JPS6350310B2 - - Google Patents
Info
- Publication number
- JPS6350310B2 JPS6350310B2 JP54000142A JP14279A JPS6350310B2 JP S6350310 B2 JPS6350310 B2 JP S6350310B2 JP 54000142 A JP54000142 A JP 54000142A JP 14279 A JP14279 A JP 14279A JP S6350310 B2 JPS6350310 B2 JP S6350310B2
- Authority
- JP
- Japan
- Prior art keywords
- sintering aid
- carbon source
- silicon carbide
- sintering
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005245 sintering Methods 0.000 claims description 76
- 229910052799 carbon Inorganic materials 0.000 claims description 48
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 47
- 239000000463 material Substances 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 32
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 32
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 28
- 239000007788 liquid Substances 0.000 claims description 27
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 19
- 229910052796 boron Inorganic materials 0.000 claims description 19
- 239000000243 solution Substances 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims 3
- 230000001476 alcoholic effect Effects 0.000 claims 1
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 9
- 239000000654 additive Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 229910052790 beryllium Inorganic materials 0.000 description 4
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- -1 sucrose and dextrose Chemical class 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000007569 slipcasting Methods 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 241000209149 Zea Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000006082 mold release agent Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 229910021426 porous silicon Inorganic materials 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 2
- 238000001721 transfer moulding Methods 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1003—Use of special medium during sintering, e.g. sintering aid
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- General Preparation And Processing Of Foods (AREA)
Description
【発明の詳細な説明】
本発明は粒状の炭化ケイ素材料を焼結して工業
的用途をもつた緻密でかたい製品をつくる方法に
おいて液状焼結助剤を使用する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the use of liquid sintering aids in the process of sintering particulate silicon carbide materials to produce dense, hard products of industrial use.
以前から炭化ケイ素はかたく、強度があり、酸
化及び腐蝕に対し優れた耐性があることが知られ
ている。炭化ケイ素は膨脹係数が小さくて、良好
な伝熱性を有し、高温で高い強度を保持してい
る。近年、炭化ケイ素粉末を焼結させ高密度炭化
ケイ素材料をつくる方法が開発された。高密度炭
化ケイ素はタービン、熱交換器、ポンプ及び特に
高温において著しい腐蝕又は摩耗を受ける他の装
置又は工具の製造に用途が見出されている。 Silicon carbide has long been known to be hard, strong, and has excellent resistance to oxidation and corrosion. Silicon carbide has a small coefficient of expansion, good heat transfer properties, and maintains high strength at high temperatures. Recently, methods have been developed for sintering silicon carbide powder to create high density silicon carbide materials. Dense silicon carbide finds use in the manufacture of turbines, heat exchangers, pumps, and other equipment or tools that undergo significant corrosion or wear, especially at high temperatures.
セラミツクス体又は緻密化物は種々のキヤステ
イング又は成形方法により粒状のセラミツクス材
料からつくられる。当業界において高温又は低温
プレス法、均衡成形法、スリツプキヤステイング
法、押出法、射出又は移送成形法、又はテープ・
キヤステイング法として知られている成形法を用
いることができる。成形されたセラミツクス体は
約1900゜〜2200℃の間で焼結すると、緻密でかた
い製品になる。 Ceramic bodies or densities are made from granular ceramic materials by various casting or molding methods. In the industry, hot or cold pressing methods, isostatic molding methods, slip casting methods, extrusion methods, injection or transfer molding methods, or tape and
A molding method known as a casting method can be used. When the shaped ceramic body is sintered at a temperature between approximately 1900°C and 2200°C, it becomes a dense and hard product.
高密度、高強度炭化ケイ素セラミツクス材料を
得るためには、焼結又は緻密化助剤として種々の
添加剤が用いられて来た。例えばアルミニウム及
び鉄を緻密化剤として加え理論値の98%程度の密
度をもつ炭化ケイ素の高温プレス法はアリエグロ
(Alliegro)らのジヤーナル・オヴ・セラミツク
ス・ソサイアテイ誌(J.Ceram.Soc.)第39巻第
11号(1956年11月)386〜389頁に記載されてい
る。彼等は1重量%のアルミニウムを含む粉末か
ら緻密な炭化ケイ素をつくり得ることを見出し
た。この製品の破壊係数は室温において54000psi
(3797Kg/cm2)、1371℃において70000psi(4922
Kg/cm2)である。さらに最近では焼結助剤又は緻
密化助剤として硼素又はベリリウムを用いる方法
が開発された。このような助剤は通常硼素又はベ
リリウム約0.3〜約5.0重量%の量で炭化ケイ素材
料粉末に加えられる。焼結助剤は元素状の硼素又
はベリリウムの形か、又は硼素又はベリリウムを
含む化合物の形で加えることができる。硼素は取
扱い及び使用特性が良いために好適な添加物であ
る。硼素は通常炭化硼素の形で用いられる。硼素
を含む炭化ケイ素粉末は米国特許第3852099号、
第3954483号及び第3968194号に記載されている。 Various additives have been used as sintering or densification aids to obtain high density, high strength silicon carbide ceramic materials. For example, a high-temperature pressing method for silicon carbide with a density of about 98% of the theoretical value by adding aluminum and iron as densifying agents is described in Alliegro et al., Journal of Ceramics Society (J.Ceram.Soc.). Volume 39
No. 11 (November 1956), pages 386-389. They found that dense silicon carbide could be made from powder containing 1% aluminum by weight. This product has a rupture coefficient of 54000psi at room temperature
(3797Kg/cm 2 ), 70000psi (4922
kg/cm 2 ). More recently, methods have been developed that use boron or beryllium as sintering or densification aids. Such adjuvants are typically added to the silicon carbide material powder in an amount of about 0.3 to about 5.0 weight percent boron or beryllium. Sintering aids can be added in the form of elemental boron or beryllium or in the form of compounds containing boron or beryllium. Boron is a preferred additive due to its good handling and use properties. Boron is usually used in the form of boron carbide. Silicon carbide powder containing boron is disclosed in US Pat. No. 3,852,099,
No. 3954483 and No. 3968194.
焼結可能な炭化ケイ素粉末はまた過剰の、又は
結合しない炭素を含んでいる。普通約1.0〜約4.0
重量%の量の過剰の炭素が用いられる。焼結に必
要な過剰の炭素は前の工程から製品中に残つた炭
素の形であるか、又は焼結後過剰の炭素を所望の
量与える炭素源材料の形で加えることができる。
過剰の炭素により焼結が容易になり、そうしない
と仕上製品中に残留する原料炭化ケイ素材料中の
種々の不純物の量を減少させることができる。 Sinterable silicon carbide powders also contain excess or unbonded carbon. Normal about 1.0 to about 4.0
An excess of carbon in the amount of % by weight is used. The excess carbon required for sintering can be in the form of carbon left in the product from a previous step, or can be added in the form of a carbon source material that provides the desired amount of excess carbon after sintering.
The excess carbon facilitates sintering and can reduce the amount of various impurities in the raw silicon carbide material that would otherwise remain in the finished product.
本発明に従えば、炭化ケイ素材料を緻密化する
のに用いられる焼結助剤は液体の形で用いられ
る。本発明の硼素源又は焼結助剤はH3BO3,
B2O3又はそれらの混合物の溶液から選ばれる。
溶媒はH3BO3又はB2O3が可溶な任意の液体であ
ることができるが、入手が容易で価格が安いため
に水又はアルコールが好ましい。 According to the invention, the sintering aid used to densify the silicon carbide material is used in liquid form. The boron source or sintering aid of the present invention is H 3 BO 3 ,
selected from solutions of B 2 O 3 or mixtures thereof;
The solvent can be any liquid in which H 3 BO 3 or B 2 O 3 is soluble, but water or alcohol are preferred due to their easy availability and low cost.
液体の焼結助剤は焼結する前に成形した多孔性
の炭化ケイ素本体に加えることが適当である。本
発明の一実施態様においては焼結助剤及び炭素源
を一緒に液体の形で加える。このような実施態様
においては、焼結助剤を炭素源に溶解するか、又
は焼結助剤と炭素源を共通の溶媒、例えば水又は
アルコールに溶解することができる。 Suitably, the liquid sintering aid is added to the shaped porous silicon carbide body prior to sintering. In one embodiment of the invention, the sintering aid and carbon source are added together in liquid form. In such embodiments, the sintering aid can be dissolved in the carbon source, or the sintering aid and the carbon source can be dissolved in a common solvent, such as water or alcohol.
炭化ケイ素源料は最初微粉末又は粉末の形でつ
くられる。好ましくは粒子は平均粒径が約0.10〜
約2.00μであり、最高は約5.00μである。粒径も重
要な因子ではあるが、適当な材料を決定する上に
表面積も十分に考慮しなければならない。従つて
粒子の表面積は約1〜100m2/gであることが好
ましい。この範囲内において更に好ましくは粒子
の表面積は約5〜約20m2/gである。 The silicon carbide source material is initially made in the form of a fine powder or powder. Preferably the particles have an average particle size of about 0.10 to
It is about 2.00μ, and the maximum is about 5.00μ. Although particle size is an important factor, surface area must also be carefully considered in determining the appropriate material. Therefore, it is preferred that the particles have a surface area of about 1 to 100 m 2 /g. More preferably within this range, the particles have a surface area of about 5 to about 20 m 2 /g.
炭化ケイ素はα又はβ相又は無定形であること
ができる。現在、炭化ケイ素のα(非立方形)結
晶相が最も経済的に得られる。本発明の組成物は
実質的に全部、例えば95重量%以上、α相の炭化
ケイ素を含むことができ、或いは種々の形の炭化
ケイ素の混合物を含むことができる。例えば主量
が(50%より大)α相である混合物が使用に適し
ている。炭化ケイ素材料は悪影響を及ぼすことな
く少量の不純物を含むことができる。一般に少く
とも約95重量%の純度が必要であり、それ以上の
純度の炭化ケイ素材料が望ましい。 Silicon carbide can be in alpha or beta phase or amorphous. Currently, the α (non-cubic) crystalline phase of silicon carbide is the most economically obtainable. The compositions of the present invention may contain substantially all, eg, 95% by weight or more, silicon carbide in the alpha phase, or may contain a mixture of various forms of silicon carbide. For example, mixtures in which the predominant amount (greater than 50%) is alpha phase are suitable for use. Silicon carbide materials can contain small amounts of impurities without adverse effects. Generally, a purity of at least about 95% by weight is required, and higher purity silicon carbide materials are desirable.
本発明に従えば、焼結助剤、又は焼結助剤及び
炭素源材料の組合わせを焙焼後焼結前に成形した
多孔性の炭化ケイ素体に加える。このような多孔
体は生の成形体をつくり、焙焼し、次いで焼結す
る成形又は注形法によりつくられる。焼結助剤、
又は焼結助剤と炭素源材料との組合わせを焙焼
後、焼結の直前に加えることは射出成形及びスリ
ツプ・キヤステイング法に特に有利である。本発
明を実施する場合、炭化ケイ素材料を最初種々の
添加剤、例えば焼結助剤、炭素源材料、樹脂結合
剤、離型剤、及び混合物の粘度を低下させる添加
剤と混合する。焼結助剤及び/又は炭素源材料は
屡々混合物の結合、離型又は流動特性に悪影響を
及ぼす。焼結助剤、又は焼結助剤及び炭素源材料
の組合わせを除去すると成形操作を容易にし、こ
のような混合物に用いる有用な結合用樹脂及び処
理用添加剤の数を著しく増加させる。 According to the invention, a sintering aid, or a combination of a sintering aid and a carbon source material, is added to the formed porous silicon carbide body after torrefaction and before sintering. Such porous bodies are produced by a molding or casting method in which a green compact is produced, roasted, and then sintered. sintering aid,
Alternatively, it is particularly advantageous for injection molding and slip casting processes to add the combination of sintering aid and carbon source material after torrefaction, just before sintering. In practicing the invention, the silicon carbide material is first mixed with various additives, such as sintering aids, carbon source materials, resin binders, mold release agents, and additives that reduce the viscosity of the mixture. Sintering aids and/or carbon source materials often have an adverse effect on the bonding, release, or flow properties of the mixture. Removal of the sintering aid, or combination of sintering aid and carbon source material, facilitates molding operations and significantly increases the number of useful bonding resins and processing additives that can be used in such mixtures.
本発明の焼結助剤では、炭化ケイ素材料の重量
に関し約0.3〜約5.0%の硼素を与えるような量の
焼結助剤を焙焼された生の成形体に加えるが、こ
の範囲内において約0.5〜約4.0%を使用すること
が適している。約0.3重量以下の硼素を用いると、
焼結は一般に効果的に行なわれない。硼素を約
5.0重量%以上含ませると、緻密化は著しくは改
善されず、過剰の硼素によつて悪影響を及ぼすこ
ともある。この溶液の濃度は硼素が粒状材料中に
実質的に均一に分散し、以後の焼結中前述の範囲
内で硼素を与えるように調節される。焼結助剤溶
液は濃度を比較的高くすることができ、そして孔
の領域を飽和または含浸した後、過剰量は滴りお
とさせて除くことができる。硼素の添加量は液状
焼結剤による処理の前後において粒状の炭化ケイ
素材料を簡単に秤量し、重量の増加から碼素の量
を計算することにより決定することができる。 In the sintering aid of the present invention, an amount of sintering aid is added to the torrefied green compact to provide from about 0.3% to about 5.0% boron by weight of the silicon carbide material, but within this range. It is suitable to use about 0.5% to about 4.0%. When using less than about 0.3 weight of boron,
Sintering is generally not carried out effectively. About boron
If it is contained in an amount of 5.0% by weight or more, densification will not be significantly improved, and excessive boron may have an adverse effect. The concentration of this solution is adjusted so that the boron is substantially uniformly dispersed within the particulate material and provides boron within the aforementioned range during subsequent sintering. The sintering aid solution can be relatively concentrated and, after saturating or impregnating the pore area, the excess can be allowed to drip off. The amount of boron added can be determined by simply weighing the granular silicon carbide material before and after treatment with the liquid sintering agent, and calculating the amount of boron from the increase in weight.
本発明においてはまた焼結助剤及び過剰の炭素
源を液体の形で組合わせて使用することも含まれ
る。焼結助剤を過剰の炭素源材料に溶解するか、
又は焼結助剤と過剰の炭素源材料を共通の溶媒に
溶解するのが適当である。過剰の又は結合し得る
炭素は炭化ケイ素材料の約0.05〜5.0%の量で用
いると焼結が容易になるが、この範囲内において
約1.0〜約4.0重量%が特に有用である。炭素源は
焼結助剤が悪影響を及ぼすことなく混合し得る任
意の炭素性材料又は焼結助剤との共通の溶媒に混
合し得る炭素性材料であることができる。糖、例
えば蔗糖及びデキストロース、トウモロコシシロ
ツプ、フルフラール、フルフリルアルコール、テ
トラヒドロフルフリルアルコール、フエノール樹
脂、ポリフエニレン樹脂及びフラン樹脂が典型的
な有用な炭素源材料である。通常炭素源材料の炭
化値は約15〜約80重量%である。従つて焼結助剤
及び炭素源材料の適当な量は容易に計算できる。
本発明の焼結助剤は焼結中還元されると推定され
る。炭素源の量はこのような還元に要する炭素の
量及び焼結に必要な過剰の炭素の量を与えるよう
に調節することができる。 The present invention also includes the use of a combination of sintering aid and excess carbon source in liquid form. Dissolving the sintering aid into excess carbon source material or
Alternatively, it is appropriate to dissolve the sintering aid and excess carbon source material in a common solvent. Excess or bondable carbon can be used in amounts of about 0.05 to 5.0% by weight of the silicon carbide material to facilitate sintering, with about 1.0 to about 4.0% by weight within this range being particularly useful. The carbon source can be any carbonaceous material with which the sintering aid can be mixed without adverse effects or in a common solvent with the sintering aid. Sugars such as sucrose and dextrose, corn syrup, furfural, furfuryl alcohol, tetrahydrofurfuryl alcohol, phenolic resins, polyphenylene resins, and furan resins are typical useful carbon source materials. Typically, the carbonization value of the carbon source material is from about 15 to about 80% by weight. The appropriate amounts of sintering aid and carbon source material can therefore be easily calculated.
It is assumed that the sintering aid of the present invention is reduced during sintering. The amount of carbon source can be adjusted to provide the amount of carbon required for such reduction and the amount of excess carbon required for sintering.
本発明の液状助剤はH3BO3,B2O2又はその混
合物を適当な溶媒に単に溶解するだけでつくるこ
とができる。化学式H3BO3及びB2O3、即ち硼酸
及び酸化硼素は、H3BO3及びB2O3の水和物をも
含むものとして読まれるべきである。溶媒は
H3BO3及びB2O3が可溶な任意液体であり、水又
はアルコールが適当である。本発明の焼結助剤は
多孔体に加え約0.3〜約5.0、好ましくは約05〜約
4.0重量%の硼素を与えるようにする。焼結剤の
溶液の濃度は成形体中に硼素源を実質的に均一に
容易に分散させうるように調節される。 The liquid auxiliaries of the present invention can be prepared by simply dissolving H 3 BO 3 , B 2 O 2 or mixtures thereof in a suitable solvent. The chemical formulas H 3 BO 3 and B 2 O 3 , i.e. boric acid and boron oxide, are to be read as also including the hydrates of H 3 BO 3 and B 2 O 3 . The solvent is
Any liquid in which H 3 BO 3 and B 2 O 3 are soluble, water or alcohol are suitable. In addition to the porous body, the sintering aid of the present invention is about 0.3 to about 5.0, preferably about 0.05 to about
Make sure to give 4.0% boron by weight. The concentration of the sintering agent solution is adjusted to facilitate substantially uniform dispersion of the boron source within the compact.
本発明の焼結助剤を炭素源に溶解し、焼結助剤
と炭素源材料とを組合せた液を与えることができ
る。この実施態様に用い得る適当な炭素源は焼結
助剤が溶解し得るものである。特に適当なものは
アルコール、例えばフルフリルアルコール及びテ
トラヒドロフルフリルアルコールである。過剰
の、又は結合し得る炭素は多孔体の約0.05〜約
5.0、好ましくは約1.0〜約4.0重量%の量で用いら
れ、焼結を容易にする。一般に炭素性材料は加熱
により分解し、約15〜約80重量%の遊離又は結合
し得る炭素を与える。本発明のこの実施態様にお
いては、適当量の焼結助剤を炭素源材料の適当な
量中に、適当には、混合しつつ、溶解し、所望の
範囲内で過剰の炭素を与える。 The sintering aid of the present invention can be dissolved in a carbon source to provide a liquid containing a combination of the sintering aid and the carbon source material. Suitable carbon sources that can be used in this embodiment are those in which the sintering aid can be dissolved. Particularly suitable are alcohols such as furfuryl alcohol and tetrahydrofurfuryl alcohol. Excess or bondable carbon accounts for about 0.05 to about
5.0, preferably from about 1.0 to about 4.0% by weight to facilitate sintering. Generally, the carbonaceous material decomposes upon heating to yield from about 15 to about 80% by weight of free or bound carbon. In this embodiment of the invention, a suitable amount of sintering aid is dissolved into a suitable amount of carbon source material, suitably with mixing, to provide an excess of carbon within the desired range.
本発明の焼結助剤及び炭素源材料は両者に共通
の溶媒に溶解し、焼結助剤と炭素源材料との組合
わせ液をつくることができる。この態様において
は、水が両方の溶媒として使用するのに適してい
る。使用できる水溶性の炭素源材料の例は糖、例
えば蔗糖及びデキストロース、トウモロコシ・シ
ロツプ、及びアルコール例えばフルフリルアルコ
ールである。アルコールはまた両方の溶媒として
も使用できる。エチル、メチル、プロピル及びイ
ソプロピルアルコールが特に有用である。フエノ
ール・フオルム・アルデヒド樹脂は、短鎖アルコ
ールが共通の溶媒として使用される場合の炭素源
材料として使用するのに特に適している。焼結助
剤と炭素源材料は適当には混合により共通の溶媒
に溶解し、焼結助剤と炭素源材料との組合わせ液
をつくることができる。 The sintering aid and carbon source material of the present invention can be dissolved in a common solvent for both to create a combination liquid of the sintering aid and carbon source material. In this embodiment, water is suitable for use as both solvents. Examples of water-soluble carbon source materials that can be used are sugars such as sucrose and dextrose, corn syrup, and alcohols such as furfuryl alcohol. Alcohol can also be used as both solvents. Ethyl, methyl, propyl and isopropyl alcohols are particularly useful. Phenol formaldehyde resins are particularly suitable for use as carbon source materials when short chain alcohols are used as common solvents. The sintering aid and carbon source material can be dissolved in a common solvent, suitably by mixing, to create a combined sintering aid and carbon source material solution.
本発明の方法を実施する場合、液状焼結剤又は
液状焼結助剤と炭素源との組合わせを焙焼した生
の成形体中に分散させ、次いでこの成形体を焼結
して緻密なかたい炭化ケイ素製品をつくる。 When carrying out the method of the invention, a liquid sintering agent or a combination of a liquid sintering aid and a carbon source is dispersed in a green torrefied compact, which is then sintered to form a dense compact. Manufacture silicon carbide products.
生の成形体を成形するのに用いる方法は本発明
方法においてはあまり重要ではない。一般にこの
ような方法では粒状の炭化ケイ素原料を最初樹脂
結合剤及び他の適当な添加物、例えば離型剤、滑
剤、粘度助剤及び過剰の炭素源と混合する。次に
この混合物を公知方法、例えば冷間プレス、油圧
成形、スリツプ・キヤステイング、テープ・キヤ
ステイング、射出又は移送成形法により成形す
る。成形した生の成形体を、通常約500〜約1000
℃、もつと普通には約700〜約900℃で焙焼する。
これにより本発明の液状焼結剤又は液状焼結剤と
炭素源材料との組合わせにより処理するのに特に
適した開放孔構造を有する生成物が得られる。焼
結助剤又は焼結助剤と炭素源材料との組合せ物は
成形体を含浸させ、この際圧力をかけるか又は細
孔の毛管作用を利用して焙焼成形体中に実質的に
均一に分散させることができる。しかし好適方法
は真空充填法である。この方法では成形体を真空
に引き、液状焼結助剤又は液状焼給助剤と炭素源
材料との組合せ物を真空に引いた成形体に供給す
る。焼結助剤又は焼結助剤と炭素源材料との組合
わせを分散させた後、含浸成形体を約1900〜約
2200℃の温度で焼結して緻密なかたい成形品にす
る。 The method used to shape the green body is not critical to the process of the invention. Generally, in such methods, a particulate silicon carbide feedstock is first mixed with a resin binder and other suitable additives, such as a mold release agent, a lubricant, a viscosity aid, and an excess carbon source. This mixture is then shaped by known methods such as cold pressing, hydraulic forming, slip casting, tape casting, injection or transfer molding. Usually about 500 to about 1000 raw molded bodies
Motsu is usually roasted at about 700 to 900 degrees Celsius.
This results in a product with an open pore structure that is particularly suitable for processing with the liquid sintering agent of the invention or the combination of liquid sintering agent and carbon source material. The sintering aid or the combination of the sintering aid and the carbon source material is impregnated into the compact, either by applying pressure or by utilizing the capillary action of the pores, and substantially uniformly distributed throughout the torrefied compact. Can be dispersed. However, the preferred method is vacuum filling. In this method, a compact is evacuated, and a liquid sintering aid or a combination of a liquid sintering aid and a carbon source material is supplied to the compact. After dispersing the sintering aid or the combination of sintering aid and carbon source material, the impregnated compact is
It is sintered at a temperature of 2200℃ to form a dense and hard molded product.
本発明は焼結粉末及び焼結法の上記特定の実施
態様に限定されるものではなく、当業者の専門家
によれば本発明の精神並びに範囲を逸脱すること
なく種々の変形を行なうことができる。 The invention is not limited to the specific embodiments of the sintered powder and sintering method described above, and those skilled in the art will appreciate that various modifications may be made without departing from the spirit and scope of the invention. can.
Claims (1)
成る生の成形体をつくり、 (b) 該生の成形体を温度約500℃〜約1000℃で焙
焼して多孔性体をつくり、 (c) 該多孔性体中にH3BO3、B2O3及びそれらの
混合物の溶液から成る群から選ばれた液状焼結
助剤を分散させ、 (d) この処理した多孔性体を約1900゜〜2200℃で
焼結させて焼結された炭化ケイ素制品をつくる 工程から成ることを特徴とする焼結炭化ケイ素製
品の製造法。 2 液状焼結助剤がH3BO3の溶液である特許請
求の範囲第1項記載の方法。 3 液状焼結助剤がH3BO3の水溶液である特許
請求の範囲第2項記載の方法。 4 液状焼結助剤が水溶液である特許請求の範囲
第1項記載の方法。 5 液状焼結助剤がアルコール溶液である特許請
求の範囲第1項記載の方法。 6 約0.3〜約5.0重量%の硼素を加えるのに十分
な量の焼結助剤を該焙焼した生の成形体に分散さ
せる特許請求の範囲第1項記載の方法。 7 液状焼結助剤が炭素源を含む特許請求の範囲
第1項記載の方法。 8 液状焼結助剤が炭素源と共に溶液中に存在す
る特許請求の範囲第1項記載の方法。 9 液状焼結助剤が溶媒として炭素源を含む特許
請求の範囲第8項記載の方法。 10 溶液が水溶液である特許請求の範囲第8項
記載の方法。 11 溶液がアルコール溶液である特許請求の範
囲第8項記載の方法。 12 液状焼結助剤が真空充填法により該生の成
形体内部に分散される特許請求の範囲第1項記載
の方法。 13 液状焼結助剤は毛管作用により生の成形体
内部に分散される特許請求の範囲第1項記載の方
法。[Claims] 1. (a) Producing a green molded body consisting of a granular silicon carbide material and a resin binder, (b) Roasting the green molded body at a temperature of about 500°C to about 1000°C. (c) dispersing in the porous body a liquid sintering aid selected from the group consisting of solutions of H 3 BO 3 , B 2 O 3 and mixtures thereof; (d) dispersing the porous body; A method for producing a sintered silicon carbide product, comprising the step of sintering a treated porous body at about 1900° to 2200°C to produce a sintered silicon carbide product. 2. The method according to claim 1, wherein the liquid sintering aid is a solution of H 3 BO 3 . 3. The method according to claim 2, wherein the liquid sintering aid is an aqueous solution of H 3 BO 3 . 4. The method according to claim 1, wherein the liquid sintering aid is an aqueous solution. 5. The method according to claim 1, wherein the liquid sintering aid is an alcohol solution. 6. The method of claim 1, wherein a sintering aid is dispersed into the torrefied green compact in an amount sufficient to add about 0.3 to about 5.0 weight percent boron. 7. The method according to claim 1, wherein the liquid sintering aid contains a carbon source. 8. The method of claim 1, wherein the liquid sintering aid is present in solution together with the carbon source. 9. The method according to claim 8, wherein the liquid sintering aid contains a carbon source as a solvent. 10. The method according to claim 8, wherein the solution is an aqueous solution. 11. The method according to claim 8, wherein the solution is an alcoholic solution. 12. The method according to claim 1, wherein a liquid sintering aid is dispersed inside the green compact by a vacuum filling method. 13. The method of claim 1, wherein the liquid sintering aid is dispersed within the green compact by capillary action.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1427979A JPS55107589A (en) | 1979-01-08 | 1979-02-13 | Production of artificial lawn |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86786178A | 1978-01-09 | 1978-01-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54101809A JPS54101809A (en) | 1979-08-10 |
JPS6350310B2 true JPS6350310B2 (en) | 1988-10-07 |
Family
ID=25350613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14279A Granted JPS54101809A (en) | 1978-01-09 | 1979-01-08 | Process for making liquid additive for sintering and sintered ceramics |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPS54101809A (en) |
CA (1) | CA1136388A (en) |
DE (1) | DE2900440A1 (en) |
FR (1) | FR2414030B1 (en) |
GB (1) | GB2012309B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5585467A (en) * | 1978-12-15 | 1980-06-27 | Hitachi Ltd | Silicon carbide sintered body and its manufacture |
NL7907160A (en) * | 1979-09-26 | 1981-03-30 | Holec Nv | METHOD FOR MANUFACTURING MOLDED ELECTRICALLY CONDUCTIVE PREPARATIONS FROM SILICONE POWDER, AND FORMING PRODUCTS OBTAINED USING THIS METHOD |
JPS57160970A (en) * | 1981-03-27 | 1982-10-04 | Omori Mamoru | Silicon carbide sintered formed body and manufacture |
DE3243570C2 (en) * | 1982-11-25 | 1984-09-13 | Hutschenreuther Ag, 8672 Selb | Process for producing a dense polycrystalline molded body from SiC |
JPS6011269A (en) * | 1983-06-27 | 1985-01-21 | 松下電器産業株式会社 | Manufacture of nitride, carbide ceramic |
IT1215202B (en) * | 1986-12-03 | 1990-01-31 | G E V I P I A G | SEALING BODY IN HARD MATERIAL SINTERED BY A SEMI-FINISHED FORMED WITH AN ORGANIC BINDER |
WO2005102959A1 (en) * | 2004-04-21 | 2005-11-03 | Dow Global Technologies Inc. | Method for increasing the strength of porous ceramic bodies and bodies made therefrom |
US20110027559A1 (en) | 2009-07-31 | 2011-02-03 | Glen Harold Kirby | Water based environmental barrier coatings for high temperature ceramic components |
US9005716B2 (en) | 2009-07-31 | 2015-04-14 | General Electric Company | Method for making solvent based environmental barrier coatings using sintering aids |
US9005717B2 (en) | 2009-07-31 | 2015-04-14 | General Electric Company | Methods for making environmental barrier coatings using sintering aids |
US9023435B2 (en) | 2009-07-31 | 2015-05-05 | General Electric Company | Methods for making water based environmental barrier coatings using sintering aids |
US8999457B2 (en) | 2009-07-31 | 2015-04-07 | General Electric Company | Methods for making environmental barrier coatings using sintering aids |
US9062564B2 (en) | 2009-07-31 | 2015-06-23 | General Electric Company | Solvent based slurry compositions for making environmental barrier coatings and environmental barrier coatings comprising the same |
RU2699337C2 (en) * | 2017-11-24 | 2019-09-04 | Акционерное Общество "Наука И Инновации" | Method of processing porous implants based on metal materials |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5126912A (en) * | 1974-08-29 | 1976-03-05 | Kogyo Gijutsuin | |
JPS51148712A (en) * | 1975-06-05 | 1976-12-21 | Carborundum Co | Silicon carbide sintered ceramic articles and manufacture |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2938807A (en) * | 1957-08-13 | 1960-05-31 | James C Andersen | Method of making refractory bodies |
GB1175887A (en) * | 1967-05-31 | 1970-01-01 | Gen Electric & English Elect | Improvements in or relating to the Manufacture of Articles of High Density Polycrystalline Refractory Oxide Material |
GB1478898A (en) * | 1973-10-24 | 1977-07-06 | Gen Electric | Silicon carbide ceramic |
-
1978
- 1978-10-03 CA CA000312562A patent/CA1136388A/en not_active Expired
-
1979
- 1979-01-08 GB GB7900548A patent/GB2012309B/en not_active Expired
- 1979-01-08 JP JP14279A patent/JPS54101809A/en active Granted
- 1979-01-08 FR FR7900304A patent/FR2414030B1/en not_active Expired
- 1979-01-08 DE DE19792900440 patent/DE2900440A1/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5126912A (en) * | 1974-08-29 | 1976-03-05 | Kogyo Gijutsuin | |
JPS51148712A (en) * | 1975-06-05 | 1976-12-21 | Carborundum Co | Silicon carbide sintered ceramic articles and manufacture |
Also Published As
Publication number | Publication date |
---|---|
DE2900440C2 (en) | 1987-06-25 |
DE2900440A1 (en) | 1979-07-19 |
JPS54101809A (en) | 1979-08-10 |
GB2012309B (en) | 1982-12-08 |
GB2012309A (en) | 1979-07-25 |
FR2414030A1 (en) | 1979-08-03 |
CA1136388A (en) | 1982-11-30 |
FR2414030B1 (en) | 1985-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5746957A (en) | Gel strength enhancing additives for agaroid-based injection molding compositions | |
JPS6350310B2 (en) | ||
JPS5934147B2 (en) | Silicon carbide sintered ceramic body and its manufacturing method | |
JPH0768066B2 (en) | Heat resistant composite and method for producing the same | |
US4019913A (en) | Process for fabricating silicon carbide articles | |
CA1125316A (en) | Sinterable powders and methods of producing sintered ceramic products using such powders | |
JPS61227966A (en) | Silicon carbide base sintered body and manufacture | |
US4419161A (en) | Method of producing composite ceramic articles | |
GB2048953A (en) | Sintering silicon carbide in boron containing atmosphere | |
US4172109A (en) | Pressureless sintering beryllium containing silicon carbide powder composition | |
JPS6265978A (en) | Silicon iodide sintered body and its production | |
JP3094148B2 (en) | Manufacturing method of lightweight refractory | |
JPH0253388B2 (en) | ||
JPS6081064A (en) | Manufacture of silicon carbide sintered body | |
JPS5891065A (en) | Manufacture of silicon carbide ceramic sintered body | |
JPS6034515B2 (en) | Manufacturing method of silicon carbide ceramic sintered body | |
JP2851100B2 (en) | Method for producing low-density silicon carbide porous body | |
Lawler | Boric oxide or boric acid sintering aid for sintering ceramics | |
JPS6256368A (en) | Manufacture of silicon carbide sintered body | |
JPS6212191B2 (en) | ||
JPS58125667A (en) | Composite carborundum sintered shape and its manufacture | |
Zanghi et al. | Sinterable powders | |
JPS61136963A (en) | Manufacture of silicon nitride base sintered body | |
JPS60131862A (en) | High strength silicon carbide base sintered body | |
JPH11171671A (en) | Production of plate silicon carbide-silicon composite ceramic |