JPS6034515B2 - Manufacturing method of silicon carbide ceramic sintered body - Google Patents

Manufacturing method of silicon carbide ceramic sintered body

Info

Publication number
JPS6034515B2
JPS6034515B2 JP55118460A JP11846080A JPS6034515B2 JP S6034515 B2 JPS6034515 B2 JP S6034515B2 JP 55118460 A JP55118460 A JP 55118460A JP 11846080 A JP11846080 A JP 11846080A JP S6034515 B2 JPS6034515 B2 JP S6034515B2
Authority
JP
Japan
Prior art keywords
silicon carbide
aluminum oxide
sintered body
strength
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55118460A
Other languages
Japanese (ja)
Other versions
JPS5742577A (en
Inventor
恵一朗 鈴木
伸広 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP55118460A priority Critical patent/JPS6034515B2/en
Priority to GB8120277A priority patent/GB2082165B/en
Priority to DE19813127649 priority patent/DE3127649A1/en
Priority to US06/283,238 priority patent/US4354991A/en
Priority to FR8113916A priority patent/FR2486931A1/en
Publication of JPS5742577A publication Critical patent/JPS5742577A/en
Publication of JPS6034515B2 publication Critical patent/JPS6034515B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は炭化珪素焼結体特に成形後、無加圧で競結する
いわゆる通常焼成により得られる繊密かつ高強度の炭化
珪素糠結体の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon carbide sintered body, particularly a dense and high-strength silicon carbide bran body obtained by so-called normal firing in which the compact is bonded without pressure after molding. .

炭化珪素は従来より硬度が高く、耐摩耗性にすぐれ、熱
膨張率が4・さく、また、分解温度が高く、耐酸化性が
大きく化学的に安定でかつ一般にかなりの電気伝導性を
有する有用なセラミックス材料として知られている。
Silicon carbide is useful because it has higher hardness than before, has excellent wear resistance, has a coefficient of thermal expansion of 4.0, has a high decomposition temperature, has high oxidation resistance, is chemically stable, and generally has considerable electrical conductivity. It is known as a ceramic material.

この炭化珪素の高密度競結体は上記の性質に加え、強度
が高温まで大きく、耐熱衝撃性にすぐれ、高温構造材料
として有望とされ、ガスタービン用をはじめとして種々
の用途にその応用が試みられている。炭化珪素は共有結
合性の強い化合物であるため、単独では焼結が困難であ
り、高密度の焼結が困難であり、高密度の煉給体を得る
ためには何らかの暁結助剤の添加が必要である。そして
、ホットプレス法の場合には競給助剤としてホウ素ある
いはB4C又はアルミニウムあるいはAINなどが知ら
れている。又、常圧焼結法の場合には更に、これらに炭
素を添加することが知られている。しかし、従釆の通常
糠結品は、性能或は製法の点で後述するように十分とは
いえない。そこで本発明者はホットプレス法によらない
通常焼成の方法によってでも従釆のものより優れた特性
をもった炭化珪素蟻結体を見出すことを目的に実験を重
ねた結果、本発明に至ったもので本発明は、酸化アルミ
ニウムを0.5〜35重量%と残部が比表面積5〆/g
以上の実質的に炭化珪素からなる混合物を形成後、圧力
を加えずに焼結する特定強度をもつ炭化珪素質セラミッ
クス煉結体の製造法を要旨とするものである。
In addition to the above-mentioned properties, this high-density composite of silicon carbide has high strength up to high temperatures and excellent thermal shock resistance, making it a promising high-temperature structural material, and attempts have been made to apply it to a variety of applications including gas turbines. It is being Silicon carbide is a compound with strong covalent bonds, so it is difficult to sinter it alone, and it is difficult to sinter it to a high density.In order to obtain a high density brick, it is necessary to add some kind of sintering aid. is necessary. In the case of the hot press method, boron, B4C, aluminum, AIN, etc. are known as competitive additives. Furthermore, in the case of pressureless sintering, it is known that carbon is further added to these materials. However, the conventional brazed products are not sufficient in terms of performance or manufacturing method, as will be described later. Therefore, the present inventor conducted repeated experiments with the aim of finding silicon carbide ant aggregates with superior properties than conventional ones even when using a normal firing method instead of the hot press method, and as a result, the present invention was achieved. In the present invention, aluminum oxide is contained in an amount of 0.5 to 35% by weight, and the balance has a specific surface area of 5〆/g.
The gist of the present invention is to provide a method for producing a silicon carbide-based ceramic briquette having a specific strength by forming the above-mentioned mixture substantially consisting of silicon carbide and then sintering it without applying pressure.

尚、従来においても酸化アルミニウムを炭化珪素の暁給
助剤として使用することは知られているが、本発明とは
次の如く、性能及びその方法において全く異なるものに
すぎなかった。
Incidentally, although it has been known in the past to use aluminum oxide as an auxiliary agent for silicon carbide, the present invention is only completely different in performance and method as described below.

即ち^従釆品の一つは特開昭47−442y号や特開昭
49−129703号などに示されているいわゆる耐火
煉瓦の範ちゆうに属するものであり、炭化珪素の粗粒骨
材に酸化アルミニウムを混合成形し、1200〜150
000程度の温度で焼成して得られるものであり、これ
は炭化珪素の粒子の周囲に酸化アルミニウム或は酸化シ
リコン質の層が多量に存在する強度の小さいものである
That is, one of the subordinate products belongs to the so-called refractory brick category shown in JP-A-47-442Y and JP-A-49-129703, and is composed of coarse aggregate of silicon carbide. Mix and mold aluminum oxide to 1200~150
It is obtained by firing at a temperature of about 1,000 ℃, and has low strength because a large amount of aluminum oxide or silicon oxide layer exists around silicon carbide particles.

これに対し、高密度炭化珪素質セラミックスとして酸化
アルミニウムをホットプレス用の暁結助剤として使用し
た例が古くはAIlie皮o らにより研究されたこと
がJ.Am.CeramCoc,39(11)386〜
389,1956に示されている。
On the other hand, an example of using aluminum oxide as a solidifying agent for hot pressing in high-density silicon carbide ceramics was previously studied by AIlie et al. Am. CeramCoc, 39(11)386~
389, 1956.

この真について本発明者は開発を始めた当初においては
、ホットプレスの場合と圧力を用いない通常焼結の場合
とで酸化アルミ‐ニゥムの炭化珪素に対する効果は同じ
であると考えた。また、一般に同組成の混合物及び成形
体をそれぞれ同温度にてホットプレス及び通常焼結した
場合、ホットプレスによる嫁結体の方が通常焼結による
焼結体より、圧力印加の効果により更に繊密化し強度も
増大すると考えられた。しかし、本発明者等が種々検討
を行なった結果、通常焼結法による場合にホットプレス
法による場合よりも高強度を有する焼結体が得られるこ
とがわかった。実施例にても後述するように特に高温強
度の違いは大きかった。本発明の通常糠結法による場合
とホットプレス法による場合では焼結機構が異なると考
えられ、得られる焼結体の微細組織も異なる。ホットプ
レス法の場合には、酸化アルミニウムを主体とした液相
の存在下で圧力の印加を受け、容易に充分に繊密化する
が、焼結体は酸化アルミニウムが炭化珪素の粒界に介在
した等軸粒子からなる微細組織を有する。そこで高温下
では炭化珪素粒界の酸化アルミニウムの軟化により強度
低下が顕著に起こる。これに対し、本発明の通常焼絹法
の場合には焼結機構はまだ充分に解明されていないが、
暁結中に酸化アルミニウムを主体とした充分な量の液相
の存在下で炭化珪素粒子の好ましい粒成長が起こると同
時に、酸化アルミニウムを主体として成分の分解蒸発が
起こり繊密化に寄与した酸化アルミニウムの成形体から
の脱離が進み発達した柱状あるいは板状粒子が絡み合っ
た強固な微細組織が形成されると考えられる。又、電子
顕微鏡観察によると、この焼結体には炭化珪素粒間に酸
化アルミニウム粒がみられることがあるものの炭化珪素
粒界には酸化アルミニウムなどの第2相がみられなかっ
た。
Regarding this truth, at the beginning of the development, the present inventor thought that the effect of aluminum oxide on silicon carbide is the same in the case of hot pressing and the case of normal sintering without using pressure. In general, when a mixture and a molded body having the same composition are hot-pressed and normally sintered at the same temperature, the resultant body produced by hot-pressing is more fibrous than the sintered body produced by normal sintering due to the effect of pressure application. It was thought that the density would increase and the strength would also increase. However, as a result of various studies carried out by the present inventors, it has been found that a sintered body having higher strength can be obtained by the normal sintering method than by the hot pressing method. As will be described later in the Examples, the difference in high temperature strength was particularly large. It is thought that the sintering mechanism is different between the ordinary brazing method and the hot pressing method of the present invention, and the microstructure of the obtained sintered body is also different. In the case of the hot press method, pressure is applied in the presence of a liquid phase mainly composed of aluminum oxide, and the sintered body is easily sufficiently densified. It has a microstructure consisting of equiaxed grains. Therefore, at high temperatures, the aluminum oxide at the silicon carbide grain boundaries softens, resulting in a significant decrease in strength. On the other hand, in the case of the conventional sintered silk method of the present invention, the sintering mechanism has not yet been fully elucidated;
During crystallization, favorable grain growth of silicon carbide particles occurs in the presence of a sufficient amount of liquid phase mainly composed of aluminum oxide, and at the same time, components mainly composed of aluminum oxide decompose and evaporate, resulting in oxidation that contributed to densification. It is thought that a strong microstructure in which columnar or plate-like particles are entangled is formed as aluminum desorbs from the compact. Further, according to electron microscopic observation, although aluminum oxide grains were sometimes observed between silicon carbide grains in this sintered body, no second phase such as aluminum oxide was found at the silicon carbide grain boundaries.

以上のことから本発明により得られる炭化珪素セラミッ
クスは従来の炭化珪素一酸化アルミニウム質耐火物とも
、酸化アルミニウム添加ホットプレス炭化珪素質セラミ
ックスとも異なる特徴のある材料であることがわかった
From the above, it was found that the silicon carbide ceramic obtained by the present invention is a material with characteristics different from conventional silicon carbide aluminum monoxide refractories and aluminum oxide-added hot-pressed silicon carbide ceramics.

本発明について以下具体的に説明する。The present invention will be specifically explained below.

まず炭化珪素(SIC)原料としてはQ型、B型いずれ
の結晶形のものも使用できるが6形の方が好ましい。
First, as a silicon carbide (SIC) raw material, either type Q or type B crystal type can be used, but type 6 is preferable.

純度は98%以上のものが好ましいが、90〜98%の
ものも有効に使用できる。粒度は極微粒の場合、平均粒
径よりも比表面積で表わすことが適当であり、本発明の
目的とする常温及び1400℃での曲げ強度が少くとも
25k9/桝以上、好ましくは30k9/桝以上で密度
が90%以上の嫁結体を得るには、比表面積5〆/タ以
上であることが必要であり、好ましくは35k9/桝以
上の常温及び1400℃での曲げ強度を得るには酸化ア
ルミニウムが6〜35%あれば10〆/タ以上であり、
酸化アルミニウムが0.5〜5重量%程度の場合は40
kg/協以上の強度を得るには、比表面積15の/タ以
上であることが望ましい。次に酸化アルミニウム(山2
03)はコランダムが便利に使用できるが、ガンマ−形
などの他の結晶形のものでもよい。
A purity of 98% or more is preferred, but purity of 90 to 98% can also be used effectively. In the case of extremely fine particles, it is more appropriate to express the particle size in terms of specific surface area than average particle diameter, and the bending strength at room temperature and 1400°C, which is the object of the present invention, is at least 25 k9/m or more, preferably 30 k9/m or more. In order to obtain an interlocking body with a density of 90% or more, it is necessary to have a specific surface area of 5〆/ta or more, and preferably, to obtain a bending strength of 35k9/m or more at room temperature and 1400℃, oxidation is necessary. If aluminum is 6 to 35%, it is 10〆/ta or more,
40 when aluminum oxide is about 0.5 to 5% by weight
In order to obtain a strength of at least 15 kg/h, it is desirable that the specific surface area is 15/t or more. Next, aluminum oxide (mountain 2)
Corundum is conveniently used for 03), but other crystal forms such as gamma form may also be used.

また加熱して酸化アルミニウムとなる水酸化アルミニウ
ム、硫酸アルミニウムなども使用でき、本発明で酸化ア
ルミニウムとは、これらの酸化アルミニウムをもたらす
化合物も含むものである。純度は98%以上で低ソーダ
のものが好ましく、粒度は平均粒径が1ムの以下のもの
がよく好ましくは0.2〃の以下である。本発明でこの
酸化アルミニウムの炭化珪素との合量における割合はA
I203としての重量%で0.5〜35%である。これ
は0.5%以下だと焼結時に繊密化が十分進まず、90
%以上の高密度焼結体が得られないなどのためである。
逆に35%以上になると190000以下の低温で焼結
しても繊密化するが強度が低く、又1900〜2300
00で糠結すると分解量が増大し、多孔化するなどのた
めである。さらに、これらの範囲において酸化アルミニ
ウムが特に6〜35%の場合には、比表面積10〆/タ
以上で純度98%以上の炭化珪素との組合わせで密度が
90%以上で;常温及び140000での曲げ強度が3
5k9/桝以上のものを容易に得ることが可能となり、
酸化アルミニウムが0.5〜5%の場合には比表面積1
5〆/タ以上:純度98%以上の炭化珪素との組合わせ
で密度が90%以上、常温及び1400qoでの曲げ強
度が40kg/地以上のものを容易に得ることが可能と
なった。
Aluminum hydroxide, aluminum sulfate, etc., which become aluminum oxide when heated, can also be used, and in the present invention, aluminum oxide includes compounds that produce these aluminum oxides. The purity is preferably 98% or more and low soda content, and the particle size is preferably 1 mm or less, preferably 0.2 mm or less. In the present invention, the ratio of aluminum oxide to silicon carbide is A
It is 0.5 to 35% by weight as I203. If this is less than 0.5%, densification will not progress sufficiently during sintering, and 90%
This is because it is not possible to obtain a high density sintered body with a density higher than %.
On the other hand, if it exceeds 35%, it will become dense even if sintered at a low temperature of 190,000 or less, but the strength will be low;
This is because the amount of decomposition increases when the material is brazed with 0.00%, resulting in porosity. Furthermore, in these ranges, especially when aluminum oxide is 6 to 35%, in combination with silicon carbide with a specific surface area of 10〆/ta or more and a purity of 98% or more, the density is 90% or more; at room temperature and 140,000 ml. The bending strength of
It becomes possible to easily obtain more than 5k9/masu,
When aluminum oxide is 0.5 to 5%, the specific surface area is 1
5〆/ta or more: In combination with silicon carbide with a purity of 98% or more, it became possible to easily obtain a product with a density of 90% or more and a bending strength of 40 kg/ta or more at room temperature and 1400 qo.

本発明では、原料的には酸化アルミニウムのほかは残部
が実質的に炭化珪素からなる混合物を調整することが望
ましく、またそれで十分目的のものが得られるのが1つ
の特徴でもあるが、勿論例えば炭化珪素原料中に不可避
的に不純物として含まれる又は粉砕過程で混入する少量
の他の成分が含まれていても差し支えなく、後述するよ
うに酸化シリコンなどの1部の成分では比較的多く含ま
れても差支えないのもまた一面では利点である。
In the present invention, it is desirable to prepare a mixture consisting essentially of silicon carbide other than aluminum oxide in terms of raw materials, and one feature is that it is sufficient to obtain the desired object.Of course, for example, There is no problem even if small amounts of other components that are unavoidably included as impurities in the silicon carbide raw material or mixed in during the pulverization process are included, and as will be described later, some components such as silicon oxide may contain relatively large amounts. One advantage is that there is no problem with this.

成形方法としては普通セラミックスの成形に使用される
方法がすべて使用できる。即ち、プレス成形、泥嫌銭込
成形、射出成形、押出成形などが適当である。焼成は、
非酸化性雰囲気中無加圧にて1900〜230000で
行うことが必要である。非酸化性雰囲気としては窒素、
アルゴン、ヘリウム、一酸化炭素、水素などが使用でき
るが中でもアルコン、ヘリウムが便利で好ましい。温度
はより好ましくは1950〜2100ooである。温度
が190000より低いと繊密化が充分進まず高密度焼
結体が得られず230000より高いと成形体が分解し
過ぎ多孔化し好ましくないからである。尚、時間は通常
1〜24時間必要でより好ましくは2〜1加持間である
。これは時間が短か過ぎると繊密化せず、また繊密化し
ても充分な強度が生ぜず、長過ぎると分解し過ぎ多孔化
し好ましくないことが多いからである。ここで本発明の
特徴及び利点についてさらに説明すると次の通りである
。1 圧力を印加しない通常焼給により容易に高密度、
高強度を有する炭化珪素セラミックスが得られること。
As the molding method, all methods commonly used for molding ceramics can be used. That is, press molding, molding, injection molding, extrusion molding, etc. are suitable. The firing is
It is necessary to carry out the process at 1900 to 230000 in a non-oxidizing atmosphere without pressure. Nitrogen as a non-oxidizing atmosphere,
Argon, helium, carbon monoxide, hydrogen, etc. can be used, but among them, argon and helium are convenient and preferred. The temperature is more preferably 1950 to 2100 oo. This is because if the temperature is lower than 190,000, densification will not proceed sufficiently and a high-density sintered body cannot be obtained, and if the temperature is higher than 230,000, the molded body will decompose too much and become porous, which is not preferable. Incidentally, the time required is usually 1 to 24 hours, and more preferably 2 to 1 hour. This is because if the time is too short, the material will not be densified, and even if it is densified, sufficient strength will not be produced, and if the time is too long, it will decompose too much and become porous, which is often undesirable. Here, the features and advantages of the present invention will be further explained as follows. 1 Easily achieves high density through normal firing without applying pressure.
Silicon carbide ceramics having high strength can be obtained.

例えば、山,NN,B,B4Cなどの添加剤ではホット
プレスが必要で、複雑形状、大寸法品などはできないし
、さらにAIは酸化し易く使用しにくい、水と接触する
と反応して発泡する、微粉は取り扱いが危険など、B,
B4C,山Nなどは高価で微粒が得にくい、粉砕もしに
くいなどそれぞれ問題がある。
For example, additives such as Yama, NN, B, and B4C require hot pressing, making it impossible to produce products with complex shapes or large dimensions.Also, AI easily oxidizes and is difficult to use, and reacts and foams when it comes in contact with water. , Fine powder is dangerous to handle, etc.B.
B4C, Yama-N, etc. each have their own problems, such as being expensive, difficult to obtain fine particles, and difficult to crush.

2 従来の通常焼結品よりも高強度のものが容易に得ら
れること。
2. Products with higher strength than conventional sintered products can be easily obtained.

例えば、B+C,B4C十C,AI十C,AIN十Cな
どの添加剤は通常焼結ができるが、Cは普通ポリメチル
フヱニレン、フェノール樹脂などの高分子芳香族化合物
を使用するので取扱いにくし、、Cとの混合は充分でな
ければならす時間を必要とする、強度もB−C添加系で
は特に常温で40〜50k9/桝程度と低いなどのほか
、これらの添加剤のときは原料のSIC粉末の比表面積
が15〆/タ以上と非常に細かいもので、かつSio2
量など本発明で差支えない成分でも極めて少ないものを
使用せねばならないなどの問題もある。
For example, additives such as B+C, B4C1C, AI1C, and AIN1C can usually be sintered, but C usually uses high-molecular aromatic compounds such as polymethylphenylene and phenolic resin, so it must be handled carefully. Mixing with B-C requires sufficient time, and the strength is particularly low in the B-C additive system, at around 40-50k9/masu at room temperature, and when these additives are used, The raw material SIC powder has a specific surface area of 15〆/ta or more, which is very fine, and Sio2
There are also problems such as the need to use extremely small amounts of ingredients that are acceptable in the present invention.

3 酸化アルミニウムは、非常に安定な材料であり、水
とも反応せず水と接触する製造工程を自由に使用できる
し、水を媒体とした湿式混合、粉砕、泥鰍銭込などが可
能で取扱う雰囲気にも注意は必要なこと。
3 Aluminum oxide is a very stable material, and it does not react with water, so it can be freely used in manufacturing processes that involve contact with water, and it can be used in wet mixing, pulverization, and mud-mixing using water as a medium, and the atmosphere in which it is handled can be controlled. You also need to be careful.

4 原料の炭化珪素粉末の純度が多少低くても(高い方
がよいが98%以下でも)また粒度が多少粗くても(高
い方がよいが比表面積が15〆以下でも)暁結性及び性
能に大きな影響を与えないこと特に炭化珪素粉末粒子表
面の酸化シリコン膜の除去は必要ないし、酸化シリコン
は逆に加えても問題ないこと。
4 Even if the purity of the raw material silicon carbide powder is somewhat low (higher is better, even 98% or less) or particle size is somewhat coarse (higher is better, even if the specific surface area is 15% or less), the oxidation property and performance will be improved. It is not necessary to remove the silicon oxide film on the surface of the silicon carbide powder particles, and there is no problem even if silicon oxide is added.

このように、本発明は工業的に極めて有利なものであり
、これはさらに以下に示す実施例にてより理解されるで
あろう。
As described above, the present invention is industrially extremely advantageous, and this will be further understood from the Examples shown below.

(実施例) 第1表に示した実施例1〜6は炭化珪素粉末と純度95
重量%以上、平均粒径1山肌以下の酸化アルミニウム粉
末(コランダム)を混合しこれを2000k9/均にて
綾圧成形し、20x40×15肌の成形体とし、この成
形体をアルゴンガス通気中、第1表に示した焼成条件に
より塊結して得たものである。
(Example) Examples 1 to 6 shown in Table 1 are silicon carbide powder and purity 95.
Aluminum oxide powder (corundum) having an average particle diameter of 1 mound or less by weight% or more was mixed and this was twill pressed at 2000k9/uniform to form a 20 x 40 x 15 skin molded body, and this molded body was passed through argon gas, It was obtained by agglomerating under the firing conditions shown in Table 1.

又比較例7,8は内径3比帆のカーボンモールド中で2
00k9/地の圧力でホットプレスして得られたもので
ある。それぞれの暁結体の密度、曲げ強度を第1表に示
す。第1表 ※7,8は比較例
Moreover, in Comparative Examples 7 and 8, 2.
It was obtained by hot pressing at a pressure of 00k9/ground. Table 1 shows the density and bending strength of each Akatsuki compact. Table 1 *7 and 8 are comparative examples

Claims (1)

【特許請求の範囲】 1 酸化アルミニウム0.5〜35重量%と残部が比表
面積5m^2/g以上の実質的に炭化珪素からなる混合
物を成形後、圧力を加えずに焼結する常温及び1400
℃での曲げ強度が25kg/mm^2以上である高密度
かつ高強度の炭化珪素質セラミツク焼結体の製造法。 2 前記混合物は酸化アルミニウム6〜35重量%と残
部が比表面積10m^2/g以上、純度98%以上の炭
化珪素よりなり、前記焼結体は密度90%以上、常温及
び1400℃での曲げ強度35kg/mm^2以上であ
る特許請求の範囲第1項記載の炭化珪素質セラミツクス
焼結体の製造法。 3 前記混合物は酸化アルミニウム0.5〜5重量%と
残部が比表面積15m^2/g以上、純度98%以上の
炭化珪素よりなり、前記焼結体は密度90%以上、常温
及び1400℃での曲げ強度40kg/mm^2以上で
ある特許請求の範囲第1項記載の炭化珪素セラミツクス
焼結体の製造法。
[Scope of Claims] 1 A mixture of 0.5 to 35% by weight of aluminum oxide and the remainder consisting essentially of silicon carbide with a specific surface area of 5 m^2/g or more is molded and then sintered without applying pressure at room temperature or 1400
A method for producing a high-density and high-strength silicon carbide ceramic sintered body having a bending strength of 25 kg/mm^2 or more at °C. 2. The mixture consists of 6 to 35% by weight of aluminum oxide and the balance is silicon carbide with a specific surface area of 10 m^2/g or more and a purity of 98% or more, and the sintered body has a density of 90% or more and can be bent at room temperature and 1400 ° C. A method for producing a silicon carbide ceramic sintered body according to claim 1, which has a strength of 35 kg/mm^2 or more. 3. The mixture consists of 0.5 to 5% by weight of aluminum oxide and the balance is silicon carbide with a specific surface area of 15 m^2/g or more and a purity of 98% or more, and the sintered body has a density of 90% or more and is sintered at room temperature and 1400°C. The method for producing a sintered silicon carbide ceramic body according to claim 1, which has a bending strength of 40 kg/mm^2 or more.
JP55118460A 1980-07-17 1980-08-29 Manufacturing method of silicon carbide ceramic sintered body Expired JPS6034515B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP55118460A JPS6034515B2 (en) 1980-08-29 1980-08-29 Manufacturing method of silicon carbide ceramic sintered body
GB8120277A GB2082165B (en) 1980-07-17 1981-07-01 Silicon carbide ceramic
DE19813127649 DE3127649A1 (en) 1980-07-17 1981-07-13 SEALED SILICON CARBIDE CERAMIC BODY
US06/283,238 US4354991A (en) 1980-07-17 1981-07-14 Dense sintered silicon carbide ceramic
FR8113916A FR2486931A1 (en) 1980-07-17 1981-07-16 CERAMIC MATERIAL IN DENSE FRITTE SILICON CARBIDE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55118460A JPS6034515B2 (en) 1980-08-29 1980-08-29 Manufacturing method of silicon carbide ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS5742577A JPS5742577A (en) 1982-03-10
JPS6034515B2 true JPS6034515B2 (en) 1985-08-09

Family

ID=14737194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55118460A Expired JPS6034515B2 (en) 1980-07-17 1980-08-29 Manufacturing method of silicon carbide ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS6034515B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107975A (en) * 1982-12-08 1984-06-22 旭硝子株式会社 Silicon carbide sintered body
JPS61101434A (en) * 1984-10-23 1986-05-20 Nippon Sheet Glass Co Ltd Transparent crystallized glass
JPS61122164A (en) * 1984-11-15 1986-06-10 株式会社リケン Silicon carbide-alumina composite sintered body and manufacture
JPS62241873A (en) * 1986-04-14 1987-10-22 東芝セラミツクス株式会社 Immersion protective pipe for molten metal
JPH01149919A (en) * 1987-12-07 1989-06-13 Riken Corp Guide rail for heating furnace

Also Published As

Publication number Publication date
JPS5742577A (en) 1982-03-10

Similar Documents

Publication Publication Date Title
US4525461A (en) Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
JPH06505225A (en) High-density, self-strengthening silicon nitride ceramic produced by pressureless or low-pressure gas sintering
GB2048953A (en) Sintering silicon carbide in boron containing atmosphere
JPH0251863B2 (en)
JPS6350311B2 (en)
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPH0228539B2 (en)
JPS5919903B2 (en) Hot press manufacturing method of SiC sintered body
JPS638069B2 (en)
JPS6152106B2 (en)
JPS632913B2 (en)
JPH0253388B2 (en)
JPS6212663A (en) Method of sintering b4c base fine body
JPS63236763A (en) Boron carbide sintered body and manufacture
JPS6212664A (en) Method of sintering b4c base composite body
JPS60239360A (en) Silicon carbide ceramic sintered body
JPH0224789B2 (en)
JPH0350808B2 (en)
JPS6126566A (en) Method of sintering sic composite body
JPH06279124A (en) Production of silicon nitride sintered compact
JPH0224782B2 (en)
JPH0138075B2 (en)
JPH01219062A (en) Production of silicon nitride sintered body
JPS6126565A (en) Manufacture of sic sintered body