17 1984-08-30 大同特殊鋼株式会社 Manufacture of high density silicon nitride reaction sintered body
JPS59207877A (en) * 1983-05-10 1984-11-26 大同特殊鋼株式会社 Manufacture of high density silicon nitride reaction sintered body
JPS59217675A (en) * 1983-05-25 1984-12-07 大同特殊鋼株式会社 Silicon nitride reaction sintered body composite material and manufacture
JPS59223274A (en) * 1983-05-30 1984-12-15 大同特殊鋼株式会社 Method of getting high strength silicon nitride reaction sintered body
JPH01115872A (en) * 1987-10-29 1989-05-09 Kurasawa Opt Ind Co Ltd Silicon nitride ceramics

Also Published As

Publication number Publication date
JPS57188465A (en) 1982-11-19

Similar Documents

Publication Publication Date Title
JPS6041634B2 (en) Method for manufacturing high-density silicon nitride reaction sintered body
JPH0254733A (en) Manufacture of ti sintered material
JPS59152271A (en) Manufacture of high density silicon nitride reaction sintered body
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPH0513907B2 (en)
JPS59207876A (en) Manufacture of high density silicon nitride reaction sintered body
JPS59217675A (en) Silicon nitride reaction sintered body composite material and manufacture
JPH0829923B2 (en) Silicon nitride powder
JPH046671B2 (en)
JPH044994B2 (en)
JPH0513908B2 (en)
JPH01145380A (en) Production of silicon nitride sintered form
JPH0733528A (en) Composite sintered ceramic, its production and semiconductor production jig made therefrom
JPH06279124A (en) Production of silicon nitride sintered compact
JP2531871B2 (en) Method for manufacturing high-density boron nitride pressureless sintered body
Yuan et al. Reaction‐Formed Processes for AlN/Al Ceramic Composites
JP3124866B2 (en) Method for producing silicon nitride based sintered body
JPS5951515B2 (en) Manufacturing method of Sialon sintered body
JP3492648B2 (en) TiN-Al2O3-based sintered body
JPH044995B2 (en)
JPS59207875A (en) Manufacture of high density silicon nitride reaction sintered body
JP2691294B2 (en) Silicon nitride sintered body and method for producing the same
JP2890849B2 (en) Method for producing silicon nitride sintered body
JPH03174364A (en) Silicon nitride-based sintered body
JP3194761B2 (en) Silicon nitride powder and method for producing the same