JPH0253388B2 - - Google Patents

Info

Publication number
JPH0253388B2
JPH0253388B2 JP62142399A JP14239987A JPH0253388B2 JP H0253388 B2 JPH0253388 B2 JP H0253388B2 JP 62142399 A JP62142399 A JP 62142399A JP 14239987 A JP14239987 A JP 14239987A JP H0253388 B2 JPH0253388 B2 JP H0253388B2
Authority
JP
Japan
Prior art keywords
beryllium
boron
weight
powder
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62142399A
Other languages
Japanese (ja)
Other versions
JPS6325274A (en
Inventor
Henrii Sumooku Richaado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stemcor Corp
Original Assignee
Stemcor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stemcor Corp filed Critical Stemcor Corp
Publication of JPS6325274A publication Critical patent/JPS6325274A/en
Publication of JPH0253388B2 publication Critical patent/JPH0253388B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering

Description

【発明の詳細な説明】 炭化ケイ素、すなわち金属ケイ素と非金属炭素
との結晶性化合物は、その硬さ、強さ、および酸
化と腐食とに対する抵抗性について長い間知られ
てきている。炭化ケイ素は、低い膨張係数、すぐ
れた熱伝導性をもち、高温において高い強さを保
持する。最近において、炭化ケイ素粉体から高密
度の炭化ケイ素物体を製造する技術が開発され
た。このような技術には反応結合、化学蒸気析
出、加熱圧縮および無加圧焼結(初め物品を成形
し、次いで焼結する)が含まれる。これらの技術
の例は、米国特許3853566、3852099、3954483お
よび3960577に記載されている。このようにして
製造された高密度の炭化ケイ素物体は、きわめて
すぐれた工業材料であり、タービン、熱交換単
位、ポンプならびに、か酷な摩耗および/または
高温条件下の運転にさらされる他の装置や工具の
成分の製作に利用される。本発明は、高密度の炭
化ケイ素物体を加熱圧縮または焼結により製造す
る種々の方法における使用に適する炭化ケイ素粉
末混合物、およびそれから製造されたセラミツク
物品に関する。
DETAILED DESCRIPTION OF THE INVENTION Silicon carbide, a crystalline compound of metallic silicon and non-metallic carbon, has long been known for its hardness, strength, and resistance to oxidation and corrosion. Silicon carbide has a low coefficient of expansion, good thermal conductivity, and retains high strength at high temperatures. Recently, techniques have been developed to produce dense silicon carbide objects from silicon carbide powder. Such techniques include reactive bonding, chemical vapor deposition, hot compression, and pressureless sintering (in which the article is first shaped and then sintered). Examples of these techniques are described in US Pat. The dense silicon carbide bodies produced in this way are excellent industrial materials for turbines, heat exchange units, pumps and other equipment exposed to severe wear and/or operation under high temperature conditions. It is used for manufacturing tools and components. The present invention relates to silicon carbide powder mixtures suitable for use in various methods of producing dense silicon carbide bodies by hot compaction or sintering, and ceramic articles made therefrom.

高密度および高強度の炭化ケイ素セラミツク材
料を得るため、種々の添加剤が利用されてきた。
たとえば、高密化助材としてアルミニウムと鉄の
添加により炭化ケイ素を理論密度の98%程度の密
度に加熱圧縮する方法は、Alliegro、et al、J.
Ceram.、Soc.、Vol.39、No.11、Nov.、1965、
386〜389ページに開示されている。彼らは1重量
%のアルミニウムを含有する粉末から密な炭化ケ
イ素を製造できることを発見した。それらの製品
は室温において54000psi3797Kg/cm2)、1371℃に
おいて70000psi(4922Kg/cm2)の破壊係数を有し
た。最近の進歩は、高密化剤としてホウ素を通常
粉末の約0.33〜約3.0重量%の範囲で使用するこ
とである。ホウ素添加剤は、元素なホウ素または
ホウ素含有化合物、たとえば炭化ホウ素の形であ
ることができる。ホウ素含有炭化ケイ素粉末の例
は、米国特許3852099、3954483および39681944に
記載されている。
Various additives have been utilized to obtain high density and high strength silicon carbide ceramic materials.
For example, Alliegro, et al, J.
Ceram., Soc., Vol.39, No.11, Nov., 1965,
Disclosed on pages 386-389. They discovered that dense silicon carbide could be produced from powder containing 1% by weight aluminum. The products had a rupture modulus of 54,000 psi (3797 Kg/cm 2 ) at room temperature and 70,000 psi (4922 Kg/cm 2 ) at 1371°C. A recent advance is the use of boron as a densification agent, usually in the range of about 0.33 to about 3.0% by weight of the powder. The boron additive can be in the form of elemental boron or a boron-containing compound, such as boron carbide. Examples of boron-containing silicon carbide powders are described in US Pat.

さて、本発明によれば、焼結された炭化ケイ素
料の製造における高密化助剤としてベリリウムを
使用できることがわかつた。粉末の約0.03〜約
3.0重量%の範囲のベリリウムとホウ素は主とし
て有用であることがわかり、さらにとくに粉末の
約0.1〜約1.0重量%は炭化ケイ素粉末成形体の高
密化の促進に適することがわかつた。
Now, according to the present invention, it has been found that beryllium can be used as a densification aid in the production of sintered silicon carbide materials. Approximately 0.03 to approx. of powder
Beryllium and boron in the range of 3.0% by weight have been found to be primarily useful, and more particularly from about 0.1 to about 1.0% by weight of the powder to promote densification of silicon carbide powder compacts.

約0.5〜約5.0重量%の過剰炭素を含有する出発
炭化ケイ素粉末は、微細なベリリウムまたはベリ
リウム含有化合物と混合する。好ましくは、両方
の成分の粘度は5ミクロンより小、さらに好まし
くは2ミクロンより小である。これらの成分が約
1.0ミクロンより小さいとき、きわめてすぐれた
分布が得られる。高密化を得るためには、ベリリ
ウムまたはベリリウム含有添加剤とホウ素または
ホウ素含有化合物とは、粉末の約0.03〜約3.0重
量%がベリリウムとホウ素であるような量で利用
すべきである。約0.03重量%より少ない量の使用
は、焼結製品の密度を実質的に増加させないこと
がわかつた。約3.0重量%より多い量のベリリウ
ムの添加は追加の高密化をほとんど与えず、過度
の粒子生長に導びきかつ焼結製品の強さを低下さ
せる。
A starting silicon carbide powder containing about 0.5 to about 5.0 weight percent excess carbon is mixed with finely divided beryllium or beryllium-containing compounds. Preferably, the viscosity of both components is less than 5 microns, more preferably less than 2 microns. These ingredients are approximately
When smaller than 1.0 micron, very good distribution is obtained. To obtain densification, the beryllium or beryllium-containing additive and boron or boron-containing compound should be utilized in amounts such that about 0.03 to about 3.0% by weight of the powder is beryllium and boron. It has been found that the use of less than about 0.03% by weight does not substantially increase the density of the sintered product. Addition of beryllium in amounts greater than about 3.0% by weight provides little additional densification, leads to excessive grain growth and reduces the strength of the sintered product.

理論密度の少なくとも75%のかさ密度はほとん
どの応用に要求され、理論密度の少なくとも85%
のかさ密度はしばしば要求される。理論密度の85
%の密度はもつ加熱圧縮または焼結製品は、本発
明によつて得られる。
A bulk density of at least 75% of the theoretical density is required for most applications, and a bulk density of at least 85% of the theoretical density
A bulk density of is often required. Theoretical density of 85
A hot-pressed or sintered product having a density of 10% is obtained according to the invention.

炭化ケイ素源材料は、表面積が8.0m2/gより
大きく、約0.5〜約5.0重量%の過剰炭素を含有す
るサブミクロンの粉末であることが好ましい。一
般に表面積が約5〜約50m2/gの粉末組成物は、
主として有用であることがわかつた。過剰炭素
は、たとえば、製造過程中、炭素または炭素質材
料の引き続く添加により、または焼結前の結合剤
として、導入できる。
Preferably, the silicon carbide source material is a submicron powder with a surface area greater than 8.0 m 2 /g and containing about 0.5 to about 5.0 weight percent excess carbon. Powder compositions generally have a surface area of about 5 to about 50 m 2 /g.
It has been found to be mainly useful. Excess carbon can be introduced, for example, during the manufacturing process by subsequent addition of carbon or carbonaceous material, or as a binder before sintering.

有用であることがわかつたベリリウムまたはベ
リリウム含有添加剤の出発物質は、一般に50ミク
ロンより小、好ましくは10ミクロンより小さい粒
度をもつ。5ミクロンより小さい粒度は主として
有用であり、そしてベリリウムまたはベリリウム
含有添加剤と炭化ケイ素粉末とを容易に分布させ
て焼結に有用な均質混合物を得るためには、約
1.0ミクロンより小さい粒度は非常に有用である。
The starting materials for beryllium or beryllium-containing additives that have been found to be useful generally have a particle size of less than 50 microns, preferably less than 10 microns. Particle sizes smaller than 5 microns are primarily useful, and in order to easily distribute beryllium or beryllium-containing additives and silicon carbide powder to obtain a homogeneous mixture useful for sintering, approximately
Particle sizes smaller than 1.0 micron are very useful.

他の添加剤は利用できるが、焼結中の高密化の
促進には不必要である。好ましくは、焼結は不活
性雰囲気中で実施し、アルゴンまたはヘリウムは
不活性雰囲気として適切である。還元性雰囲気も
利用できる。
Other additives can be used but are unnecessary to promote densification during sintering. Preferably, sintering is carried out in an inert atmosphere, argon or helium being suitable as inert atmosphere. Reducing atmospheres can also be used.

本発明の粉末組成物は、加熱圧縮または無加圧
焼結に利用できる。たとえば、加熱圧縮におい
て、約0.5〜約5.0重量%の過剰炭素を含有する炭
化ケイ素粉末をベリリウムまたはベリリウム含有
添加剤およびホウ素またはホウ素含有化合物と混
合して、合計約0.03〜約3.0重量%のベリリウム
とホウ素が存在する均質な混合物を形成する。こ
の混合物を加熱圧縮型に入れ、1000〜10000psi
(70.3〜703.1Kg/cm2)の圧力下に約1900〜約2200
℃の温度に十分な時間加熱して、理論密度の75%
より大きい密度をもつ炭化ケイ素製品を得る。さ
らに特定的には、表面積が約11m2/gであり約
2.0重量%の過剰炭素を含有する炭化ケイ素粉末
をBe2Cおよび炭化ホウ素として加えた約0.1〜約
1.0重量%のベリリウムおよびホウ素と混合し、
この混合物をグラフアイトの圧縮型に入れ、約
2000℃および約5000psi(352Kg/cm2)の圧力にお
いて加熱圧縮できる。このようにして形成した炭
化ケイ素製品は、典型的には理論密度の85%より
大きい密度をもち、形成したままで使用でき、あ
るいは機械加工して複雑な形状の物品にすること
ができる。
The powder composition of the present invention can be used for heat compression or pressureless sintering. For example, silicon carbide powder containing about 0.5 to about 5.0 weight percent excess carbon may be mixed with beryllium or a beryllium-containing additive and boron or a boron-containing compound in a hot compaction to provide a total of about 0.03 to about 3.0 weight percent beryllium. and boron to form a homogeneous mixture. Put this mixture into a heated compression mold and heat it to 1000~10000psi.
(70.3 to 703.1Kg/cm 2 ) under pressure of about 1900 to about 2200
Heating for sufficient time to a temperature of 75% of the theoretical density
Obtain silicon carbide products with greater density. More specifically, the surface area is approximately 11 m 2 /g and approximately
Silicon carbide powder containing 2.0% by weight excess carbon added as Be2C and boron carbide from about 0.1 to about
mixed with 1.0% by weight beryllium and boron;
Place this mixture in a graphite compression mold, approx.
It can be heat compressed at 2000° C. and a pressure of about 5000 psi (352 Kg/cm 2 ). The silicon carbide products thus formed typically have densities greater than 85% of theoretical density and can be used as formed or machined into articles of complex shapes.

無加圧焼結において、約0.5〜約5.0重量%の過
剰炭素を含有する炭化ケイ素粉末をベリリウムま
たはベリリウム含有添加剤およびホウ素またはホ
ウ素含有化合物と混合して、約0.03〜約3.0重量
%のベリリウムとホウ素が存在する均質混合物を
形成する。次いで、この均質混合物を生製品に成
形する。粒子の流動と結合を増加させる適当な添
加剤を、出発混合物に混入できる。この生製品を
引き続いて不活性雰囲気中または還元性雰囲気中
で約1950〜約2300℃において十分な時間焼結し
て、理論密度の75%より大きい密度をもつ炭化ケ
イ素製品を得る。さらに特定的には、表面積がほ
ぼ11m2/gであり、約2.0重量%の過剰炭素を含
有する炭化ケイ素粉末を、適当にはBe2Cとして
または元素状のあるいは炭化ホウ素としてまたは
元素状の約0.03〜約1.0重量%のベリリウムおよ
びホウ素と混合できる。生じた混合物を圧縮し
て、約1.766g/cm2の密度にすることができる。
結合剤を使用して、粉末の流動性を増加でき、あ
るいは圧縮製品の生強度を増加できる。次いで、
圧縮粉末成形体を、好ましくは不活性雰囲気中
で、約2100℃において約30分間焼結する。冷却
後、焼結粉末は典型的には理論密度の85%より大
きい密度をもつ。
In pressureless sintering, silicon carbide powder containing about 0.5 to about 5.0 weight percent excess carbon is mixed with beryllium or a beryllium-containing additive and boron or a boron-containing compound to produce about 0.03 to about 3.0 weight percent beryllium. and boron form a homogeneous mixture. This homogeneous mixture is then shaped into a green product. Suitable additives that increase particle flow and binding can be incorporated into the starting mixture. The green product is subsequently sintered in an inert or reducing atmosphere at about 1950 DEG to about 2300 DEG C. for a sufficient period of time to obtain a silicon carbide product having a density greater than 75% of theoretical density. More specifically, silicon carbide powder having a surface area of approximately 11 m 2 /g and containing approximately 2.0% by weight excess carbon, suitably as Be 2 C or as elemental or as boron carbide or as elemental Can be mixed with about 0.03 to about 1.0% by weight beryllium and boron. The resulting mixture can be compressed to a density of about 1.766 g/cm 2 .
Binders can be used to increase the flowability of the powder or to increase the green strength of the compacted product. Then,
The compacted powder compact is sintered at about 2100° C. for about 30 minutes, preferably in an inert atmosphere. After cooling, the sintered powder typically has a density greater than 85% of the theoretical density.

次の実施例により、本発明を説明する。 The following examples illustrate the invention.

実施例 1 添加剤混合物 次の仕様をもつ炭化ケイ素粉末を、出発材料と
して使用した。炭化ケイ素粉末は8.0m2/gより
大きい表面積と次の重量%で表わした分析値を有
した: 酸 素 0.8より小 鉄 0.2 〃 アルミニウム 0.4 〃 ニツケル 0.1 〃 チタン 0.1 〃 タングステン 0.5 〃 遊離ケイ素 0.4 〃 炭化ケイ素 97.5より大 97.5gの前記粉末を4.8gのフエノール樹脂
(Resin No.8121と知られている、Varcum
Chemical Company製品)と混合して、フエー
ノル樹脂として加えたほぼ2重量%の過剰炭素を
含有する典型的な炭化ケイ素粉末を、30gの粉末
バツチに0.1重量%のホウ素を提供するに十分な
炭化ホウ素と0.1重量%のベリリウムを提供する
に十分な炭化ベリリウムと混合した。炭化ホウ素
と炭化ベリリウム粉末は、粒度が10ミクロンより
小さかつた。ポリビニルアルコールと可塑剤とを
含有する結合剤5%を混合物に加えて、圧縮粉末
成形体の生強度を増加するようにした。この混合
物の調製は閉じた環境内で実施した。粉末中の添
加剤のすぐれた分散を確保するため、湿式混合技
術を用いた。この混合物を80容量%のメチルアル
コールと20容量%の水との混合物中のスラリーと
した。よく混合したのち、このスラリーを蒸発乾
固して粉末混合物を得た。
Example 1 Additive Mixture Silicon carbide powder with the following specifications was used as starting material. The silicon carbide powder had a surface area greater than 8.0 m 2 /g and the following analytical values expressed in weight percent: Oxygen 0.8 Small Iron 0.2 Aluminum 0.4 Nickel 0.1 Titanium 0.1 Tungsten 0.5 Free Silicon 0.4 Carbide Silicon Greater than 97.5 97.5 g of the above powder was mixed with 4.8 g of phenolic resin (known as Resin No. 8121, Varcum
A typical silicon carbide powder containing approximately 2% by weight excess carbon added as a phenolic resin is mixed with enough boron carbide to provide 0.1% by weight boron in a 30 g powder batch. and mixed with enough beryllium carbide to provide 0.1% beryllium by weight. The boron carbide and beryllium carbide powders had particle sizes less than 10 microns. 5% of a binder containing polyvinyl alcohol and a plasticizer was added to the mixture to increase the green strength of the compacted powder compact. The preparation of this mixture was carried out in a closed environment. Wet mixing techniques were used to ensure good dispersion of the additives in the powder. This mixture was slurried in a mixture of 80% methyl alcohol and 20% water by volume. After thorough mixing, the slurry was evaporated to dryness to obtain a powder mixture.

粉末を約16000psi(1125Kg/cm2)の圧力で圧縮
して、直径0.5インチ(1.27cm)、重さほぼ0.75g
のペレツトにした。これらのペレツトをそれらと
同じ粉末混合物から作つた小型のるつぼに入れ、
るつぼを閉じ、ペレツトとるつぼをほぼ2150℃の
温度で約30分間不活性雰囲気中で焼成した。初め
焼結前の密度が1.71g/cm3(理論密度の53%)で
あつた、焼結されたペレツトは2.9g/cm3(理論
密度の93%)の密度をもつことがわかつた。
The powder is compressed at a pressure of approximately 16,000 psi (1125 Kg/cm 2 ) to a diameter of 0.5 inches (1.27 cm) and a weight of approximately 0.75 g.
It was made into pellets. These pellets were placed in a small crucible made from the same powder mixture;
The crucible was closed and the pellets and crucible were calcined in an inert atmosphere at a temperature of approximately 2150° C. for approximately 30 minutes. The sintered pellets, which initially had a density of 1.71 g/cm 3 (53% of theoretical density) before sintering, were found to have a density of 2.9 g/cm 3 (93% of theoretical density).

実施例 2 添加剤混合物 実施例1の操作を用い、粉末混合物に0.33重量
%のBeを提供するに十分な炭化ベリリウムを加
え、一方他のすべての成分は前述と同じように維
持した。直径0.5インチ(1.27cm)、重さほぼ0.75
gのペレツトをこの混合物から圧縮し、ペレツト
と同じ組成をもつ粉末から形成したるつぼに入れ
てふたをした。ペレツトとるつぼをほぼ2150℃の
濃度で不活性雰囲気中で約30分間焼結した。焼結
前、圧縮粉末成形体の平均密度は1.70g/cm3(理
論密度の53%)であつたが、2150℃における焼結
後粉末成形体の平均密度は3.02g/cm3(理論密度
の94.1%)であつた。
Example 2 Additive Mixture Using the procedure of Example 1, sufficient beryllium carbide was added to the powder mixture to provide 0.33% by weight Be, while all other ingredients were maintained as described above. Diameter 0.5 inch (1.27 cm), weight approximately 0.75
g of pellets were pressed from this mixture, placed in a crucible made from powder having the same composition as the pellets, and capped. The pellets and crucible were sintered at a concentration of approximately 2150°C for approximately 30 minutes in an inert atmosphere. Before sintering, the average density of the compressed powder compact was 1.70 g/cm 3 (53% of the theoretical density), but the average density of the powder compact after sintering at 2150°C was 3.02 g/cm 3 (theoretical density). (94.1%).

実施例 3 添加剤混合物 実施例1の操作を用い、ほぼ2重量%の過剰炭
素を含有する炭化ケイ素粉末に十分な炭化ホウ素
を加えて、粉末混合物に0.2重量%のホウ素を提
供した。添加において、十分な量の炭化ベリリウ
ムを加えて粉末混合物中のベリリウムを0.03重量
%とした。この混合物は0.08gのマイナス325メ
ツシユの炭化ホウ素、0.02gのマイナス325メツ
シユの炭化ベリリウムおよび29.90gの実施例1
記載の特性を有する炭化ケイ素からなり、フエノ
ール樹脂の形で加えられた2重量%の過剰炭素を
含有し、そしてこの混合物をポリビニルアルコー
ルと可塑剤とを含有する結合剤系5重量%といつ
しよに湿式混合した。乾燥後、粉末を16000psi
(1125Kg/cm2)において圧縮して、直径約0.5イン
チ(1.27cm)、重さ約0.75gのペレツトにした。
このようにして作つた試料をペレツトと同じ組成
のるつぼへ入れ、このるつぼにふたをし、そして
るつぼと試料を約2150℃において不活性雰囲気中
で約30分間焼結した。試料は、初め約1.72g/cm3
(理論密度の54%)の密度を有し、焼結後ほぼ
3.15g/cm2(理論密度の98%)のかさ密度を有し
た。
Example 3 Additive Mixture Using the procedure of Example 1, sufficient boron carbide was added to a silicon carbide powder containing approximately 2% by weight excess carbon to provide 0.2% by weight boron in the powder mixture. During the addition, enough beryllium carbide was added to give 0.03% beryllium in the powder mixture by weight. This mixture consisted of 0.08 g of minus 325 mesh boron carbide, 0.02 g of minus 325 mesh beryllium carbide, and 29.90 g of Example 1
consisting of silicon carbide having the properties described, containing 2% by weight of excess carbon added in the form of phenolic resin, and combining this mixture with 5% by weight of a binder system containing polyvinyl alcohol and a plasticizer. Wet mixed thoroughly. After drying, the powder is heated to 16000psi
(1125 Kg/cm 2 ) into pellets approximately 0.5 inches (1.27 cm) in diameter and weighing approximately 0.75 g.
The sample thus prepared was placed in a crucible of the same composition as the pellets, the crucible was covered, and the crucible and sample were sintered at about 2150° C. in an inert atmosphere for about 30 minutes. The sample was initially approximately 1.72 g/cm 3
(54% of the theoretical density), and after sintering almost
It had a bulk density of 3.15 g/cm 2 (98% of theoretical density).

比較例 1 対 照 実施例1に記載するような特性をもち、フエノ
ール樹脂(Varcum Chemical Company No.
8121)の形で加えたほぼ2重量%の過剰炭素を含
有する50gの炭化ケイ素粉末を、炭化ホウ素と炭
化ベリリウムを添加しない以外は実施例1の操作
に従つて、調製し、焼結した。製造した粉末成形
体は、約2.25g/cm3(理論密度の70%)より少な
いかさ密度を有することがわかつた。
Comparative Example 1 Control A phenolic resin (Varcum Chemical Company No.
50 g of silicon carbide powder containing approximately 2% by weight excess carbon added in the form of 8121) was prepared and sintered according to the procedure of Example 1, except that boron carbide and beryllium carbide were not added. The powder compacts produced were found to have a bulk density of less than about 2.25 g/cm 3 (70% of theoretical density).

Claims (1)

【特許請求の範囲】 1 炭化ケイ素、0.5〜5.0重量%の過剰炭素およ
び0.03〜3.0重量%のベリリウムとホウ素との混
合物を含有してなり、該ベリリウムとホウ素は元
素状ベリリウム、ベリリウム含有化合物、元素状
ホウ素、ホウ素含有化合物またはそれらの混合物
の群から選ばれることを特徴とする炭化ケイ素焼
結体製造用原料粉末混合物。 2 0.03〜3.0重量%のベリリウムとホウ素との
混合物;0.5〜5.0重量%の過剰炭素;および不純
物として2.0重量%より少ない他の元素を含有す
る残部量の炭化ケイ素からなることを特徴とする
理論密度の85%より大きいかさ密度を有する焼結
セラミツク製品。
[Claims] 1. Silicon carbide, containing 0.5-5.0% by weight of excess carbon and 0.03-3.0% by weight of a mixture of beryllium and boron, wherein the beryllium and boron are elemental beryllium, beryllium-containing compounds, A raw material powder mixture for producing a silicon carbide sintered body, characterized in that it is selected from the group of elemental boron, boron-containing compounds, or mixtures thereof. 2. A theory characterized in that it consists of a mixture of 0.03-3.0% by weight of beryllium and boron; 0.5-5.0% by weight of excess carbon; and a balance amount of silicon carbide containing less than 2.0% by weight of other elements as impurities. Sintered ceramic products with a bulk density greater than 85% of the density.
JP62142399A 1976-11-26 1987-06-09 Silicon carbide powder mixture and sintered ceramic product Granted JPS6325274A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74503576A 1976-11-26 1976-11-26
US745035 1976-11-26

Publications (2)

Publication Number Publication Date
JPS6325274A JPS6325274A (en) 1988-02-02
JPH0253388B2 true JPH0253388B2 (en) 1990-11-16

Family

ID=24994976

Family Applications (2)

Application Number Title Priority Date Filing Date
JP14009977A Granted JPS5367711A (en) 1976-11-26 1977-11-24 Silicon carbioe composite powder containing beryllium
JP62142399A Granted JPS6325274A (en) 1976-11-26 1987-06-09 Silicon carbide powder mixture and sintered ceramic product

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP14009977A Granted JPS5367711A (en) 1976-11-26 1977-11-24 Silicon carbioe composite powder containing beryllium

Country Status (6)

Country Link
JP (2) JPS5367711A (en)
BR (1) BR7707857A (en)
CA (1) CA1079309A (en)
DE (1) DE2751851A1 (en)
GB (1) GB1558254A (en)
SE (1) SE7713343L (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144207A (en) * 1977-12-27 1979-03-13 The Carborundum Company Composition and process for injection molding ceramic materials
CA1122384A (en) * 1978-08-28 1982-04-27 Richard H. Smoak Pressureless sintering beryllium containing silicon carbide powder composition
JPS6125472Y2 (en) * 1979-08-03 1986-07-31
JPS5987893A (en) * 1982-11-12 1984-05-21 株式会社日立製作所 Circuit board, method of producing same and semiconductor device using same
US4874725A (en) * 1984-04-27 1989-10-17 Nippon Tungsten Co., Ltd. High-density sintered article of silicon carbid
DE3840594A1 (en) * 1988-02-05 1989-08-17 Hoechst Ag PROCESS METHOD FOR THE PRODUCTION OF HIGH-STRENGTH AND HIGH-DENSITY, POLYCRYSTALLINE SILICON CARBIDE MOLDED BODIES WITH HOMOGENOUS CARBON DISTRIBUTION BY CONTROLLED DIFFUSION

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140099A (en) * 1976-05-17 1977-11-22 Leitner Kajetan Chuck for use in screw

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993602A (en) * 1975-11-17 1976-11-23 General Electric Company Polycrystalline silicon carbide with increased conductivity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140099A (en) * 1976-05-17 1977-11-22 Leitner Kajetan Chuck for use in screw

Also Published As

Publication number Publication date
JPS6253473B2 (en) 1987-11-10
DE2751851A1 (en) 1978-06-01
JPS5367711A (en) 1978-06-16
CA1079309A (en) 1980-06-10
SE7713343L (en) 1978-05-27
BR7707857A (en) 1978-09-05
GB1558254A (en) 1979-12-19
JPS6325274A (en) 1988-02-02

Similar Documents

Publication Publication Date Title
US4327186A (en) Sintered silicon carbide-titanium diboride mixtures and articles thereof
US3853566A (en) Hot pressed silicon carbide
US4123286A (en) Silicon carbide powder compositions
US4525461A (en) Sintered silicon carbide/graphite/carbon composite ceramic body having ultrafine grain microstructure
US2938807A (en) Method of making refractory bodies
US4692418A (en) Sintered silicon carbide/carbon composite ceramic body having fine microstructure
CA1096408A (en) Method of producing hign density silicon carbide product
US4320204A (en) Sintered high density boron carbide
JPS6228109B2 (en)
US4237085A (en) Method of producing a high density silicon carbide product
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
JPS61227966A (en) Silicon carbide base sintered body and manufacture
JPS6128627B2 (en)
US4172109A (en) Pressureless sintering beryllium containing silicon carbide powder composition
JPS6350311B2 (en)
JPS6350310B2 (en)
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
EP0178753B1 (en) Process for producing a sintered silicon carbide/carbon composite ceramic body having ultrafine grain microstructure
JPH0253388B2 (en)
JPS632913B2 (en)
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPS643830B2 (en)
JPS60131862A (en) High strength silicon carbide base sintered body
JPS6121977A (en) Manufacture of aluminum nitride sintered body