JPH0350808B2 - - Google Patents

Info

Publication number
JPH0350808B2
JPH0350808B2 JP58209952A JP20995283A JPH0350808B2 JP H0350808 B2 JPH0350808 B2 JP H0350808B2 JP 58209952 A JP58209952 A JP 58209952A JP 20995283 A JP20995283 A JP 20995283A JP H0350808 B2 JPH0350808 B2 JP H0350808B2
Authority
JP
Japan
Prior art keywords
tib
tih
powder
strength
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58209952A
Other languages
Japanese (ja)
Other versions
JPS60103148A (en
Inventor
Tadashi Takahashi
Tatsuhiko Tanaka
Yoshikazu Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP58209952A priority Critical patent/JPS60103148A/en
Publication of JPS60103148A publication Critical patent/JPS60103148A/en
Publication of JPH0350808B2 publication Critical patent/JPH0350808B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はTiB2を硬質相として含み、Fe、Co、
またはNiとMoとの複硼化物およびTiを結合相と
して含む新規な硼化物系高強度超硬質材料の製造
方法に関するものである。 TiB2は、高硬度、高融点でしかも高温強度が
極めて高い化合物であるために、切削工具材料や
熱機関の部品材料などの高硬度、耐摩耗性、耐熱
性などの要求される用途が期待されている材料で
あるが、TiB2単体の焼結体は、抗折力が低く、
もろいという欠点をもつている。したがつて、適
当な結合剤を添加して、強度の大きい焼結体が得
られるようにすることが必要であり、そのために
は結合剤として融点が高く、靭性の大きいものが
要求される。 本発明者らは、このような要求に対して、鋭意
研究を行い、Fe、Co、またはNiとMoとの複硼
化物が好適であることを見い出し、これらを
TiB2粉末に配合して焼結した硬度の高い硼化物
系超硬質材料を提案した(特願昭57−155970)。
しかしながら、これらの焼結体は、極めて高硬度
である(マイクロビツカース硬度Hv=2000〜
3000)が、抗折力が100Kg/mm2前後となつており、
さらに高強度の要求される用途に対しては十分に
対応し得ない面がある。そこで、硬度を落さずに
強度をさらに向上させるべく研究を重ねた結果、
TiH2を添加して焼結することにより強度が著し
く向上することを見い出し、この知見に基づいて
本発明をなすにいたつた。 すなわち、本発明の主たる目的は、WC系超硬
合金以上の硬度範囲を包含でき、しかも、極めて
強度の高い硼化物系高強度超硬質材料を提供する
ことにあり、硬度がHv=2000〜3000の範囲にあ
つて抗折力が140〜170Kg/mm2の範囲である。 本発明の他の目的は、耐摩耗性、耐食性、およ
び耐熱性に優れた高強度超硬質材料を提供するこ
とにあり、さらに他の目的は、より安価な高強度
超硬質材料を提供することにある。 以下、本発明の詳細について説明する。本発明
の硼化物系高強度超硬質材料は、TiB2を硬質相
とし、複硼化物Mo2FeB2、Mo2CoB2および
Mo2NiB2の中から選ばれた1種以上とTiとを結
合相とすることにより構成される。TiB2の最終
の平均粒径は、3μm程度以下とすることが好ま
しい。結合相として用いる複硼化物は、全重量に
対して2〜40重量%の範囲で添加するのが適当で
ある。この量が、2重量%未満では結合相として
の効果が得られず、焼結体がち密化しないため十
分な機械的強度が得られない。また、結合相の複
硼化物はTiB2の硬度に比べて低いため、40重量
%を越えると、焼結体の硬度が低くなり耐摩耗性
が低下する。また、Tiは、配合時、水素化合物
TiH2の形で、全重量に対して0.1〜10重量%の範
囲で添加するのが適当である。TiH2は焼結の過
程で500〜600℃の範囲で熱分解してH2ガスを発
生し、これがTiB2粉末や複硼化物粉末の表面に
付着したO2ガスなどの還元除去やFe族金属の酸
化物を還元することにより、粉末間の濡れ性を著
しく向上せしめる効果があると考えられる。した
がつて、TiH2の添加量が0.1重量%未満では前記
効果が十分発揮されず機械的強度の向上が得られ
ない。また、TiH2は焼結後TiBとなるが、TiB
はTiB2に比べて硬度、靭性が低い。TiH2の添加
量が10重量%まではその影響が少ないが、10重量
%を越えるとTiBの増加により焼結体の硬度およ
び靱性ともに低下する。一般に、焼結雰囲気とし
て、H2ガスを使用する方法があるが、圧粉体の
内部全体にH2ガスを通すためには、雰囲気圧力
を一定範囲で負圧状態に保たねばならないので精
密な圧力制御装置が必要になり、また、このよう
な方法では、圧粉体中に閉気孔が存在する場合
は、その部分が還元されず、焼結体は必ずしも均
質な組織とならないなどの欠点を有している。
TiH2の第2の効果は、焼結時、熱分解して生じ
た活性なTiが高温でTiB2の一部と反応して、
TiBを生成する過程があるために、全体の焼結性
が非常によくなり、気孔の全くない密度100%の
焼結体を得ることができるようになつたことであ
る。これらの効果を焼結体の組織の顕微鏡写真で
第1図と第2図に示す。第1図は、TiH2を添加
しない場合で、気孔が多く見られるが、第2図の
TiH2を添加した場合は気孔は全く見られず理想
的な組織となつている。 本発明の高強度超硬質材料の製造は、つぎのよ
うにして行うことができる。平均粒径3μm以下
のTiB2粉末に、所定量の複硼化物粉末(平均粒
径3μm以下)と所定量のTiH2粉末(粒径350メツ
シユ以下)を添加して、振動ボールミルで湿式混
合と粉砕を十分行つた後、乾燥造粒する。この混
合粉末を、たとえば、黒鉛型に充填し、真空中ア
ルゴンガスまたは水素ガスのような中性または還
元性雰囲気中において、100Kg/cm2以上の圧力下
で、1400〜1800℃の温度範囲で加熱するか、ある
いは、前記の混合粉末を、あらかじめ圧縮成形し
た圧粉体を、前記の雰囲気中において、1700〜
2000℃の温度範囲で普通焼結した後にHIP処理す
ることによつて製造することができる。 このようにして得られた焼結体は、いずれも、
硬度、抗折力、相対密度に優れ、切削工具、熱機
関部品、耐摩性材料として好適である。 以下、実施例により、本発明をさらに詳細に説
明する。実施例に供した材料の組成は、第1表に
示した。
The present invention contains TiB2 as a hard phase, Fe, Co,
The present invention also relates to a method for producing a novel boride-based high-strength ultrahard material containing a complex boride of Ni and Mo and Ti as a binder phase. TiB 2 is a compound with high hardness, high melting point, and extremely high strength at high temperatures, so it is expected to be used in applications that require high hardness, wear resistance, and heat resistance, such as cutting tool materials and heat engine component materials. However, the sintered body of TiB2 alone has a low transverse rupture strength and
It has the disadvantage of being fragile. Therefore, it is necessary to add an appropriate binder to obtain a sintered body with high strength, and for this purpose, a binder with a high melting point and high toughness is required. The present inventors conducted extensive research in response to these requirements and found that complex borides of Fe, Co, or Ni and Mo are suitable, and these
We proposed a highly hard boride-based ultra-hard material that was blended with TiB 2 powder and sintered (Japanese Patent Application No. 57-155970).
However, these sintered bodies have extremely high hardness (micro-Vickers hardness Hv = 2000 ~
3000), but the transverse rupture strength is around 100Kg/ mm2 ,
Furthermore, it may not be suitable for applications requiring high strength. Therefore, as a result of repeated research to further improve strength without reducing hardness,
It was discovered that the strength was significantly improved by adding TiH 2 and sintering, and based on this knowledge, the present invention was completed. That is, the main object of the present invention is to provide a boride-based high-strength ultra-hard material that can cover a hardness range higher than that of WC-based cemented carbide and has extremely high strength. The transverse rupture strength is in the range of 140 to 170 Kg/ mm2 . Another object of the present invention is to provide a high-strength ultra-hard material with excellent wear resistance, corrosion resistance, and heat resistance, and a further object of the present invention is to provide a cheaper high-strength ultra-hard material. It is in. The details of the present invention will be explained below. The boride-based high-strength ultra-hard material of the present invention uses TiB 2 as a hard phase and contains complex borides Mo 2 FeB 2 , Mo 2 CoB 2 and
It is composed of one or more selected from Mo 2 NiB 2 and Ti as a bonding phase. The final average particle size of TiB 2 is preferably about 3 μm or less. The complex boride used as the binder phase is suitably added in an amount of 2 to 40% by weight based on the total weight. If this amount is less than 2% by weight, the effect as a binder phase will not be obtained, and the sintered body will not be dense, so that sufficient mechanical strength will not be obtained. Further, since the hardness of the binder phase complex boride is lower than that of TiB 2 , if it exceeds 40% by weight, the hardness of the sintered body decreases and the wear resistance decreases. In addition, Ti is a hydrogen compound when compounded.
Suitably it is added in the form of TiH 2 in an amount ranging from 0.1 to 10% by weight relative to the total weight. During the sintering process, TiH 2 thermally decomposes in the range of 500 to 600°C to generate H 2 gas, which is used to reduce and remove O 2 gas adhering to the surface of TiB 2 powder and complex boride powder, and to remove Fe group gas. It is thought that reducing the metal oxide has the effect of significantly improving the wettability between powders. Therefore, if the amount of TiH 2 added is less than 0.1% by weight, the above effects will not be sufficiently exhibited and no improvement in mechanical strength will be obtained. In addition, TiH 2 becomes TiB after sintering, but TiB
has lower hardness and toughness than TiB 2 . The effect is small when the amount of TiH 2 added is up to 10% by weight, but when it exceeds 10% by weight, both the hardness and toughness of the sintered body decrease due to the increase in TiB. Generally, there is a method of using H 2 gas as the sintering atmosphere, but in order to pass H 2 gas throughout the inside of the compact, the atmospheric pressure must be maintained in a negative pressure state within a certain range, so precision is required. This method requires a pressure control device, and also has drawbacks such as if there are closed pores in the green compact, those areas will not be reduced, and the sintered compact will not necessarily have a homogeneous structure. have.
The second effect of TiH 2 is that during sintering, active Ti generated by thermal decomposition reacts with a part of TiB 2 at high temperature.
Because of the process of producing TiB, the overall sinterability is very good, making it possible to obtain a sintered body with 100% density and no pores. These effects are shown in FIGS. 1 and 2 using microscopic photographs of the structure of the sintered body. Figure 1 shows the case where TiH 2 is not added, and many pores can be seen, but in Figure 2, there are many pores.
When TiH 2 was added, no pores were observed, resulting in an ideal structure. The high-strength ultra-hard material of the present invention can be produced as follows. A predetermined amount of complex boride powder (average particle size of 3 μm or less) and a predetermined amount of TiH 2 powder (particle size of 350 mesh or less) are added to TiB 2 powder with an average particle size of 3 μm or less, and wet-mixed in a vibrating ball mill. After thorough pulverization, dry granulation is performed. This mixed powder is filled into a graphite mold, for example, and heated in a vacuum, in a neutral or reducing atmosphere such as argon gas or hydrogen gas, under a pressure of 100 Kg/cm2 or more , and at a temperature range of 1400 to 1800°C. Either by heating, or by compressing and molding the above mixed powder in advance, a compacted powder body is heated to 1700~
It can be produced by normal sintering at a temperature range of 2000°C followed by HIP treatment. The sintered bodies obtained in this way are all
It has excellent hardness, transverse rupture strength, and relative density, making it suitable for cutting tools, heat engine parts, and wear-resistant materials. Hereinafter, the present invention will be explained in more detail with reference to Examples. The compositions of the materials used in the examples are shown in Table 1.

【表】 実施例 TiB2粉末と複硼化物粉末とTiH2粉末とを第2
表に示す各種の割合に配合して、約2時間ボール
ミルで湿式混合し、N2ガス中で乾燥造粒した。
この混合粉末を黒鉛型に充填し、真空中におい
て、150Kg/cm2で加圧しながら1600℃の温度で30
分間焼結した。また、前記混合粉末を、あらかじ
め約1000Kg/cm2の圧力で圧縮成形したものを、真
空中において、1900℃の温度で30分間加熱した
後、1500℃、2000気圧で60分間HIP処理を行つ
た。このようにして得た焼結体の特性を第2表に
示した。
[Table] Example TiB 2 powder, complex boride powder and TiH 2 powder were
They were blended in various proportions shown in the table, wet mixed in a ball mill for about 2 hours, and dried and granulated in N2 gas.
This mixed powder was filled into a graphite mold and heated to 1600°C under pressure at 150Kg/ cm2 in a vacuum for 30 minutes.
Sintered for minutes. In addition, the mixed powder was compression molded in advance at a pressure of about 1000 kg/cm 2 , heated in a vacuum at a temperature of 1900°C for 30 minutes, and then subjected to HIP treatment at 1500°C and 2000 atm for 60 minutes. . The properties of the sintered body thus obtained are shown in Table 2.

【表】【table】

【表】 (注) *印は普通焼結
以上の実施例からわかるように、硬度2000〜
3000、抗折力140〜170Kg/mm2、密度約100%の高
硬度で、しかも抗折力の高い緻密な焼結体が得ら
れた。
[Table] (Note) *marks indicate normal sintering. As can be seen from the above examples, the hardness is 2000~
3000, a transverse rupture strength of 140 to 170 Kg/mm 2 , a density of about 100%, and a dense sintered body with high hardness and high transverse rupture strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTiH2を添加しない場合、第2図は
TiH2を添加した場合の焼結体の組織の顕微鏡写
真である。
Figure 1 shows the case without adding TiH 2, Figure 2 shows the case where TiH 2 is not added.
It is a micrograph of the structure of a sintered compact when TiH 2 is added.

Claims (1)

【特許請求の範囲】[Claims] 1 TiB2粉末に、複硼化物Mo2FeB2、Mo2CoB2
および、Mo2NiB2の粉末の中から選ばれた少な
くとも1種以上を2〜40重量%、TiH2を0.1〜10
重量%をそれぞれ添加混合して、真空中または不
活性ガス中において、1400〜1800℃の温度でホツ
トプレスするか、または、1700〜2000℃の温度で
普通焼結した後に熱間静水圧プレス(HIP)をす
ることを特徴とする硼化物系高強度超硬質材料の
製造方法。
1 TiB 2 powder, complex borides Mo 2 FeB 2 , Mo 2 CoB 2
and 2 to 40% by weight of at least one selected from Mo 2 NiB 2 powder, and 0.1 to 10% of TiH 2
% by weight, respectively, and hot-pressed at a temperature of 1400 to 1800℃ in vacuum or inert gas, or hot isostatically pressed (HIP) after normal sintering at a temperature of 1700 to 2000℃. ) A method for producing a boride-based high-strength ultra-hard material.
JP58209952A 1983-11-10 1983-11-10 Boride-base high-strength sintered hard material Granted JPS60103148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58209952A JPS60103148A (en) 1983-11-10 1983-11-10 Boride-base high-strength sintered hard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58209952A JPS60103148A (en) 1983-11-10 1983-11-10 Boride-base high-strength sintered hard material

Publications (2)

Publication Number Publication Date
JPS60103148A JPS60103148A (en) 1985-06-07
JPH0350808B2 true JPH0350808B2 (en) 1991-08-02

Family

ID=16581381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58209952A Granted JPS60103148A (en) 1983-11-10 1983-11-10 Boride-base high-strength sintered hard material

Country Status (1)

Country Link
JP (1) JPS60103148A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947193A (en) * 1989-05-01 1990-08-07 Xerox Corporation Thermal ink jet printhead with improved heating elements
US5976205A (en) * 1996-12-02 1999-11-02 Norton Company Abrasive tool
CN104264092A (en) * 2014-09-04 2015-01-07 天津大学 Preparation method of Mo2FeB2-base metal ceramic coating applied to surface of die steel
CN112063869B (en) * 2020-08-27 2022-04-29 吉林大学 Preparation method of hydrogen-assisted powder metallurgy titanium-based composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945971A (en) * 1972-08-31 1974-05-02
JPS5742578A (en) * 1980-08-26 1982-03-10 Kogyo Gijutsuin High strength composite sintered material
JPS57129876A (en) * 1981-01-29 1982-08-12 Toshiba Tungaloy Co Ltd Boride super hard heat-resistant material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945971A (en) * 1972-08-31 1974-05-02
JPS5742578A (en) * 1980-08-26 1982-03-10 Kogyo Gijutsuin High strength composite sintered material
JPS57129876A (en) * 1981-01-29 1982-08-12 Toshiba Tungaloy Co Ltd Boride super hard heat-resistant material

Also Published As

Publication number Publication date
JPS60103148A (en) 1985-06-07

Similar Documents

Publication Publication Date Title
US4332755A (en) Sintered silicon carbide - aluminum nitride articles and method of making such articles
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
JPH0350808B2 (en)
JPH04130065A (en) Method of forming high-density metal boride complex
JPS5919903B2 (en) Hot press manufacturing method of SiC sintered body
JPH03208865A (en) Manufacture of refractory composite article
JPH0411506B2 (en)
JPS632913B2 (en)
JP2745030B2 (en) Silicon nitride sintered body and method for producing the same
JPS6325274A (en) Silicon carbide powder mixture and sintered ceramic product
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JP2863829B2 (en) High toughness, high strength, high hardness alumina-based composite material
JPS6355165A (en) Tib2 base sintering material and manufacture
JPH0122233B2 (en)
JP3570676B2 (en) Porous ceramic body and method for producing the same
JPS6230665A (en) High temperature strength sintered body
JPH0146472B2 (en)
JP2004107691A (en) High strength titanium alloy and its production method
JP2840688B2 (en) Manufacturing method of aluminum oxide sintered body
JPS63282166A (en) High-density metal boride-base sintered ceramics body
JPH03229832A (en) Manufacture of nb-al intermetallic compound
JPH02229767A (en) Process for sintered molding having controlled grain size
JPS63230570A (en) Sic-tic normal pressure sintered body and manufacture
JPH01219062A (en) Production of silicon nitride sintered body
JPH02501382A (en) Method for hot isostatic pressing of silicon nitride bodies reinforced with carbide fibers and carbide whiskers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees