JPS63236763A - Boron carbide sintered body and manufacture - Google Patents

Boron carbide sintered body and manufacture

Info

Publication number
JPS63236763A
JPS63236763A JP62072450A JP7245087A JPS63236763A JP S63236763 A JPS63236763 A JP S63236763A JP 62072450 A JP62072450 A JP 62072450A JP 7245087 A JP7245087 A JP 7245087A JP S63236763 A JPS63236763 A JP S63236763A
Authority
JP
Japan
Prior art keywords
boron carbide
sintered body
sintered
carbide powder
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62072450A
Other languages
Japanese (ja)
Inventor
山内 英俊
晴久 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP62072450A priority Critical patent/JPS63236763A/en
Publication of JPS63236763A publication Critical patent/JPS63236763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱耐摩耗性に優れた高密度、高靭性の炭化
ほう素焼路体およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-density, high-toughness boron carbide sintered road body having excellent heat and wear resistance, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、炭化ほう素焼路体に関しては、炭化ほう素粉末を
格別の焼結助剤を用いることなく、約2400℃の高温
下でホットプレス法により焼結する方法、およびほう素
粉末と炭素粉末の混合原料をホットプレスすることによ
り反応焼結する方法が知られている。
Conventionally, regarding boron carbide sintered road bodies, there have been methods in which boron carbide powder is sintered using a hot press method at a high temperature of approximately 2400°C without using a special sintering aid, and methods in which boron carbide powder and carbon powder are A method of reaction sintering by hot pressing mixed raw materials is known.

また、F e + Z r * T tなどを数%添加
することにより、微細組織を有する炭化ほう素焼路体を
製造する方法がV、P、Goltsevらによって“I
AEA。
In addition, a method of manufacturing a boron carbide fired track body having a fine structure by adding several percent of Fe + Z r * T t etc. was proposed by V. P. Goltsev et al.
AEA.

I WG F R,S、M、WS S R,Dimif
rovgred(1972)293″に開示されている
I WG F R, S, M, WS S R, Dimif
rovgred (1972) 293''.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

例示した上記従来技術の場合、いずれも高密度は実現さ
れているものの、いずれも得られた焼結体は靭性値が2
〜3MPam’Aと低く、また耐熱衝撃性についてもΔ
T−500にと低く、さらに1000℃以上の高温で耐
酸化性に劣るものであった。
In the case of the above-mentioned prior art examples, although high density has been achieved in all cases, the obtained sintered bodies have a toughness value of 2.
~3MPam'A is low, and the thermal shock resistance is also Δ
It was as low as T-500 and had poor oxidation resistance at high temperatures of 1000°C or higher.

また、炭化ほう素焼粘体の出発原料である炭化ほう素粉
末は焼結し難い材料であるため、酸化物セラミックスの
製造で一般的に行われている無加圧焼結法すなわち常温
で成形し、無加圧下で焼結する方法はこれまで困難であ
るとされていた。
In addition, boron carbide powder, which is the starting material for boron carbide sintered viscous material, is a material that is difficult to sinter, so it is molded using the pressureless sintering method commonly used in the production of oxide ceramics, that is, at room temperature. Until now, sintering without pressure had been considered difficult.

本発明の目的は、前記従来技術における炭化ほう素焼粘
体の欠点であうた靭性および耐熱衝撃性が改善された高
密度の炭化ほう素焼粘体およびその製造技術を確立する
ことにある。
An object of the present invention is to establish a high-density boron carbide sintered viscous material that has improved toughness and thermal shock resistance, which are the drawbacks of the boron carbide sintered viscous materials in the prior art, and a technology for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

上掲の目的は次の事項を骨子とする構成を採用すること
によって充足される。すなわち、本発明は、Ti、Nb
、V+ZrtMo、TatHLWあるいはSiから選ば
れる少なくとも1種を0.5〜30vrt%および遊離
炭素を0.5〜5vrt%含有し、密度が理論密度の8
5%以上である炭化ほう素焼粘体、およびかかる焼結体
製造方法として、平均粒径が3μm以下の炭化ほう素粉
末にTt、Nb+V+  Zr、Mo。
The above purpose can be achieved by adopting a structure based on the following points. That is, the present invention provides Ti, Nb
, V+ZrtMo, TatHLW, or Si at 0.5 to 30 vrt% and free carbon at 0.5 to 5 vrt%, and the density is 8 of the theoretical density.
As a boron carbide sintered viscous body having a content of 5% or more, and a method for producing such a sintered body, Tt, Nb+V+Zr, and Mo are added to boron carbide powder with an average particle size of 3 μm or less.

TatHf、WあるいはSiから選ばれる少な(とも1
種の炭化物粉末0.5〜30wt%と0.5〜5.0w
t%のCに相当する炭素質添加剤を添加、混合し、得ら
れた混合原料を成形し、その後この成形体をアルゴン、
ヘリウム、真空のなかから選択されるいずれか少なくと
も1種からなる雰囲気下で焼成する方法を提案する。
A small amount selected from TatHf, W or Si (both 1
Seed carbide powder 0.5-30wt% and 0.5-5.0w
A carbonaceous additive corresponding to t% of C is added and mixed, the obtained mixed raw material is molded, and then this molded body is heated with argon,
We propose a method of firing in an atmosphere consisting of at least one selected from helium and vacuum.

以下に、本発明の炭化ほう素焼粘体を詳細に説明する。Below, the boron carbide sintered viscous material of the present invention will be explained in detail.

本発明の炭化ほう素焼粘体はTi、Nb、V、Zr。The boron carbide sintered viscous material of the present invention contains Ti, Nb, V, and Zr.

Mo+Ta+HftWあるいはSIから選ばれるいずれ
か少なくとも1種を0.5〜30wt%および遊離炭素
を0.5〜5wt%含育していることが必要である。
It is necessary to contain 0.5 to 30 wt% of at least one selected from Mo+Ta+HftW or SI and 0.5 to 5 wt% of free carbon.

その理由は、Ti、Nb、V、Zr、Mo、TatHf
、W。
The reason is that Ti, Nb, V, Zr, Mo, TatHf
,W.

Stおよび遊離炭素は、炭化ほう素焼粘体の結晶粒界付
近に濃縮して存在し易く、特に含有量が上述の範囲内に
ある場合には、粒界に前記金属の炭化物、炭素あるいは
前記金属、炭素およびほう素の固溶体が生成し存在する
ことにより、炭化ほう素焼粘体の曲げ強度、靭性および
耐熱衝撃性を著しく向上させることができ、本発明の目
的とする曲げ強度が40〜70kgf/j、破壊靭性が
3〜6 MPam’Aの炭化ほう素焼粘体を得ることが
できるからである。
St and free carbon tend to be concentrated near the grain boundaries of a sintered boron carbide viscous body, and especially when the content is within the above range, carbides of the metals, carbon or the metals, Due to the formation and presence of a solid solution of carbon and boron, the bending strength, toughness and thermal shock resistance of the boron carbide sintered viscous material can be significantly improved, and the bending strength targeted by the present invention is 40 to 70 kgf/j, This is because a boron carbide sintered viscous material having a fracture toughness of 3 to 6 MPam'A can be obtained.

前記、炭化ほう素焼粘体の粒界に前記金属の炭化物、炭
素あるいは前記金属および炭素ほう素の固溶体を存在さ
せることにより、靭性および耐熱衝撃性が改善される理
由は、前述の物性が粒界に存在することにより粒界近傍
に引張りの応力が生起し、この応力によって破壊発生時
におけるクラックの進行方向が分散させられるため、破
壊に要するエネルギーが増加したためと考えられる。
The reason why toughness and thermal shock resistance are improved by the presence of carbide of the metal, carbon, or a solid solution of the metal and carbon-boron at the grain boundaries of the boron carbide sintered viscous body is that the above-mentioned physical properties are present at the grain boundaries. This is thought to be due to the fact that tensile stress is generated in the vicinity of the grain boundaries due to its presence, and this stress disperses the propagation direction of cracks when fracture occurs, thereby increasing the energy required for fracture.

本発明の炭化ほう素焼粘体は、平均結晶粒径が15μm
以下であることが好ましい。
The boron carbide sintered viscous body of the present invention has an average crystal grain size of 15 μm.
It is preferable that it is below.

その理由は、焼結体の平均結晶粒径が15μmを超える
と、各結晶に応力の集中が生じ易く、強度の低下を招く
からであり、より好ましくは10μm以下で、最大粒径
が30μm以下であ4゜なお、本発明の炭化ほう素焼粘
体は、結晶の大部分が板状晶によって構成されており、
この点からも極めて機械的強度および靭性が向上してい
るものと推察される。
The reason for this is that if the average crystal grain size of the sintered body exceeds 15 μm, stress concentration tends to occur in each crystal, leading to a decrease in strength, so it is more preferably 10 μm or less, and the maximum grain size is 30 μm or less. 4゜In addition, in the boron carbide sintered viscous body of the present invention, most of the crystals are composed of plate crystals,
From this point as well, it is inferred that the mechanical strength and toughness are significantly improved.

次に本発明の炭化ほう素焼粘体の製造方法について説明
する。
Next, the method for producing the boron carbide sintered viscous body of the present invention will be explained.

本発明によれば、平均粒径が3μm以下の炭化ほう素粉
末にTi、NbtV+  Zr+Mo、TatHf、w
あるいはStから選ばれるいずれか1種の炭化物粉末0
.5〜30*j%と0.5〜5.0wt%のCに相当す
る炭素質添加剤を添加混合することが必要である。
According to the present invention, boron carbide powder with an average particle size of 3 μm or less contains Ti, NbtV+ Zr+Mo, TatHf, w
Or any one type of carbide powder selected from St 0
.. It is necessary to add and mix a carbonaceous additive corresponding to 5 to 30*j% and 0.5 to 5.0 wt% of C.

前記、炭化ほう素粉末の平均粒径を3μm以下に限定す
る理由は、炭化ほう素粉末の平均粒径が3μmより大き
いと密度が理論密度の85%相当以上で、かつ平均結晶
粒径が15μm以下の焼結体を得ることが困難であるか
らである。特に高密度、高強度の焼結体を得るには平均
粒径が1.5μm以下の粉末を用いることが好ましく、
なかでも平均粒径が1μmよりもはるかに小さい粉末を
使用することは極めて有利である。
The reason why the average particle size of the boron carbide powder is limited to 3 μm or less is that if the average particle size of the boron carbide powder is larger than 3 μm, the density is equivalent to 85% or more of the theoretical density and the average crystal grain size is 15 μm. This is because it is difficult to obtain the following sintered body. In particular, in order to obtain a sintered body with high density and high strength, it is preferable to use powder with an average particle size of 1.5 μm or less.
Among these, it is extremely advantageous to use powders whose average particle size is much smaller than 1 μm.

本発明によれば、前記炭化ほう素粉末は2〜35d1g
の比表面積を有するものであることが好ましい、その理
由は、前記炭化ほう素粉末の比表面積が2nf/gより
小さいと、焼結初期における焼結収縮が不均一となり易
く、高い密度と強度を有する焼結体を得ることが困難で
あり、一方35d1gより大きい炭化ほう素粉末は焼結
性に極めて優れていると考えられるが、このような炭化
ほう素粉末は入手することが困難で、例え入手できたと
しても極めて高価となると考えられ実用的でないからで
ある。
According to the present invention, the boron carbide powder is 2 to 35 d1g
It is preferable that the boron carbide powder has a specific surface area of On the other hand, boron carbide powder larger than 35d1g is considered to have extremely excellent sinterability, but such boron carbide powder is difficult to obtain, and This is because even if it were available, it would be extremely expensive and thus impractical.

本発明によれば、前記炭化ほう素粉末は酸素含有量が0
.1〜2.0wt%のものであることが好ましい、その
理由は、前記炭化ほう素粉末に含有される酸素は主とし
て炭化ほう素粉末の表面にB、O。
According to the present invention, the boron carbide powder has an oxygen content of 0.
.. The oxygen content is preferably 1 to 2.0 wt%, because the oxygen contained in the boron carbide powder is mainly B and O on the surface of the boron carbide powder.

の形態で存在していると考えられ、前記酸素が2.0w
t%よりも多量に存在すると、焼結時における炭化ほう
素の拡散を阻害するため高密度の焼結体を得ることが困
難になるからであり、一方前記酸素含有量が0.11#
t%より少ない炭化ほう素粉末は焼結用原料として極め
て好適であると考えられるが、このような炭化ほう素粉
末は極めて活性であり、空気雰囲気中で取扱うことが困
難で、実用的でないからである。
It is thought that the oxygen exists in the form of 2.0w
This is because if the oxygen content is more than 0.11%, it becomes difficult to obtain a high-density sintered body because it inhibits the diffusion of boron carbide during sintering.
Boron carbide powder with less than t% is considered to be extremely suitable as a raw material for sintering, but such boron carbide powder is extremely active and difficult to handle in an air atmosphere, making it impractical. It is.

本発明によれば、前記TI+Nb、V+Zr、Mo、T
a+Hf、WあるいはSIから選ばれるいずれか少なく
とも1種の炭化物粉末の平均粒径は1μm以下であるこ
とが好ましい、その理由は、の平均粒径が1μmより大
きいと焼結助剤としての効果が不均一となり易く、高密
度で均一な微細組織を有する焼結体が得られ難いからで
ある。なかでも、0.1μm以下の粉末を使用すること
が好ましい。
According to the present invention, the TI+Nb, V+Zr, Mo, T
The average particle size of at least one carbide powder selected from a+Hf, W, or SI is preferably 1 μm or less, because if the average particle size is larger than 1 μm, the effect as a sintering aid is poor. This is because the sintered body tends to become non-uniform and it is difficult to obtain a sintered body having a high density and uniform microstructure. Among these, it is preferable to use powder with a particle size of 0.1 μm or less.

前記焼結助剤の添加量を0.5〜30wt%に限定する
理由は、添加量が0.5wt%より少ないと焼結時にお
ける緻密化促進効果が不充分で、本発明の目的とする高
密度の焼結体を得ることが困難であるし、また30wt
%より多い場合においても、焼結時における緻密化を抑
制するため高密度の焼結体を得ることが困難になるから
である。
The reason why the amount of the sintering aid added is limited to 0.5 to 30 wt% is that if the amount added is less than 0.5 wt%, the effect of promoting densification during sintering is insufficient, which is the object of the present invention. It is difficult to obtain a high-density sintered body, and 30wt
%, it becomes difficult to obtain a high-density sintered body because densification during sintering is suppressed.

前記炭素質添加剤の添加量を0.5〜5.0wt%のC
に相当する量に限定する理由は、炭素質添加量が0.5
wt94のCに相当する量よりも少ないと焼結時におけ
る炭化ほう素の粒成長を抑制する作用が充分に発揮され
ないため粗大結晶が生成し易いからであり、一方5.0
wt%のCに相当する量よりも多いと炭化ほう素粉末粒
子間に過剰の炭素が存在し、焼結を著しく阻害するため
、高密度の焼結体を得ることが困難であるばかりでなく
、焼結粒界に存在する炭素の量が必要以上に増加するた
め焼結体の物性、特に強度が著しく劣化するからである
The amount of carbonaceous additive added is 0.5 to 5.0 wt% C.
The reason for limiting the amount to the amount equivalent to is that the amount of carbon added is 0.5
This is because if the amount is less than the amount equivalent to C in wt94, the effect of suppressing the grain growth of boron carbide during sintering will not be sufficiently exerted, and coarse crystals will easily be formed.
If the amount exceeds the amount equivalent to wt% C, excess carbon will exist between the boron carbide powder particles and will significantly inhibit sintering, making it not only difficult to obtain a high-density sintered body. This is because the amount of carbon present in the sintered grain boundaries increases more than necessary, and the physical properties of the sintered body, particularly the strength, deteriorate significantly.

前記炭素質添加剤は、10G+wf/g以上の比表面積
を有する炭素粉末あるいは熱分解して炭素を生成する有
機高分子化合物を使用することが有利である。
As the carbonaceous additive, it is advantageous to use carbon powder having a specific surface area of 10 G+wf/g or more or an organic polymer compound that generates carbon by thermal decomposition.

本発明によれば、炭化ほう素、焼結助剤および炭素質添
加剤とからなる混合原料は所望の形状に成形された後ア
ルゴン、ヘリウム、真空のなかから選択されるいずれか
少なくとも1種からなる雰囲気下で焼成される。その理
由は、炭化ほう素の焼結時には、炭化ほう素粉末に含有
されている酸素が炭素と反応し、COガスが炭化ほう素
の焼結時に多量に存在すると炭化ほう素の緻密化を抑制
するため、充分な焼成収縮を得るにはCOガスを焼成炉
内から除去することが必要である。従って、本発明によ
れば炉内を前記ガス気流雰囲気あるいは真空とすること
が有利であり、特に炉内雰囲気中のCOガス分圧は、1
0 K Pa以下に維持することが好ましい。
According to the present invention, a mixed raw material consisting of boron carbide, a sintering aid, and a carbonaceous additive is formed into a desired shape and then released from at least one selected from argon, helium, and vacuum. It is fired in a suitable atmosphere. The reason for this is that when boron carbide is sintered, the oxygen contained in the boron carbide powder reacts with carbon, and if a large amount of CO gas is present during sintering of boron carbide, it will inhibit the densification of boron carbide. Therefore, in order to obtain sufficient firing shrinkage, it is necessary to remove the CO gas from inside the firing furnace. Therefore, according to the present invention, it is advantageous to create the gas flow atmosphere or vacuum in the furnace, and in particular, the CO gas partial pressure in the furnace atmosphere is 1
It is preferable to maintain it at 0 KPa or less.

なお、本発明によれば、前記焼成は2100〜2400
℃の最高温度で行われる。その際、焼結開始温度である
1500℃から最高温度までの昇温は1時間以上かけて
行うことにより、極めて均一で微細な結晶組織の焼結体
を得ることができる。
According to the present invention, the firing temperature is 2100 to 2400.
Performed at maximum temperature of °C. At this time, by raising the temperature from the sintering start temperature of 1500° C. to the maximum temperature over one hour or more, a sintered body with an extremely uniform and fine crystal structure can be obtained.

〔実施例〕〔Example〕

z廉五−1 平均粒径3.0μmの炭化ほう素粉末93重量部と平均
粒径0.65μmの炭化チタン粉末5.01i1部と残
炭率50wt%のフェノールレジンを水溶媒中で混合し
た後、乾燥した。
Zrengo-1 93 parts by weight of boron carbide powder with an average particle size of 3.0 μm, 1 part of titanium carbide powder with an average particle size of 0.65 μm, and phenol resin with a residual carbon content of 50 wt% were mixed in a water solvent. After that, it was dried.

乾燥後、パウダーを金型プレスした後面圧で3t/−ラ
バースした。成形体は、アルゴン雰囲気中毎分10℃の
昇温速度で昇温し、2200℃で1時間保持した後、冷
却した。焼結体は、理論密度の96%であった。硬度は
260Pa、破壊靭性値4.5MPam時、曲げ強度5
5kgf/−であった。
After drying, the powder was pressed with a die and then rubberized with a surface pressure of 3t/-. The molded body was heated at a rate of 10° C. per minute in an argon atmosphere, held at 2200° C. for 1 hour, and then cooled. The sintered body had a theoretical density of 96%. Hardness is 260 Pa, fracture toughness value is 4.5 MPam, bending strength is 5
It was 5 kgf/-.

耐摩耗性も良好であった。Abrasion resistance was also good.

大隻斑−1 平均粒径3.0μmの炭化ほう素粉束73wt%と平均
粒径0.65pmな炭化チタン粉末25wt%と残炭率
50wt%のフェノールレジンを添加し、実施例1と同
じ方法で、焼結体を得た。焼結体は、理論密度の92%
であった。硬度20GPa、破壊靭性値6MPam〃、
曲げ強度39kgf/−1比抵抗lXl0−”ncs+
i”あった、放電加工性が良好であった。
Daimune-1 Same as Example 1, adding 73 wt% of boron carbide powder bundle with an average particle size of 3.0 μm, 25 wt% of titanium carbide powder with an average particle size of 0.65 pm, and phenol resin with a residual carbon content of 50 wt%. A sintered body was obtained by this method. Sintered body has 92% of theoretical density
Met. Hardness 20 GPa, fracture toughness value 6 MPam,
Bending strength 39kgf/-1 Specific resistance lXl0-"ncs+
i", and the electrical discharge machinability was good.

以下、実施例3〜20、比較例1〜9の製造法は、実施
例1に従って行った。得られた物性を表にまとめた。
Hereinafter, the manufacturing methods of Examples 3 to 20 and Comparative Examples 1 to 9 were carried out in accordance with Example 1. The obtained physical properties are summarized in the table.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明は、従来技術における炭化ほう
素焼粘体の欠点であった靭性および耐熱衝撃性が改善さ
れた高密度の炭化ほう素焼粘体およびその製造方法であ
って、炭素に寄与する効果は極めて大きい。
As described above, the present invention provides a high-density boron carbide sintered viscous material that has improved toughness and thermal shock resistance, which were disadvantages of conventional boron carbide sintered viscous materials, and a method for producing the same, and provides an effect that contributes to carbon. is extremely large.

特許出願人  イ ビ デ ン 株式会社代表者   
多賀 潤一部
Patent applicant Representative of IBIDEN Co., Ltd.
Junichi Taga

Claims (3)

【特許請求の範囲】[Claims] 1.Ti,Nb,V,Zr,Mo,Ta,Hf,Wある
いはSiから選ばれるいずれか少なくとも1種を0.5
〜30wt%及び炭素を0.5〜5.0wt%含有し、
密度が理論密度の85%以上である炭化ほう素焼結体。
1. 0.5 of at least one selected from Ti, Nb, V, Zr, Mo, Ta, Hf, W or Si
~30 wt% and 0.5 to 5.0 wt% carbon,
A boron carbide sintered body whose density is 85% or more of the theoretical density.
2.前記炭化ほう素焼結体は、焼結体を構成する結晶の
大部分が板状晶であり、破壊靭性が3〜6MPam^1
^/^2、曲げ強度が40〜70kgf/mm^2、平
均結晶粒径が15μm以下である特許請求の範囲第1項
記載の焼結体。
2. In the boron carbide sintered body, most of the crystals constituting the sintered body are plate crystals, and the fracture toughness is 3 to 6 MPam^1.
The sintered body according to claim 1, which has a bending strength of 40 to 70 kgf/mm2 and an average grain size of 15 μm or less.
3.平均粒径が3μm以下の炭化ほう素粉末にTi,N
b,V,Zr,Mo,Ta,Hf,WあるいはSiから
選ばれるいずれか少なくとも1種の炭化物粉末0.5〜
30wt%と0.5〜5.0wt%のCに相当する炭素
質添加剤を添加、混合し得られた混合原料を成形し、そ
の後この成形体をアルゴン、ヘリウム、真空のなかから
選択されるいずれか少なくとも1種からなる雰囲気下で
焼成することを特徴とする炭化ほう素焼結体の製造方法
3. Ti, N is added to boron carbide powder with an average particle size of 3 μm or less.
At least one carbide powder selected from b, V, Zr, Mo, Ta, Hf, W, or Si, from 0.5 to
A carbonaceous additive corresponding to 30 wt% and 0.5 to 5.0 wt% of C is added and mixed, and the resulting mixed raw material is molded, and then this molded body is heated under argon, helium, or vacuum. A method for producing a boron carbide sintered body, the method comprising firing in an atmosphere consisting of at least one of the above.
JP62072450A 1987-03-25 1987-03-25 Boron carbide sintered body and manufacture Pending JPS63236763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072450A JPS63236763A (en) 1987-03-25 1987-03-25 Boron carbide sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072450A JPS63236763A (en) 1987-03-25 1987-03-25 Boron carbide sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS63236763A true JPS63236763A (en) 1988-10-03

Family

ID=13489643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072450A Pending JPS63236763A (en) 1987-03-25 1987-03-25 Boron carbide sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS63236763A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345534A (en) * 1993-06-11 1994-12-20 Elektroschmelzwerk Kempten Gmbh Composite material based on boron carbide, titanium diboride and elementary carbon and its production
JPH0797264A (en) * 1993-06-17 1995-04-11 Elektroschmelzwerk Kempten Gmbh Preparation of boron carbide system polycrystal high density molded article by non-pressure sintering
WO2003040060A1 (en) * 2001-11-06 2003-05-15 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
JP2009215091A (en) * 2008-03-07 2009-09-24 National Institute Of Advanced Industrial & Technology Dense boron carbide sintered body and method for producing the same
JP4570195B2 (en) * 2000-03-16 2010-10-27 京セラ株式会社 BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER
JP2012062210A (en) * 2010-09-15 2012-03-29 National Institute For Materials Science High hardness b4c oriented by ferromagnetic field technique and method for manufacturing the same
JP2013500227A (en) * 2009-07-24 2013-01-07 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for forming sintered boron carbide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204873A (en) * 1982-05-13 1983-11-29 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Substantially pore-free polycrystal sintered body comprising alpha-silicon carbide, boron carbide and free carbon and manufacture
JPS63156068A (en) * 1986-12-18 1988-06-29 富士通株式会社 Manufacture of boron carbide-silicon carbide composite sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204873A (en) * 1982-05-13 1983-11-29 エレクトロシユメルツヴエルク・ケンプテン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Substantially pore-free polycrystal sintered body comprising alpha-silicon carbide, boron carbide and free carbon and manufacture
JPS63156068A (en) * 1986-12-18 1988-06-29 富士通株式会社 Manufacture of boron carbide-silicon carbide composite sintered body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345534A (en) * 1993-06-11 1994-12-20 Elektroschmelzwerk Kempten Gmbh Composite material based on boron carbide, titanium diboride and elementary carbon and its production
JPH0797264A (en) * 1993-06-17 1995-04-11 Elektroschmelzwerk Kempten Gmbh Preparation of boron carbide system polycrystal high density molded article by non-pressure sintering
JP4570195B2 (en) * 2000-03-16 2010-10-27 京セラ株式会社 BORON CARBIDE BONDED BODY, ITS MANUFACTURING METHOD, AND PLASMA RESISTANT MEMBER
WO2003040060A1 (en) * 2001-11-06 2003-05-15 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
US7417002B2 (en) 2001-11-06 2008-08-26 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
US7442661B2 (en) 2001-11-06 2008-10-28 National Institute Of Advanced Industrial Science And Technology Boron carbide based sintered compact and method for preparation thereof
JP2009215091A (en) * 2008-03-07 2009-09-24 National Institute Of Advanced Industrial & Technology Dense boron carbide sintered body and method for producing the same
JP2013500227A (en) * 2009-07-24 2013-01-07 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Method for forming sintered boron carbide
JP2012062210A (en) * 2010-09-15 2012-03-29 National Institute For Materials Science High hardness b4c oriented by ferromagnetic field technique and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7723247B2 (en) Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities
JP3142560B2 (en) Reaction-sintered mullite-containing ceramic compact, method for producing the compact and use of the compact
US8097548B2 (en) High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same
US5720910A (en) Process for the production of dense boron carbide and transition metal carbides
JPS63236763A (en) Boron carbide sintered body and manufacture
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
JPS60186467A (en) Silicon carbide sintered body and manufacture
JPH02239156A (en) Metal diboride-based sintered body and production thereof
JPS632913B2 (en)
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JP2585506B2 (en) Silicon carbide sintered body and method for producing the same
JP2007320778A (en) High-denseness silicon carbide ceramic and its production method
JPS6212663A (en) Method of sintering b4c base fine body
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPS6127352B2 (en)
JPH06279124A (en) Production of silicon nitride sintered compact
JP3570676B2 (en) Porous ceramic body and method for producing the same
JPH01145380A (en) Production of silicon nitride sintered form
JPH05294739A (en) Titanium diboride-based sintered compact and its production
JPS60239360A (en) Silicon carbide ceramic sintered body
JPS59207876A (en) Manufacture of high density silicon nitride reaction sintered body
JPS6126566A (en) Method of sintering sic composite body
JPH09155415A (en) Ceramic roller
JPH05286765A (en) Silicon carbide-based composite material and its production
JPS63230570A (en) Sic-tic normal pressure sintered body and manufacture