JPS60103148A - Boride-base high-strength sintered hard material - Google Patents

Boride-base high-strength sintered hard material

Info

Publication number
JPS60103148A
JPS60103148A JP58209952A JP20995283A JPS60103148A JP S60103148 A JPS60103148 A JP S60103148A JP 58209952 A JP58209952 A JP 58209952A JP 20995283 A JP20995283 A JP 20995283A JP S60103148 A JPS60103148 A JP S60103148A
Authority
JP
Japan
Prior art keywords
powder
mixture
hard material
boride
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58209952A
Other languages
Japanese (ja)
Other versions
JPH0350808B2 (en
Inventor
Tadashi Takahashi
高橋 粛
Tatsuhiko Tanaka
龍彦 田中
Yoshikazu Kondo
近藤 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP58209952A priority Critical patent/JPS60103148A/en
Publication of JPS60103148A publication Critical patent/JPS60103148A/en
Publication of JPH0350808B2 publication Critical patent/JPH0350808B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a high-strength sintered hard material with superior wear resistance, corrosion resistance and heat resistance by adding a mixture of powder of a composite boride consisting of B, Mo and Fe, Co, Ni or the like with TiH2 powder as a binding material to TiB2 powder as a hard material and by carrying out sintering. CONSTITUTION:To hard TiB2 powder of <=3mum average particle size is added a mixture of 2-40% one or more kinds of composite borides of <=3mum average particle size such as Mo2FeB2, Mo2CoB2 and Mo2NiB2 with 0.1-10% TiH2 powder of <=350 mesh particle size as a binding material, and they are mixed. This mixture is wet-ground, dried, filled into a graphite mold, and hot-pressed at 1,400-1,800 deg.C under >=100kg/cm<2> pressure in vacuum or an inert gaseous atmosphere. A green compact of the mixture may be sintered at 1,700-2,000 deg.C and hot-pressed under hydrostatic pressure.

Description

【発明の詳細な説明】 本発明はTl1iB2を硬質相として含み、i’e、 
Co、またはNiとMoとの複硼化物およびTiを結合
相として含む新規な硼化物系高強度超硬質材料に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes Tl1iB2 as a hard phase, i'e,
The present invention relates to a novel boride-based high-strength ultrahard material containing Co or a complex boride of Ni and Mo and Ti as a binder phase.

TiB2は、高硬度、高融点でしかも高温強度が極めて
高い化合物であるために、切削工具材料や熱機関の部品
材料などの高硬度、耐摩耗性、耐熱性などの要求される
用途が期待されている材料であるが、1lIi132単
体の焼4’i体は、抗折力が低く、もろいという欠点を
もっている。したがって、適当な結合剤を添加して、強
度の大きい焼結体が得られるよう(二することが必要で
あり、そのため(二は結合剤として融点が高く、靭性の
大きいものが要求される。
TiB2 is a compound with high hardness, high melting point, and extremely high strength at high temperatures, so it is expected to be used in applications that require high hardness, wear resistance, and heat resistance, such as cutting tool materials and heat engine component materials. However, the sintered 4'i body of 1lIi132 alone has the drawback of having a low transverse rupture strength and being brittle. Therefore, it is necessary to add an appropriate binder to obtain a sintered body with high strength, and therefore, a binder with a high melting point and high toughness is required.

本発明者らは、このような要求(二対して、鋭意研究を
行い、Fe、co、またはNiとMoとの複硼化物が好
適であることを見い出し、これらをTiB2粉末に配合
して焼結した硬度の庇い硼化物系超硬質材料を提案した
(特にゾ1昭57−155970%しかしながら、これ
らの焼結体は、極めて高硬度である(マイクロビッカー
ス硬度■仮=2,000〜3,000)が、抗折力が1
00 kg、I/1ar2前後となっており、さら(二
高強度の要求される用途(二対しては十分に対応し得な
い面がある。そこで、硬度を落さず(二強度をさらに向
上させるべく研究を重ねた結果、Ti112を添加して
焼結することにより強度が著しく向上することを見い出
し、この知見に基づいて本発明をなすにいたった。
The present inventors conducted extensive research to meet these demands and found that complex borides of Fe, Co, or Ni and Mo are suitable, and they were blended with TiB2 powder and sintered. However, these sintered bodies have extremely high hardness (micro-Vickers hardness ■temporary = 2,000-3, 000), but the transverse rupture strength is 1
00 kg, around I/1ar2, and there are some applications that require high strength. As a result of repeated research, it was discovered that the strength was significantly improved by adding Ti112 and sintering, and based on this knowledge, the present invention was made.

すなわち、本発明の主たる目的は、WCC超超硬合金以
上硬度範囲を包含でき、しかも、極めて強度の高い硼化
物系高強度超硬質材料を提供すること(=あり、硬度が
Hv= 2,000〜3,000の範囲(=あって抗折
力が140〜170 hg/r;an2の範囲である。
That is, the main object of the present invention is to provide a boride-based high-strength ultra-hard material that can cover a hardness range higher than that of WCC cemented carbide and has extremely high strength. ~3,000 (=with a transverse rupture strength of 140 to 170 hg/r; an2).

本発明の他の目的は、耐摩耗性、耐食性、おにび耐熱性
(1優れた高強度超硬質材料を提供すること(二あり、
さら(1他の目的は、より安価な制強度超硬質材別を提
供することにある。
Another object of the present invention is to provide a high-strength ultra-hard material with excellent wear resistance, corrosion resistance, and heat resistance (1).
Another object of the present invention is to provide an ultra-hard material with a lower cost.

以下、本発明の詳細(二ついて説明する。本発明の硼化
物系高強度超硬質材料は、Ti132を硬質相とし、複
硼化物MofeB2、Mo2Co132およびPvlo
2Ni132 (J)中から選ばれた1種以上とTiと
を結合相とすることにより構成される。TiB2の最終
の平均粒径は、3μm程度以下とすることが好ましい。
The details of the present invention will be explained below.
It is constructed by using one or more selected from 2Ni132 (J) and Ti as a bonding phase. The final average particle size of TiB2 is preferably about 3 μm or less.

結合相として用いる複ayj化物は、全軍が、(二対し
て2〜40重退%の範囲で添加するのが適当である。こ
の量が、2重1)%未hj心では十分な機械的強度が得
られないし40重星形をこえると硬度が低下する。また
、Tiは、配合時、水素化合物Ti1−5の形で、金玉
h1に対して0.1〜10重1+!96の範囲で添加す
るのが適当である。TiH2は焼結の過程で500〜6
00℃の範囲で熱分解して1−12ガスを発生し、これ
がTiB2粉末や複硼化物粉末の表面に付着した02ガ
スなどの還元除去やFe族金属の酸化物を還元すること
により、粉末間の濡れ性を著しく向上せしめる効果があ
ると考えられる。したがって、’l’1)−12の添加
量が0.1重量%未満では前記効果が十分発揮されず機
械的強度の向上が得られないし、10重量%をこえろと
硬度および靭性ともに低下する。一般に、焼結雰囲気と
して、112ガスを使用する方法があるが、汁粉体の内
部全体(二l−12ガスを通すためには、雰囲気圧力を
一定範囲で負圧状態に保たねばならないので精密な圧力
制御装置が必要になり、また、このような方法では、圧
粉体中に閉気孔が存在する場合は、その部分が還元され
ず、焼結体は必ずしも均質なM1織とならないなどの欠
点を有している。TiH2の第2の効果は、焼結時、熱
分解して生じた活性なIP+が高温でTiB2の一部と
反応して、TiBを生成する過程があるために、全体の
焼結性が非常(:よくなり、気孔の全くない密度1oO
%の焼結体を得ることができるようになったことである
It is appropriate to add the complex compound used as the binder phase in the range of 2 to 40 percent (2 to 2). hardness decreases if it exceeds a 40-fold star shape. In addition, when blending, Ti is in the form of a hydrogen compound Ti1-5, and is 0.1 to 10 times 1+ to gold ball h1! It is appropriate to add within the range of 96%. TiH2 is reduced to 500-6 during the sintering process.
Pyrolysis in the range of 00°C generates 1-12 gas, which reduces and removes 02 gas adhering to the surface of TiB2 powder and complex boride powder, and reduces oxides of Fe group metals. It is thought that this has the effect of significantly improving the wettability between the layers. Therefore, if the amount of 'l'1)-12 added is less than 0.1% by weight, the above effects will not be sufficiently exhibited and no improvement in mechanical strength will be obtained, and if it exceeds 10% by weight, both hardness and toughness will decrease. In general, there is a method of using 112 gas as the sintering atmosphere, but in order to pass the 112 gas throughout the inside of the sintered powder (2L-12 gas), the atmospheric pressure must be maintained in a negative pressure state within a certain range, so precision is required. In addition, with this method, if there are closed pores in the powder compact, those parts will not be reduced, and the sintered compact will not necessarily have a homogeneous M1 weave. The second effect of TiH2 is that during sintering, active IP+ generated by thermal decomposition reacts with a part of TiB2 at high temperature to generate TiB. The overall sinterability is very good (density 1oO with no pores)
% of sintered bodies can now be obtained.

これらの効果を焼結体の組織の顕微鏡写真で第1図と第
2図に示す。第1図は、Ti142を添加しない場合で
、気孔が多く見られるが、第2図の+1lili2を添
加した場合は気孔は全く見られず理想的な組織となって
いる。
These effects are shown in FIGS. 1 and 2 using microscopic photographs of the structure of the sintered body. In FIG. 1, many pores are seen when Ti142 is not added, but when +1lili2 is added in FIG. 2, no pores are seen at all, resulting in an ideal structure.

本発明の高強度超硬質材料の製造は、っぎのよう(′−
シて行うことができる。平均粒径3μm以下のTiB2
粉末(=、所定量の複硼化物粉末(平均粒径3μm以下
)と所定量のTiH2粉末(粒径350メツシー以下)
を添加して、振動ボールミルで湿式混合と粉砕を十分行
った後、乾燥造粒する。この混合粉末を、たとえば、黒
鉛型(二充填し、真空中アルゴンガスまたは水素ガスの
ような中性または還元性雰囲気中において、100 k
g/cm2以上の圧力下で−1,40F1〜1−Rrl
 no(’ 〕温W 瀬s l用−r’ 1+n mす
7、か、あるいは、前記の混合粉末を、あらかじめ圧縮
成形した圧粉体を、前記の雰囲気中において、1、70
0〜2,000℃の温度範囲で普通焼結した後(二iI
 i P処理すること(二よって製造することができる
The production of the high-strength ultra-hard material of the present invention is as follows:
It can be done by TiB2 with an average particle size of 3 μm or less
Powder (=, a predetermined amount of complex boride powder (average particle size of 3 μm or less) and a predetermined amount of TiH2 powder (particle size of 350 mesh or less)
is added, sufficiently wet mixed and pulverized using a vibrating ball mill, and then dried and granulated. This mixed powder is heated, for example, in a graphite mold (two-packed) at 100 k in a neutral or reducing atmosphere such as argon gas or hydrogen gas in vacuum.
-1,40F1~1-Rrl under pressure of g/cm2 or more
no (' ) warm W sl -r' 1+n m 7, or a green compact obtained by compression molding the above mixed powder in advance in the above atmosphere for 1,70 m
After normal sintering in the temperature range of 0 to 2,000℃ (2iI
It can be produced by i P treatment (2).

このよう(二して;’r’rられだ焼結体は、いずれも
、硬度、抗折力、■1対’jj、’r I切(=優れ、
切削工具、熱機関部品、耐厚性材Y−’lどして好適で
ある。
In this way, 'r'r sintered bodies all have hardness, transverse rupture strength,
It is suitable for cutting tools, heat engine parts, thick resistant materials, etc.

以下、実施例により、本発明なさらに詳細(二説明する
。実施例に供した4A料の組成は、第1表(1示した。
Hereinafter, the present invention will be explained in further detail with reference to Examples. The composition of the 4A material used in the Examples is shown in Table 1.

第1表 化合物の組成(重量%) 実施例 1i1i132粉末と複硼化物粉末とTiH2粉末とを
第2表に示す各種の割合(二配合して、約2時間ボール
ミルで湿式混合し、 N2ガス中で乾燥造粒した。この
混合粉末を黒鉛型に充填し、真空中において、150 
kg/cm2で加圧しながら1,600’Cの温度で3
0分間13′と結した。また、前記混合粉末を、あらか
じめ約1.000 kg/cm2の圧力で圧縮成形した
ものを、真空中において、1,900℃の温度で30分
間加熱した後、1.500℃、2.000気LLで60
分間1(IP処理を行った。このよう(−シて得た焼結
体の特性を第2表に示した。
Table 1 Composition of compounds (wt%) Example 1i1i132 powder, complex boride powder, and TiH2 powder were mixed in various proportions shown in Table 2, wet mixed in a ball mill for about 2 hours, and mixed in N2 gas. This mixed powder was filled into a graphite mold and heated at 150 ml in vacuum.
3 at a temperature of 1,600'C while pressurizing at kg/cm2.
It tied to 13' for 0 minutes. Further, the mixed powder was compression-molded in advance at a pressure of about 1.000 kg/cm2, heated in a vacuum at a temperature of 1,900°C for 30 minutes, and then heated at 1.500°C and 2.000 atm. 60 for LL
An IP treatment was performed for 1 minute. The properties of the sintered body obtained in this way are shown in Table 2.

以上の実施例かられかるように、硬度2,000〜3、
O’OO1抗折力14’ O〜170 kg/mm”、
密度約100%の高硬度で、しかも抗折力の高い緻密な
焼結体が得られた。
As can be seen from the above examples, the hardness is 2,000 to 3,
O'OO1 Transverse rupture strength 14' O~170 kg/mm",
A dense sintered body with a density of about 100%, high hardness, and high transverse rupture strength was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は’l”1t(2を添加しない場合、第2図はT
iH2を添加した場合の焼結体の組織の顕微鏡写真であ
る。 図−’+i?−・I:”’:、・、1°すF、べ疾’J
ulL>第 11ズ: 第 ・2 図 手続補正書(方式) 1.事件の表示 昭和58年特許願第209952号2
、発明の名称 硼化物系高強度超硬質材料3、補正をす
る者 事件との関係 特許出願人 代表者吉崎鴻造 4、代理人 郵便番号 100 住所< 、t、F=、・i) 東京都千代田区霞が関−
丁目4番3号東洋鋼鈑株式会社内
Figure 1 shows 'l'1t (if 2 is not added, Figure 2 shows T
It is a micrograph of the structure of a sintered compact when iH2 is added. Figure-'+i? -・I:”':,・, 1°SF, Bedis'J
ulL>No. 11: Section ・2 Drawing Procedure Amendment (Method) 1. Display of case 1982 Patent Application No. 209952 2
, Title of the invention: Boride-based high-strength ultra-hard material 3, Relationship with the person making the amendment: Representative Kozo Yoshizaki 4, Agent zip code: 100 Address < , t, F=,・i) Tokyo Kasumigaseki, Chiyoda Ward
4-3 Toyo Kohan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] TiB2粉末(−1複硼化物Mt2FeB2、Mo2C
oL32および、Mo2NiB2の粉末の中から選ばれ
た少なくとも1棟以上を2〜40重量%、TiH2を0
.1〜10屯量%をそれぞれ添加混合して、真空中また
は不活性ガス中において、1,400〜i、soo℃の
温度でホストプレスするか、または、1,700〜2,
000℃の温度で普通焼結した後(二熱間静水圧プレス
(LiIP)をすることを特徴とする硼化物系高強度超
硬質材料。
TiB2 powder (-1 complex boride Mt2FeB2, Mo2C
2 to 40% by weight of at least one selected from oL32 and Mo2NiB2 powders, and 0% of TiH2.
.. Add and mix 1 to 10% by volume, and host press in vacuum or in an inert gas at a temperature of 1,400 to 1,000°C, or 1,700 to 2,000°C.
A boride-based high-strength ultra-hard material characterized by being normally sintered at a temperature of 1,000°C and then subjected to two-hot isostatic pressing (LiIP).
JP58209952A 1983-11-10 1983-11-10 Boride-base high-strength sintered hard material Granted JPS60103148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58209952A JPS60103148A (en) 1983-11-10 1983-11-10 Boride-base high-strength sintered hard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58209952A JPS60103148A (en) 1983-11-10 1983-11-10 Boride-base high-strength sintered hard material

Publications (2)

Publication Number Publication Date
JPS60103148A true JPS60103148A (en) 1985-06-07
JPH0350808B2 JPH0350808B2 (en) 1991-08-02

Family

ID=16581381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58209952A Granted JPS60103148A (en) 1983-11-10 1983-11-10 Boride-base high-strength sintered hard material

Country Status (1)

Country Link
JP (1) JPS60103148A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303846A (en) * 1989-05-01 1990-12-17 Xerox Corp Thermal ink jet printing head
WO1998024593A1 (en) * 1996-12-02 1998-06-11 Norton Company Abrasive tool
CN104264092A (en) * 2014-09-04 2015-01-07 天津大学 Preparation method of Mo2FeB2-base metal ceramic coating applied to surface of die steel
CN112063869A (en) * 2020-08-27 2020-12-11 吉林大学 Preparation method of hydrogen-assisted powder metallurgy titanium-based composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945971A (en) * 1972-08-31 1974-05-02
JPS5742578A (en) * 1980-08-26 1982-03-10 Kogyo Gijutsuin High strength composite sintered material
JPS57129876A (en) * 1981-01-29 1982-08-12 Toshiba Tungaloy Co Ltd Boride super hard heat-resistant material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945971A (en) * 1972-08-31 1974-05-02
JPS5742578A (en) * 1980-08-26 1982-03-10 Kogyo Gijutsuin High strength composite sintered material
JPS57129876A (en) * 1981-01-29 1982-08-12 Toshiba Tungaloy Co Ltd Boride super hard heat-resistant material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02303846A (en) * 1989-05-01 1990-12-17 Xerox Corp Thermal ink jet printing head
WO1998024593A1 (en) * 1996-12-02 1998-06-11 Norton Company Abrasive tool
US5976205A (en) * 1996-12-02 1999-11-02 Norton Company Abrasive tool
CN104264092A (en) * 2014-09-04 2015-01-07 天津大学 Preparation method of Mo2FeB2-base metal ceramic coating applied to surface of die steel
CN112063869A (en) * 2020-08-27 2020-12-11 吉林大学 Preparation method of hydrogen-assisted powder metallurgy titanium-based composite material

Also Published As

Publication number Publication date
JPH0350808B2 (en) 1991-08-02

Similar Documents

Publication Publication Date Title
JP2011524466A (en) Metal-infiltrated silicon titanium and aluminum carbide bodies
JP2668955B2 (en) Double boride-based sintered body and method for producing the same
IE69760B1 (en) Method of forming diamond impregnated carbide via the in-situ conversion of dispersed graphite
JPS62275063A (en) Manufacture of silicon carbide-aluminum nitride sintered product
JPH02293380A (en) Sintered silicon nitride ceramics
JPS60103148A (en) Boride-base high-strength sintered hard material
JPS6132275B2 (en)
JPH01261270A (en) Metal-containing titanium carbonitride-chromium carbide ceramic
JPH03208865A (en) Manufacture of refractory composite article
JPH0411506B2 (en)
JPS632913B2 (en)
JP2745030B2 (en) Silicon nitride sintered body and method for producing the same
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JP2502322B2 (en) High toughness cermet
JPH09316589A (en) Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
JP2004107691A (en) High strength titanium alloy and its production method
JPS6332750B2 (en)
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPH02501382A (en) Method for hot isostatic pressing of silicon nitride bodies reinforced with carbide fibers and carbide whiskers
JPS60131867A (en) High abrasion resistance superhard material
JPH0122233B2 (en)
Urbanovich Properties of nanocrystalline titanium nitride-based materials prepared by high-pressure sintering
JPH07822B2 (en) High density metal boride based ceramics
JPS6016867A (en) High hardness sintered body
JPS61270265A (en) High strength high tougness tib2 base composite sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees