JPH06279124A - Production of silicon nitride sintered compact - Google Patents

Production of silicon nitride sintered compact

Info

Publication number
JPH06279124A
JPH06279124A JP5071679A JP7167993A JPH06279124A JP H06279124 A JPH06279124 A JP H06279124A JP 5071679 A JP5071679 A JP 5071679A JP 7167993 A JP7167993 A JP 7167993A JP H06279124 A JPH06279124 A JP H06279124A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
producing
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5071679A
Other languages
Japanese (ja)
Inventor
Katsutoshi Yoneya
勝利 米屋
Takeji Meguro
竹司 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP5071679A priority Critical patent/JPH06279124A/en
Publication of JPH06279124A publication Critical patent/JPH06279124A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for producing a silicon nitride sintered compact by which a dense silicon nitride sintered compact can be obtd. with high reproducibility at a low cost by enhancing the reproducibility of densification of a silicon nitride sintered compact in a two-stage sintering method. CONSTITUTION:Silicon powder contg. at least oxide of a rare earth element is used as starting material and at least one of iron and calcium is added to the starting material in the form of a simple metal, an alloy, a compd., etc., by 0.03-2wt.% (expressed in terms of iron or calcium). A compact of the starting material contg. iron or calcium is subjected to nitriding treatment and the resulting silicon nitride reacted sintered compact is subjected to densification sintering at a high temp. to obtain the objective high density silicon nitride sintered compact.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、反応焼結法と緻密化焼
結法とを組合せた二段焼結法を適用した窒化ケイ素焼結
体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body by applying a two-step sintering method which combines a reaction sintering method and a densification sintering method.

【0002】[0002]

【従来の技術】窒化ケイ素(Si3 N 4 )焼結体は、強度
と破壊靭性値が大きく、かつ耐熱衝撃性に優れる(低熱
膨張率、高熱伝導率)等の特性を有することから、エン
ジン部品用材料、ベアリング用材料、切削工具用材料等
の各種構造用材料への応用が基体され、実用化が進めら
れている。
2. Description of the Related Art A silicon nitride (Si 3 N 4 ) sintered body has properties such as high strength and fracture toughness and excellent thermal shock resistance (low thermal expansion coefficient, high thermal conductivity) and the like. It is being applied to various structural materials such as parts materials, bearing materials, and cutting tool materials, and is being put to practical use.

【0003】上述した窒化ケイ素の工業的に使用されて
いる焼結方法としては、 (a)Si粉末を出発原料とし、窒
化反応を伴いながら焼結させる反応焼結法、 (b)Si3 N
4 粉末に添加物を加え、両者の反応によって生成する低
融点化合物を経由して焼結を進行させる緻密化焼結法、
が一般的である。
As the industrially used sintering method of the above-mentioned silicon nitride, there are (a) a reaction sintering method in which Si powder is used as a starting material, and sintering is performed with a nitriding reaction, (b) Si 3 N
4 densification sintering method in which additives are added to the powder and sintering is advanced via the low melting point compound generated by the reaction of both
Is common.

【0004】ここで、 (a)の反応焼結法は、原料として
安価なSi粉末を用いることができると共に、収縮率を低
く抑えることができ、寸法精度の高い焼結体が得られる
等の利点を有する反面、焼結体を緻密化することが困難
で、得られる焼結体が多孔質となり、十分な強度や耐酸
化性が得られないという欠点を有している。一方、(b)
の緻密化焼結法は、高密度の窒化ケイ素焼結体を容易に
得ることができる反面、寸法収縮率が大きいため、後加
工の工数が増大すること等から製造コストが高いという
欠点を有している。
In the reaction sintering method (a), inexpensive Si powder can be used as a raw material, the shrinkage rate can be suppressed to a low level, and a sintered body with high dimensional accuracy can be obtained. Although it has an advantage, it has a drawback that it is difficult to densify the sintered body and the obtained sintered body becomes porous, and sufficient strength and oxidation resistance cannot be obtained. On the other hand, (b)
Although the densified sintering method of 1 can easily obtain a high-density silicon nitride sintered body, it has a drawback that the manufacturing cost is high because the dimensional shrinkage rate is large and the number of post-processing steps is increased. is doing.

【0005】上述したように、反応焼結法および緻密化
焼結法は、それぞれ利点および欠点を有することから、
これら 2種類の焼結法を組合せた二段焼結法も一部で利
用されている。窒化ケイ素の二段焼結は、Si粉末に添加
物を加えた系を出発原料とし、まず第1の工程として窒
化反応焼結を行い、窒素分だけ重量を増加させてSi3N
4 −添加物系に変換し、密度を高める。次に、第2の工
程として、Si3 N 4 −添加物系の反応焼結体を高温で焼
成し、緻密化を図る。このような二段焼結法は、収縮率
を低く抑えることができる、すなわち寸法精度が高く、
後加工を少なくとすることができる(製造コストの低
減)と共に、緻密質な焼結体が得られ易いという利点を
有している。
As described above, the reaction sintering method and the densification sintering method have advantages and disadvantages, respectively.
A two-stage sintering method that combines these two types of sintering methods is also used in some areas. In the two-stage sintering of silicon nitride, a system in which an additive is added to Si powder is used as a starting material, and first, nitriding reaction sintering is performed as the first step to increase the weight by the nitrogen content to produce Si 3 N.
4- Convert to additive system to increase density. Next, in a second step, the Si 3 N 4 -additive-based reaction sintered body is fired at a high temperature to densify it. Such a two-stage sintering method can keep the shrinkage rate low, that is, the dimensional accuracy is high,
It has advantages that post-processing can be reduced (reduction of manufacturing cost) and that a dense sintered body can be easily obtained.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、現状の
窒化ケイ素の二段焼結法は、以下に示すような問題を有
している。すなわち、第1の工程の窒化反応の結果が、
第2の工程の緻密化焼結に大きな影響を与えるとされて
おり、第1の工程で微細なSi3 N 4 粒子を得る必要があ
るが、そのための条件等は十分に検討されていない。よ
って、現状の二段焼結法では、緻密質な窒化ケイ素焼結
体を再現性よく得るまでには至っていない。具体的に
は、第2の工程で緻密化することができなかったり、さ
らにはSiが溶融して表面に浸出する等の現象が多々生じ
ている。
However, the current two-stage sintering method of silicon nitride has the following problems. That is, the result of the nitriding reaction in the first step is
It is said that it has a great influence on the densification and sintering in the second step, and it is necessary to obtain fine Si 3 N 4 particles in the first step, but the conditions therefor have not been sufficiently examined. Therefore, with the current two-step sintering method, it has not been possible to obtain a dense silicon nitride sintered body with good reproducibility. Specifically, there are many phenomena such as failure of densification in the second step, further melting of Si and leaching on the surface.

【0007】本発明は、このような課題に対処するため
になされたもので、二段焼結法における窒化ケイ素焼結
体の緻密化の再現性を高めることによって、低コスト
で、緻密質な窒化ケイ素系焼結体を再現性よく得ること
を可能にした窒化ケイ素焼結体の製造方法を提供するこ
とを目的としている。
The present invention has been made in order to solve such a problem, and by improving the reproducibility of the densification of the silicon nitride sintered body in the two-step sintering method, the cost is low and the density is high. It is an object of the present invention to provide a method for producing a silicon nitride sintered body, which enables the silicon nitride sintered body to be obtained with good reproducibility.

【0008】[0008]

【課題を解決するための手段】本発明の窒化ケイ素焼結
体の製造方法は、少なくとも希土類酸化物を含むケイ素
粉末を出発原料とする成形体に、窒化処理を施す第1の
工程と、前記第1の工程で得た窒化ケイ素系反応焼結体
を、高温下で緻密化焼結させる第2の工程とを有する窒
化ケイ素焼結体の製造方法において、前記出発原料に、
鉄およびカルシウムから選ばれた少なくとも 1種を、単
体金属、合金、化合物等の形態で、前記鉄およびカルシ
ウムの換算量として0.03〜 2重量% の範囲で添加するこ
とを特徴としている。
The method for producing a silicon nitride sintered body according to the present invention comprises a first step of subjecting a compact made of silicon powder containing at least a rare earth oxide as a starting material to a nitriding treatment, and In the method for producing a silicon nitride sintered body, which comprises the second step of densifying and sintering the silicon nitride-based reaction sintered body obtained in the first step, at the starting material,
It is characterized in that at least one selected from iron and calcium is added in the form of a simple metal, an alloy, a compound or the like in the range of 0.03 to 2% by weight as the converted amount of iron and calcium.

【0009】本発明の製造方法においては、まず出発原
料となる希土類酸化物を含むケイ素粉末に、鉄およびカ
ルシウムから選ばれた少なくとも 1種を添加する。鉄や
カルシウムは、ケイ素の窒化反応を促進すると共に、第
1の工程で生成される窒化ケイ素粒子を微細化および粒
状化し、第2の工程における反応焼結体の緻密化を容易
にすると共に、収縮を抑制するものである。
In the production method of the present invention, first, at least one selected from iron and calcium is added to silicon powder containing a rare earth oxide as a starting material. Iron or calcium accelerates the nitriding reaction of silicon, and also makes the silicon nitride particles generated in the first step fine and granular, facilitating the densification of the reaction sintered body in the second step, and It suppresses contraction.

【0010】このように、出発原料に鉄やカルシウムを
添加することによって、生成した窒化ケイ素の粒径を、
用いたケイ素粉末の 50%以下に微細化することができ、
かつその 60%以上が粒状を呈するようになる。生成した
窒化ケイ素粒子をケイ素粉末の 50%以下に微細化するこ
とによって、第2の工程における反応焼結体の緻密化が
容易になると共に、極微粉状のケイ素粉末を使用する必
要がなくなることから、製造コストの低減に寄与する。
また、生成した窒化ケイ素粒子の粒状化度が60% 未満で
あると、反応焼結体の緻密化が妨げられると共に、高密
度化が困難になる。窒化ケイ素粒子の粒状化度は、 90%
以上とすることがより好ましい。
As described above, the particle size of silicon nitride produced by adding iron or calcium to the starting material is
The silicon powder used can be refined to 50% or less,
And more than 60% of them become granular. By refining the generated silicon nitride particles to 50% or less of the silicon powder, the reaction sintered body can be easily densified in the second step, and it is not necessary to use ultrafine silicon powder. Therefore, it contributes to the reduction of manufacturing cost.
Further, if the degree of granulation of the produced silicon nitride particles is less than 60%, the densification of the reaction sintered body is hindered, and the densification becomes difficult. Granularity of silicon nitride particles is 90%
It is more preferable to set it as above.

【0011】上記した鉄やカルシウムは、単体金属粉
末、例えば Fe-Si合金のような合金粉末、例えば酸化
物、硝酸化合物のような化合物粉末等の各種形態で添加
することができる。また、鉄やカルシウムは出発原料中
に、鉄およびカルシウムの換算量として0.03〜 2重量%
の範囲となるように添加する。これらの添加量が0.03重
量% 未満であると、上記した効果が十分に得られず、ま
た 2重量% を超えると、逆に窒化ケイ素の焼結を阻害し
たり、得られる窒化ケイ素焼結体の特性を劣化させるお
それがある。鉄やカルシウム添加量(換算量)は、0.05
〜 0.5重量% の範囲とすることがより好ましい。
The above-mentioned iron and calcium can be added in various forms such as elemental metal powder, alloy powder such as Fe-Si alloy, compound powder such as oxide and nitric acid compound. In addition, iron and calcium are 0.03 to 2% by weight in the starting material in terms of iron and calcium equivalent.
To be added within the range. If the addition amount of these is less than 0.03% by weight, the above effects cannot be sufficiently obtained, and if it exceeds 2% by weight, the sintering of silicon nitride is adversely affected or the obtained silicon nitride sintered body is adversely affected. May deteriorate the characteristics of. The added amount of iron and calcium (converted amount) is 0.05
More preferably, it is in the range of 0.5% by weight.

【0012】また、出発原料の主成分となるケイ素粉末
は、平均粒径が 0.5〜10μm の範囲のものを用いること
が好ましく、より好ましくは 1〜 7μm の範囲である。
これにより、第2の工程における反応焼結体の緻密化が
より一層容易になる。
The silicon powder used as the main component of the starting material preferably has an average particle size of 0.5 to 10 μm, more preferably 1 to 7 μm.
This makes it easier to densify the reaction sintered body in the second step.

【0013】本発明で用いるケイ素を主とする出発原料
には、希土類酸化物の他に、酸化アルミニウム、窒化ア
ルミニウム、酸化チタン、酸化ハフニウム、酸化ジルコ
ニウム、酸化クロムおよび酸化マグネシウムから選ばれ
た少なくとも 1種を添加することができる。また、希土
類酸化物としては、酸化イットリウムまたは酸化イッテ
ルビウムを用いることが好ましく、特に酸化イットリウ
ムと酸化アルミニウムとを併用することが望ましい。こ
れら添加化合物は、窒化ケイ素の焼結助剤として機能す
るものであり、希土類酸化物を 1〜10重量% 、その他を
0.5〜10重量%の範囲で出発原料に添加することが好ま
しい。
As the starting material mainly containing silicon used in the present invention, in addition to the rare earth oxide, at least 1 selected from aluminum oxide, aluminum nitride, titanium oxide, hafnium oxide, zirconium oxide, chromium oxide and magnesium oxide. Seeds can be added. As the rare earth oxide, yttrium oxide or ytterbium oxide is preferably used, and it is particularly desirable to use yttrium oxide and aluminum oxide in combination. These additive compounds function as a sintering aid for silicon nitride, and contain 1 to 10% by weight of rare earth oxide, and others.
It is preferably added to the starting material in the range of 0.5 to 10% by weight.

【0014】本発明の窒化ケイ素焼結体の製造方法にお
いては、まずケイ素粉末に希土類酸化物、必要に応じて
他の化合物、および鉄やカルシウムを所定量配合し、十
分に混合する。次いで、有機結合剤等をさらに加え、混
合、造粒した後、プレス成形法のような各種公知の成形
法によって、所要形状の成形体を作製する。ここで、本
発明の製造方法においては、焼結による収縮率を例えば
5〜 12%と低く抑えることができるため、成形体形状を
所要の焼結体形状に近似させることが可能である。
In the method for producing a silicon nitride sintered body of the present invention, first, a rare earth oxide, if necessary, another compound, and iron and calcium are mixed in a predetermined amount with silicon powder, and they are sufficiently mixed. Then, an organic binder or the like is further added, and after mixing and granulating, a molded body having a required shape is produced by various known molding methods such as a press molding method. Here, in the manufacturing method of the present invention, the shrinkage ratio due to sintering is, for example,
Since it can be kept as low as 5 to 12%, it is possible to approximate the shape of the molded body to the required shape of the sintered body.

【0015】なお、本発明において、出発原料中のSi源
として、Si3 N 4 を50重量% 程度まで加えることもでき
る。この場合、収縮率は若干増加するが、均一性の向上
や製造コストの低減に寄与する。
In the present invention, Si 3 N 4 can be added up to about 50% by weight as a Si source in the starting material. In this case, the shrinkage rate is slightly increased, but it contributes to improvement of uniformity and reduction of manufacturing cost.

【0016】次に、上記成形体に第1の工程として窒化
処理を施す。この窒化処理は、大気中や窒素雰囲気中等
で脱脂処理した後、窒素中にて例えば1200〜1450℃程度
の温度で、 2〜40時間程度熱処理することによって行
う。ここで、上記熱処理温度までの昇温過程が重要であ
り、この昇温過程で成形体表面が窒化ケイ素で覆われる
ような条件を選択することが好ましく、その条件は組
成、成形体の形状、大きさ等により異なるが、例えば11
00℃程度まで 1〜 3℃/hr程度の昇温速度で昇温した
後、その温度で 1〜 5時間程度仮保持したり、その温度
から熱処理温度まで50〜 100℃/hr程度の昇温速度で昇
温することが好ましい。
Next, the molded body is subjected to a nitriding treatment as a first step. This nitriding treatment is performed by performing a degreasing treatment in the air or a nitrogen atmosphere, and then heat-treating in nitrogen at a temperature of about 1200 to 1450 ° C. for about 2 to 40 hours. Here, the temperature raising process up to the heat treatment temperature is important, and it is preferable to select a condition such that the surface of the molded body is covered with silicon nitride in this temperature rising process. The condition is the composition, the shape of the molded body, It depends on the size, but for example, 11
After raising the temperature to about 00 ℃ at a heating rate of about 1 to 3 ℃ / hr, temporarily hold that temperature for about 1 to 5 hours, or raise the temperature from that temperature to about 50 to 100 ℃ / hr. It is preferable to raise the temperature at a rate.

【0017】上記第1の工程で得た窒化ケイ素系反応焼
結体に、第2の工程として高温下で焼成処理を施し、緻
密化焼結させて目的とする高密度窒化ケイ素焼結体を得
る。この第2の工程の具体的な条件としては、例えば 1
〜10気圧程度の窒素等による加圧雰囲気下にて、1750〜
1900℃程度の温度で、 2〜10時間程度焼成することが好
ましい。
In the second step, the silicon nitride-based reaction sintered body obtained in the first step is fired at a high temperature to densify and sinter the desired high-density silicon nitride sintered body. obtain. Specific conditions for this second step include, for example, 1
~ 1750 in a pressurized atmosphere of nitrogen at about 10 atm ~
It is preferable to bake at a temperature of about 1900 ° C. for about 2 to 10 hours.

【0018】[0018]

【作用】本発明の窒化ケイ素焼結体の製造方法において
は、ケイ素および焼結助剤となる化合物を含む出発原料
に、鉄およびカルシウムから選ばれた少なくとも 1種を
添加している。鉄やカルシウムを出発原料に含有させて
おくことによって、第1の工程におけるケイ素の窒化反
応が促進されると共に、生成される窒化ケイ素粒子が再
現性よく微細化および粒状化される。鉄やカルシウム
は、ケイ素粒子表面の酸化膜(SiO2 )を SiOとして除去
する触媒効果の他に、Siや SiO2 と共にシリサイド(例
えばFeSi2 )を生成する。このFeやCaのシリサイドは、
窒化反応温度では液相となり、これに溶け込んだ N2
Siとが反応してSi3 N 4 が生成析出する。このFeやCaの
シリサイドの液相を媒介として、生成される窒化ケイ素
粒子が微細化および粒状化されるものと考えられる。こ
のような粒子形態の変化には、適度のSi粉の大きさが必
要であり、10μm を超えると微細化が困難となる。これ
らによって、第2の工程において反応焼結体を容易にか
つ再現性よく緻密化することが可能となり、収縮率が低
く、かつ焼結助剤を含む低コストの窒化ケイ素焼結体を
再現性よく得ることが可能となる。
In the method for producing a silicon nitride sintered body of the present invention, at least one selected from iron and calcium is added to the starting raw material containing silicon and a compound that serves as a sintering aid. By including iron and calcium in the starting material, the nitriding reaction of silicon in the first step is promoted, and the silicon nitride particles produced are finely and granulated with good reproducibility. Iron and calcium generate a silicide (for example, FeSi 2 ) together with Si and SiO 2 in addition to the catalytic effect of removing the oxide film (SiO 2 ) on the surface of silicon particles as SiO. This Fe or Ca silicide is
At the nitriding reaction temperature, it becomes a liquid phase and the N 2
Si reacts with Si to form and precipitate Si 3 N 4 . It is considered that the silicon nitride particles produced are refined and granulated through the liquid phase of the silicide of Fe and Ca. Such a change in particle morphology requires an appropriate size of Si powder, and if it exceeds 10 μm, miniaturization becomes difficult. As a result, it becomes possible to densify the reaction sintered body easily and with good reproducibility in the second step, and it is possible to reproducibly produce a low-cost silicon nitride sintered body having a low shrinkage ratio and containing a sintering aid. It is possible to get well.

【0019】なお、鉄やカルシウムは、ケイ素の窒化反
応促進剤として従来から用いられていたものの、あくま
でも窒化反応に対する効果しか知られておらず、これら
を二段焼結法に用いることによって、生成した窒化ケイ
素粒子がケイ素粉末より微細化すること、緻密化焼結の
再現性が大幅に向上すること等は、本発明によってはじ
めて見出されたものである。本発明における限定条件で
はじめて、新しく提案する効果を可能にするものであ
る。
Although iron and calcium have been conventionally used as nitriding reaction accelerators for silicon, only their effect on the nitriding reaction is known, and iron and calcium are produced by using them in the two-step sintering method. It was discovered for the first time by the present invention that the silicon nitride particles obtained were finer than the silicon powder, and the reproducibility of densification and sintering was significantly improved. Only under the limited conditions of the present invention, the newly proposed effect is possible.

【0020】[0020]

【実施例】以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0021】実施例1 まず、Feを 0.3重量% およびCaを0.02重量% 含有させ
た、平均粒径 5μm のSi粉末に、平均粒径 0.5μm の Y
2 O 3 粉末を 5重量% 、および平均粒径 0.2μmのAl2 O
3 粉末を 2重量% 添加し、ボールミルを用いた湿式混
合法により十分に混合して出発原料粉末を調製した。次
いで、上記出発原料粉末に有機バインダを加え、さらに
十分に混合した後、 #48メッシュの粒径に造粒した。こ
の造粒粉を1ton/cm2 の成形圧でプレス成形し、直径15m
m×厚さ 5mmのペレット状成形体を作製した。
Example 1 First, Si powder containing 0.3% by weight of Fe and 0.02% by weight of Ca and having an average particle size of 5 μm was added to Y powder having an average particle size of 0.5 μm.
5% by weight of 2 O 3 powder and Al 2 O with an average particle size of 0.2 μm
2% by weight of 3 powders were added and thoroughly mixed by a wet mixing method using a ball mill to prepare a starting material powder. Next, an organic binder was added to the above starting material powder, and the mixture was further thoroughly mixed and then granulated to a particle size of # 48 mesh. This granulated powder was press-molded with a molding pressure of 1 ton / cm 2 and a diameter of 15 m.
A pellet-shaped compact having a size of m × 5 mm was produced.

【0022】次に、上記ペレット状成形体を、窒素雰囲
気中にて 600℃で脱脂した後、第1の工程として窒素中
で熱処理して、Si3 N 4 −添加物系の反応焼結体を得
た。この第1の工程は、 N2 ガスのフロー中にて、常温
から1100℃までは 2時間で昇温し、かつ1100℃から1400
℃までは 2時間で昇温して、1400℃で 6時間保持した
後、炉冷することにより行った。
Next, after degreasing the pellet-shaped compact in a nitrogen atmosphere at 600 ° C., it is heat-treated in nitrogen as a first step to produce a Si 3 N 4 -additive type reaction sintered body. Got In this first step, the temperature was raised from normal temperature to 1100 ° C in 2 hours in the flow of N 2 gas, and 1100 ° C to 1400 ° C.
The temperature was raised to 2 ° C in 2 hours, held at 1400 ° C for 6 hours, and then cooled in the furnace.

【0023】この後、上記第1の工程で得た反応焼結体
に、 9気圧の加圧窒素雰囲気中にて、1800℃× 6時間の
焼成条件で、第2の工程として緻密化焼結を施した。こ
の第2の工程を経て、目的とする窒化ケイ素の緻密化焼
結体を得た。
Then, the reaction sintered body obtained in the first step was densified and sintered in the second step under the firing condition of 1800 ° C. × 6 hours in a pressurized nitrogen atmosphere of 9 atm. Was applied. Through the second step, the desired densified sintered body of silicon nitride was obtained.

【0024】また、本発明との比較として、Feの含有量
が0.04重量% およびCaの含有量が0.001重量% のSi粉末
(平均粒径は実施例と同一)を用いる以外は、上記実施
例1と同一組成および同一条件で二段焼結を行い、窒化
ケイ素焼結体(比較例1)を作製した。
Further, as a comparison with the present invention, the above-mentioned Examples were used except that Si powder having an Fe content of 0.04% by weight and a Ca content of 0.001% by weight (average particle size is the same as that of the Examples). Two-stage sintering was performed under the same composition and under the same conditions as in No. 1 to produce a silicon nitride sintered body (Comparative Example 1).

【0025】これら実施例および比較例による各窒化ケ
イ素焼結体、および第1の工程後の各反応焼結体を用い
て、種々の特性を測定、評価した。まず、第1の工程後
の各反応焼結体の窒化率、密度、収縮率、生成したSi3
N 4 粒子の形状、粒状化度、および粒状粒子の平均粒子
径、生成したSi3 N 4 の構成相を測定、評価した。窒化
率は、X線回折法によって求めた。また、反応焼結体の
直径、厚さ、重量を測定し、これらからかさ密度を、ま
た直径方向の寸法変化から収縮率を算出した。Si3 N 4
粒子の形状、粒状化度、および粒状粒子の平均粒子径
は、反応焼結体の破面をSEM観察することによって評
価し、生成したSi3 N 4 の構成相はX線回折ピークから
評価した。
Various characteristics were measured and evaluated using the respective silicon nitride sintered bodies according to these Examples and Comparative Examples and the respective reaction sintered bodies after the first step. First, the nitriding rate, density, shrinkage rate, and generated Si 3 of each reaction sintered body after the first step
The shape of N 4 particles, the degree of granularity, the average particle diameter of the granular particles, and the constituent phase of the produced Si 3 N 4 were measured and evaluated. The nitriding rate was obtained by the X-ray diffraction method. Further, the diameter, thickness and weight of the reaction sintered body were measured, the bulk density was calculated from these, and the shrinkage rate was calculated from the dimensional change in the diameter direction. Si 3 N 4
The shape of the particles, the degree of granularity, and the average particle size of the granular particles were evaluated by observing the fracture surface of the reaction sintered body by SEM, and the constituent phase of the produced Si 3 N 4 was evaluated from the X-ray diffraction peak. .

【0026】また、第2の工程後の各窒化ケイ素焼結体
の密度、収縮率、構成相を評価した。これらの結果をま
とめて表1に示す。
Further, the density, shrinkage ratio and constituent phase of each silicon nitride sintered body after the second step were evaluated. The results are summarized in Table 1.

【0027】[0027]

【表1】 表1から明らかなように、実施例1による反応焼結体
は、微細で粒状化度の高いSi3 N 4 粒子を有しており、
このような反応焼結体を用いた緻密化焼結体は、高密度
で収縮率が小さく、高強度を有していることが分かる。
これに対して、比較例1による反応焼結体からは、針状
晶の成長が観察され、Si3 N 4 粒子の微細化や粒状化は
達成されていない。そして、このような反応焼結体を用
いた緻密化焼結後の窒化ケイ素焼結体は、密度が低く、
すなわち気孔率が高く、強度的にも不満足のものであっ
た。
[Table 1] As is clear from Table 1, the reaction sintered body according to Example 1 has fine and highly granular Si 3 N 4 particles,
It can be seen that the densified sintered body using such a reaction sintered body has a high density, a small shrinkage rate, and a high strength.
On the other hand, from the reaction-sintered body of Comparative Example 1, needle-like crystal growth was observed, and Si 3 N 4 particles were not made fine or granular. And, the silicon nitride sintered body after the densification sintering using such a reaction sintered body has a low density,
That is, the porosity was high and the strength was unsatisfactory.

【0028】これらの結果から、出発原料中にFeやCaを
適量存在させておくことによって、第1の工程で生成す
る窒化ケイ素粒子を、再現性よく微細化および粒状化す
ることができ、よって第2の工程において反応焼結体を
容易にかつ再現性よく緻密化することが可能となること
が分かる。従って、安価なケイ素粉末を用いて、収縮率
が小さく、かつ高密度の窒化ケイ素焼結体を再現性よく
得ることが可能となるため、原料の低コスト化や後加工
工数の短縮等により、高密度窒化ケイ素焼結体の製造コ
ストを大幅に削減することができる。
From these results, it is possible to finely and granulate the silicon nitride particles produced in the first step with good reproducibility by allowing Fe and Ca to be present in appropriate amounts in the starting material. It can be seen that it becomes possible to easily and reproducibly densify the reaction sintered body in the second step. Therefore, since it is possible to obtain a high-density silicon nitride sintered body with a small shrinkage rate and high reproducibility by using an inexpensive silicon powder, it is possible to reduce the cost of raw materials and shorten the number of post-processing steps. The manufacturing cost of the high-density silicon nitride sintered body can be significantly reduced.

【0029】実施例2〜15 表2に示す組成の各出発原料を用いて、表2中の製造条
件(他は実施例1と同条件)により、それぞれ二段焼結
を施し、それぞれ窒化ケイ素焼結体を作製した。これら
各窒化ケイ素焼結体の特性を、実施例1と同様にして測
定、評価した。それらの結果を表3に示す。
Examples 2 to 15 Each starting material having the composition shown in Table 2 was subjected to two-stage sintering under the manufacturing conditions shown in Table 2 (other conditions are the same as those in Example 1), and silicon nitride was prepared. A sintered body was produced. The characteristics of each of these silicon nitride sintered bodies were measured and evaluated in the same manner as in Example 1. The results are shown in Table 3.

【0030】[0030]

【表2】 [Table 2]

【表3】 [Table 3]

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、第
1の工程で生成される窒化ケイ素を再現性よく微細化お
よび粒状化することができるため、第2の工程となる緻
密化焼結工程が有利となる。すなわち、緻密質で、寸法
精度の高い窒化ケイ素焼結体を再現性よく得ることが可
能となる。このように、原料として低コストのケイ素粉
末を使用した上で、緻密質で寸法精度の高い窒化ケイ素
焼結体を得ることが可能となるため、高密度窒化ケイ素
焼結体の製造コストの低減に大きく寄与する。
As described above, according to the present invention, the silicon nitride produced in the first step can be finely and granulated with good reproducibility. The binding process is advantageous. That is, it is possible to obtain a silicon nitride sintered body that is dense and has high dimensional accuracy with good reproducibility. As described above, since it is possible to obtain a dense silicon nitride sintered body with high dimensional accuracy while using low-cost silicon powder as a raw material, it is possible to reduce the manufacturing cost of the high-density silicon nitride sintered body. Greatly contribute to.

【0032】[0032]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも希土類酸化物を含むケイ素粉
末を出発原料とする成形体に、窒化処理を施す第1の工
程と、前記第1の工程で得た窒化ケイ素系反応焼結体
を、高温下で緻密化焼結させる第2の工程とを有する窒
化ケイ素焼結体の製造方法において、 前記出発原料に、鉄およびカルシウムから選ばれた少な
くとも 1種を、単体金属、合金、化合物等の形態で、前
記鉄およびカルシウムの換算量として0.03〜 2重量% の
範囲で添加することを特徴とする窒化ケイ素焼結体の製
造方法。
1. A first step of performing nitriding treatment on a molded body starting from a silicon powder containing at least a rare earth oxide, and a silicon nitride-based reaction sintered body obtained in the first step, In the method for producing a silicon nitride sintered body, which comprises a second step of densifying and sintering below, at least one selected from iron and calcium is used as the starting material in the form of a simple metal, alloy, compound or the like. In the method for producing a silicon nitride sintered body, the iron and calcium are added in a range of 0.03 to 2% by weight in terms of conversion.
【請求項2】 請求項1記載の窒化ケイ素焼結体の製造
方法において、 前記ケイ素粉末は、平均粒径が 0.5〜10μm の範囲であ
ることを特徴とする窒化ケイ素焼結体の製造方法。
2. The method for producing a silicon nitride sintered body according to claim 1, wherein the silicon powder has an average particle size in the range of 0.5 to 10 μm.
【請求項3】 請求項1記載の窒化ケイ素焼結体の製造
方法において、 前記第1の工程で生成する窒化ケイ素の粒径を、前記出
発原料中のケイ素粉末の 50%以下に微細化し、かつその
60%以上を粒状とすることを特徴とする窒化ケイ素焼結
体の製造方法。
3. The method for producing a silicon nitride sintered body according to claim 1, wherein the grain size of silicon nitride produced in the first step is reduced to 50% or less of the silicon powder in the starting material, And that
A method for producing a silicon nitride sintered body, characterized in that 60% or more is formed into particles.
【請求項4】 請求項1記載の窒化ケイ素焼結体の製造
方法において、 前記出発原料は、さらに酸化アルミニウム、窒化アルミ
ニウム、酸化チタン、酸化ハフニウム、酸化ジルコニウ
ム、酸化クロムおよび酸化マグネシウムから選ばれた少
なくとも 1種を含むことを特徴とする窒化ケイ素焼結体
の製造方法。
4. The method for producing a silicon nitride sintered body according to claim 1, wherein the starting material is further selected from aluminum oxide, aluminum nitride, titanium oxide, hafnium oxide, zirconium oxide, chromium oxide and magnesium oxide. A method for producing a silicon nitride sintered body, which comprises at least one kind.
【請求項5】 請求項1記載の窒化ケイ素焼結体の製造
方法において、 前記鉄およびカルシウムの添加量を、換算量として0.05
〜 0.5重量% の範囲とすることを特徴とする窒化ケイ素
焼結体の製造方法。
5. The method for manufacturing a silicon nitride sintered body according to claim 1, wherein the added amount of iron and calcium is 0.05 as a converted amount.
The method for producing a silicon nitride sintered body is characterized in that the content is in the range of 0.5 wt%.
JP5071679A 1993-03-30 1993-03-30 Production of silicon nitride sintered compact Pending JPH06279124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5071679A JPH06279124A (en) 1993-03-30 1993-03-30 Production of silicon nitride sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5071679A JPH06279124A (en) 1993-03-30 1993-03-30 Production of silicon nitride sintered compact

Publications (1)

Publication Number Publication Date
JPH06279124A true JPH06279124A (en) 1994-10-04

Family

ID=13467503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5071679A Pending JPH06279124A (en) 1993-03-30 1993-03-30 Production of silicon nitride sintered compact

Country Status (1)

Country Link
JP (1) JPH06279124A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096661A (en) * 2005-12-26 2006-04-13 Hitachi Metals Ltd Sintered silicon nitride compact and circuit board using it
JP2011195395A (en) * 2010-03-19 2011-10-06 Kubota Corp Method for producing silicon nitride-based ceramic
KR101233744B1 (en) * 2011-01-27 2013-02-18 한국기계연구원 Manufacturing method of pre-sintered porous Si-mixture granules for porous sintered reaction-bonded silicon nitride, pre-sintered porous granules therefrom, and method manufacturing the porous sintered reaction-bonded silicon nitride
JP2013049595A (en) * 2011-08-30 2013-03-14 National Institute Of Advanced Industrial Science & Technology Method for producing silicon nitride sintered compact

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096661A (en) * 2005-12-26 2006-04-13 Hitachi Metals Ltd Sintered silicon nitride compact and circuit board using it
JP2011195395A (en) * 2010-03-19 2011-10-06 Kubota Corp Method for producing silicon nitride-based ceramic
KR101233744B1 (en) * 2011-01-27 2013-02-18 한국기계연구원 Manufacturing method of pre-sintered porous Si-mixture granules for porous sintered reaction-bonded silicon nitride, pre-sintered porous granules therefrom, and method manufacturing the porous sintered reaction-bonded silicon nitride
JP2013049595A (en) * 2011-08-30 2013-03-14 National Institute Of Advanced Industrial Science & Technology Method for producing silicon nitride sintered compact

Similar Documents

Publication Publication Date Title
JPH0925166A (en) Aluminum nitride sintered compact and its production
JP3559382B2 (en) Method for producing silicon nitride based sintered body
JPH06279124A (en) Production of silicon nitride sintered compact
JPH07172921A (en) Aluminum nitride sintered material and its production
JP4651144B2 (en) Silicon nitride sintered body
JP2649220B2 (en) Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body
JPS63236763A (en) Boron carbide sintered body and manufacture
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
JP2585506B2 (en) Silicon carbide sintered body and method for producing the same
JPS6212663A (en) Method of sintering b4c base fine body
JPS6212664A (en) Method of sintering b4c base composite body
JP2742619B2 (en) Silicon nitride sintered body
JPH0224789B2 (en)
JPH06116045A (en) Silicon nitride sintered compact and its production
JPS5891074A (en) Manufacture of silicon nitride sintered body
JPS6321254A (en) Manufacture of silicon nitride ceramics
JPS63293102A (en) Production of fe-base sintered alloy member having high strength and high toughness
JP3492648B2 (en) TiN-Al2O3-based sintered body
JPS60186473A (en) Silicon nitride sintered body and manufacture
JP3564164B2 (en) Silicon nitride sintered body and method for producing the same
JPH0687664A (en) Production of silicon nitride sintered compact
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JPH01219062A (en) Production of silicon nitride sintered body
JP2946593B2 (en) Silicon nitride sintered body and method for producing the same
JPS63230570A (en) Sic-tic normal pressure sintered body and manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030318