JPS60131867A - High abrasion resistance superhard material - Google Patents

High abrasion resistance superhard material

Info

Publication number
JPS60131867A
JPS60131867A JP58236399A JP23639983A JPS60131867A JP S60131867 A JPS60131867 A JP S60131867A JP 58236399 A JP58236399 A JP 58236399A JP 23639983 A JP23639983 A JP 23639983A JP S60131867 A JPS60131867 A JP S60131867A
Authority
JP
Japan
Prior art keywords
powder
hardness
wear
strength
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58236399A
Other languages
Japanese (ja)
Other versions
JPS6150909B2 (en
Inventor
高橋 粛
龍彦 田中
近藤 嘉一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP58236399A priority Critical patent/JPS60131867A/en
Publication of JPS60131867A publication Critical patent/JPS60131867A/en
Publication of JPS6150909B2 publication Critical patent/JPS6150909B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、高硬度で耐摩耗性に優れた硼化物系硬質材料
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boride-based hard material that has high hardness and excellent wear resistance.

TiB2は、高硬度、高融点でしかも高温強度が極めて
高い化合物であるために、切削工具材料や熱機関の部品
材料などの高硬度、耐摩耗性、耐熱性などの要求される
用途が期待されている材料であるが、TiB2単体の焼
結体は、抗折力が低く、もろいという欠点をもっている
。したがって、適当な結合剤を添加して、強度の大きい
焼結体が得られるようにすることが必要でるり、そのた
めには、結合剤として融点が高く、靭性の大きいものが
要求される。
TiB2 is a compound with high hardness, high melting point, and extremely high strength at high temperatures, so it is expected to be used in applications that require high hardness, wear resistance, and heat resistance, such as cutting tool materials and heat engine component materials. However, the sintered body of TiB2 alone has the drawbacks of low transverse rupture strength and brittleness. Therefore, it is necessary to add a suitable binder to obtain a sintered body with high strength, and for this purpose, a binder having a high melting point and high toughness is required.

TiCJPTiNも、高硬度、高融点材料であり、これ
らは分散型サーメットとして従来から広く実用されてい
るが、鉄鋼材料に対する耐摩耗性を入超式迅速摩耗試験
機を用いて測定すると、比摩耗量は高速域で1 X 1
0−” td/橡f以上となり実用上十分でない面があ
る。
TiCJPTiN is also a high-hardness, high-melting-point material, and has been widely used as a dispersion cermet. However, when its wear resistance on steel materials is measured using an ultra-thin type rapid wear tester, the specific wear rate is is 1 x 1 in the high speed range
0-'' td/f or more, which is not sufficient for practical use.

また、WCを基材とする超硬合金は、硬度が高く靭性も
優れているので切削工具や金型素材などに広く使用され
ているが、耐食性や高温耐酸化性に乏しいなどの欠点が
あり、硬度もマイクロビッカース硬度(以下Hvで示す
)で2.000程度までである。Co 、 W、 、 
Crを基材とするステライトは、上記欠点は緩和されて
いるものの硬度に劣り、さらに、高速度鋼も硬度が低く
、と(に高温硬度に劣るなどの欠点をもっている。
In addition, cemented carbide based on WC has high hardness and excellent toughness, so it is widely used for cutting tools and mold materials, but it has drawbacks such as poor corrosion resistance and high-temperature oxidation resistance. The hardness is also up to about 2.000 in micro Vickers hardness (hereinafter referred to as Hv). Co, W, ,
Stellite, which is based on Cr, has less hardness, although the above-mentioned drawbacks have been alleviated, and high-speed steel also has drawbacks such as low hardness and inferior high-temperature hardness.

これら従来の欠点を解決するために、最近、鉄柵化物お
よび複硼化物を硬質相とする硬質焼結合金が提案されて
いる。(たとえば、特公昭54−27818号、特公昭
56−89(1’4号および特公昭56−15773号
)。これらに開示されている合金では、最高硬度が、H
v=2,000程度であるために、さらに高硬度が要求
される用途に対しては十分に対応し得ない面がある。
In order to solve these conventional drawbacks, hard sintered alloys containing iron fences and complex borides as hard phases have recently been proposed. (For example, Japanese Patent Publication No. 54-27818, Japanese Patent Publication No. 56-89 (1'4, and Japanese Patent Publication No. 56-15773). In the alloys disclosed in these, the maximum hardness is H
Since v=2,000, it may not be suitable for applications requiring even higher hardness.

このような要求に対して、Fe、CoまたはNiとMO
またはWとの複硼化物が、結合剤として好適であること
を見い出し、これらをTiBz粉末に配合して焼結した
硬度の高い硼化物系超硬質材料を提案した(特願昭57
−155970号および特願昭58−209951号)
。これらの焼結体は、極めて高硬度である(Hv= 2
.000〜a、 o o o >が、抗折力が100に
一程度となっており、硬度を落さずに強度をより向上さ
せることが好ましく、焼結助剤についてさらに検討を重
ねた結果、TiH2を添加混合して焼結することにより
、強度が著しく向上することを見い出し、硼化物系高強
度超硬質材料として提案した(特願昭58−20995
2号)。
For such requirements, Fe, Co or Ni and MO
We discovered that complex borides with or W are suitable as binders, and proposed a boride-based ultrahard material with high hardness, which was blended with TiBz powder and sintered.
-155970 and Japanese Patent Application No. 58-209951)
. These sintered bodies have extremely high hardness (Hv=2
.. 000~a, o o o > has a transverse rupture strength of about 1 in 100, and it is preferable to further improve the strength without reducing the hardness, and as a result of further studies on sintering aids, We discovered that the strength was significantly improved by adding and mixing TiH2 and sintering it, and proposed it as a boride-based high-strength ultra-hard material (Japanese Patent Application No. 58-20995).
No. 2).

これらの焼結体は、耐摩耗性試験の結果、A1合金、C
u、 8K)(、SiCI’J 0)’11合材ナト’
4:対し/ ”C1,を良好であったが、5s41や5
45cなどの鉄鋼材料に対しては、凝着摩耗を生じ易く
、鉄鋼用耐摩耗材料とし・ではまだ欠点をもっている。
As a result of the wear resistance test, these sintered bodies were found to be A1 alloy, C
u, 8K) (, SiCI'J 0)'11 composite material nato'
4: Against / “C1, was good, but 5s41 and 5
For steel materials such as 45c, it is easy to cause adhesive wear, and it still has drawbacks when used as a wear-resistant material for steel.

そこで、このような要求に対して、TiCとTiN、ま
たは、T1CNの粉末を添加混合して焼結することによ
り高硬度で抗折力も優れ、しかも、耐摩耗性の極めて高
い焼結体が得られることを見い出し、これらの知見に基
づいて、本発明をなすにいたった。
Therefore, in response to these demands, a sintered body with high hardness, excellent transverse rupture strength, and extremely high wear resistance can be obtained by adding and mixing powders of TiC and TiN or T1CN and sintering the mixture. Based on these findings, we have accomplished the present invention.

すなわち、本発明の主たる目的は、鉄鋼材料に対する高
耐摩耗性超硬質材料を提供することにある。本発明の他
の目的は、高硬度、高強度でかつ耐食性、耐熱性に優n
た高耐摩耗性超硬質材料を提供することにあり、さらに
他の目的は、より軽量でより安価な高耐摩耗性超硬質材
料を提供することにある。
That is, the main object of the present invention is to provide a highly wear-resistant ultra-hard material for steel materials. Another object of the present invention is to have high hardness, high strength, and excellent corrosion resistance and heat resistance.
Another object of the present invention is to provide a highly wear-resistant superhard material that is lighter and less expensive.

以下、本発明の詳細について説明する。本発明の高耐摩
耗性超硬質材料は、TiB’z粉末に、複硼化物Moz
FeIh 、Mo2CoBz、Mo2’NiB2、Mo
CoB、’ WzFeB2、W1CoB2、WzNiB
2、WFeBおよびWCoBの粉末の中から選ばれた少
なくとも1種以上を2〜15%、T’iC,TiNおよ
びT1CNの粉末の中から、C/Nの原子比が0.25
〜4.0の範囲であ、るように選ばれた配合粉末を10
〜55%、および、TiHz粉末を0.1〜10%をそ
れぞれ添加混合して、真空中において、焼結することを
特徴とするものである。
The details of the present invention will be explained below. The highly wear-resistant ultra-hard material of the present invention contains complex boride Moz in TiB'z powder.
FeIh, Mo2CoBz, Mo2'NiB2, Mo
CoB,' WzFeB2, W1CoB2, WzNiB
2. 2 to 15% of at least one selected from WFeB and WCoB powders, and a C/N atomic ratio of 0.25 from T'iC, TiN and T1CN powders.
~4.0, and the blended powder selected to be 10
55% of TiHz powder and 0.1 to 10% of TiHz powder are added and mixed and sintered in vacuum.

複硼化物は、全重量に対して2〜15%の範囲で添加す
ることが適当である。Mo2FeB2やW2N1lhな
どの複硼化物:(結合相)は、硬質相となるTi1hや
Ticの粒成長を抑制する効果が大きく、特に、’l’
ilhとTiCは相互に固溶し、これらのみの混合粉末
を焼結すると粒成長が著しく、ポアーの発生も多く、強
度の低い焼結体となるが、本発明の複硼化物粉末を添加
することにより粒成長が抑制されて微細粒子の商強度焼
結体が得られる。この太きな粒成長抑制効果は、単に、
Niなどの鉄族金属粉末やFeBなどMIl系(Mは金
属元素を示す)の硼化物粉末あるいはこれらの混合粉末
を配合する場合には得られないことである。また、前記
複硼化物は高温硬度もiW<(1,000℃で、Hv=
500〜700)、耐食性にも優れている。これらの量
が、2%未満では粒成長抑制効果が十分でなく、15体
を超えると凝着が大きくなり耐摩耗性が低下する。Ti
C、、TiNおよびT1CNは、C/Nの原子比が0.
25〜40の範囲であるように、これらの中から選んで
、10〜5596の範囲で添加することが適当である。
It is appropriate to add the complex boride in an amount of 2 to 15% based on the total weight. Complex borides such as Mo2FeB2 and W2N1lh (bind phase) have a great effect of suppressing the grain growth of Ti1h and Tic, which become hard phases.
ilh and TiC form a solid solution with each other, and when a mixed powder of only these is sintered, grain growth is significant, many pores are generated, and the result is a sintered body with low strength. However, when the complex boride powder of the present invention is added. As a result, grain growth is suppressed and a sintered body with fine grains and high commercial strength can be obtained. This thick grain growth suppressing effect is simply due to
This cannot be obtained by blending powders of iron group metals such as Ni, MII-based (M represents a metal element) boride powders such as FeB, or mixed powders thereof. Moreover, the high temperature hardness of the complex boride is iW<(at 1,000°C, Hv=
500 to 700) and excellent corrosion resistance. If the amount of these particles is less than 2%, the effect of suppressing grain growth will not be sufficient, and if it exceeds 15 particles, adhesion will increase and wear resistance will decrease. Ti
C, TiN and T1CN have a C/N atomic ratio of 0.
It is appropriate to select one from these and add it in a range of 10 to 5596, such as a range of 25 to 40.

TiCは、鉄鋼に対する耐凝着性に優れており、’ri
N4?T1CNは、TiCの粒成長抑制効果が太き(耐
酸化性、耐食性に優れている。これらの量が、10%未
満では鉄鋼材料との低速摩擦における比摩耗量が太き(
なり、55%を超えると硬度が低下し、高速摩擦におけ
る比摩耗量が大きくなる。C/Nの原子比は、0.25
〜40.好ましくは0.5〜3.0の範囲が適当でるる
。この比が、0.25未満すなわちNfiがC量の4倍
を超えると結合相との濡れ性が悪く、なるし、4.0を
超えるとTicの粒成長が著しくなる。TiHzは、0
.1〜10%、好まし曵は0.5〜8%の範囲で添加す
るのが適当である。この化合物は、真空焼結の過程で5
00〜700℃の温度範囲で熱分解してH2ガスを発生
し、これが粉末表面の吸着ガスや表面酸化物を還元する
ことにより、粉末間の濡れ性を著しく向上せしめる効果
がある。したがって、TiHzの添加量が、0.196
未満では還元効果が十分発揮されず機械的強度の向上が
得られないし、1096を超えると硬度および靭性とも
に低下する。一般に、焼結雰囲気として、H2ガスを使
用する方法があるが、圧粉体の内部全体にH2ガスを浸
透させるためには、雰囲気圧力を一定範囲で負圧状態に
保たねばならないので精密な圧力制御装置が必要になり
、また9、このような方法では圧粉体中に閉気孔が存在
する場合は、その部分には還元作用がおよばず、焼結体
は必ずしも均質な組織とならないなどの欠点がある。T
iHz添加の第2の効果は、焼結時熱分解して生じた非
常に活性なTiが、高温でTiBzと反応してTiBを
生成する過程があるために、全体の焼結を促進する。こ
の効果と前記還元効果との相乗作用により、気孔の全4
ない密度100%で高強度の焼結体が得られる。これら
の効果を焼結体の顕微鏡写真で第1囚と第2図に示す。
TiC has excellent adhesion resistance to steel, and
N4? T1CN has a strong grain growth suppressing effect on TiC (excellent oxidation resistance and corrosion resistance. If the amount of these is less than 10%, the specific wear amount in low-speed friction with steel materials is large (
If it exceeds 55%, the hardness decreases and the specific wear amount in high-speed friction increases. The atomic ratio of C/N is 0.25
~40. Preferably, a range of 0.5 to 3.0 is suitable. When this ratio is less than 0.25, that is, when Nfi exceeds 4 times the amount of C, wettability with the binder phase becomes poor, and when it exceeds 4.0, Tic grain growth becomes significant. TiHz is 0
.. It is appropriate to add it in a range of 1 to 10%, preferably 0.5 to 8%. In the process of vacuum sintering, this compound
It undergoes thermal decomposition in a temperature range of 00 to 700°C to generate H2 gas, which reduces adsorbed gas and surface oxides on the powder surface, thereby having the effect of significantly improving the wettability between the powders. Therefore, the amount of TiHz added is 0.196
If it is less than 1096, the reducing effect will not be sufficiently exerted and no improvement in mechanical strength will be obtained, and if it exceeds 1096, both hardness and toughness will decrease. Generally, there is a method of using H2 gas as the sintering atmosphere, but in order to infiltrate the entire interior of the powder compact with H2 gas, the atmospheric pressure must be maintained in a negative pressure state within a certain range, so precision is required. A pressure control device is required, and 9. In such a method, if there are closed pores in the green compact, the reduction effect will not reach those areas, and the sintered compact will not necessarily have a homogeneous structure. There are drawbacks. T
The second effect of iHz addition is that highly active Ti generated by thermal decomposition during sintering reacts with TiBz at high temperatures to generate TiB, which promotes the overall sintering. Due to the synergistic effect of this effect and the reduction effect, all four pores
A high-strength sintered body can be obtained with a density of 100%. These effects are shown in Figures 1 and 2 as microscopic photographs of the sintered body.

第1図はTiH2を添加しない場合で、気孔が多く観察
されるが、第2図のTiHzを添加した場合は気孔は全
く見られず理想的組織となっている。
In FIG. 1, many pores are observed without the addition of TiH2, but in the case of FIG. 2 with the addition of TiHz, no pores are observed at all, resulting in an ideal structure.

本発明の高耐摩耗性超硬質拐判の製造は、つぎのように
して行うことができる。平均粒径1μm以下のTiB2
粉末に、複硼化物粉末(平均粒径2μm以下) 、C/
Nの原子比が0.25〜4.0の範囲であるようなTi
C,TiNおよびT1CNの混合粉末(粒径1.6μm
)、およびTrHt扮末をそれぞtl、所定量配合して
、振動ボールミルで湿式混合と粉砕を十分に行った後、
乾燥造粒する。この混合粉末を、たとえば、黒鉛型に充
填し、真空中において、100 kglad以上の圧力
下で、1.4.00〜1.800℃の温度範囲で加熱す
るか、あるいは、HIE混合粉末を、あらかじめ圧縮成
形した圧粉体を、1.700〜2,000℃の温度範囲
で真空焼結することにより、好ましくは真空焼結後に、
熱間静水圧処理することによって製造することができる
。焼結雰囲気は、焼結中、常時、真空である必要はなく
1,400〜1,500℃以上の高温ではArガス等の
不活性ガスを用いることもできる。
The highly abrasion resistant ultra-hard printing paper of the present invention can be produced in the following manner. TiB2 with an average particle size of 1 μm or less
In the powder, complex boride powder (average particle size 2 μm or less), C/
Ti in which the atomic ratio of N is in the range of 0.25 to 4.0
Mixed powder of C, TiN and T1CN (particle size 1.6 μm
) and TrHt powder in predetermined amounts, and wet-mixed and pulverized thoroughly using a vibrating ball mill.
Dry and granulate. For example, this mixed powder is filled into a graphite mold and heated in a vacuum at a temperature of 1.4.00 to 1.800°C under a pressure of 100 kg rad or more, or the HIE mixed powder is By vacuum sintering a pre-compression-molded green compact at a temperature range of 1.700 to 2,000°C, preferably after vacuum sintering,
It can be produced by hot isostatic pressure treatment. The sintering atmosphere does not need to be vacuum at all times during sintering, and an inert gas such as Ar gas may be used at a high temperature of 1,400 to 1,500° C. or higher.

このようにして得られた焼結体は、いずれも、鉄鋼材料
に対する耐摩耗性に優れ、高硬度で、抗折力も高く、耐
摩耗材料、切削工具、熱機関部品として好適である。
All of the sintered bodies thus obtained have excellent wear resistance against steel materials, high hardness, and high transverse rupture strength, and are suitable as wear-resistant materials, cutting tools, and heat engine parts.

以下、実施例により、本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例に供した材料の組成は、第1表および第2表に示
した。
The compositions of the materials used in the examples are shown in Tables 1 and 2.

実施例A TiBz粉末に、Moと鉄族金属との複硼化物粉末、(
TiC+ TiN )、T1Co、iNo、s 、T1
Co、5No7の粉末、および、TiH2の粉末を、第
3表の実施例1〜7に示すそれぞれの割合に配合して、
約2時間振動ボールミルで湿式混合し、N2ガス中で乾
燥造粒した。
Example A TiBz powder, complex boride powder of Mo and iron group metal, (
TiC+TiN), T1Co, iNo, s, T1
Co, 5No7 powder, and TiH2 powder were blended in the respective proportions shown in Examples 1 to 7 in Table 3,
Wet mixing was carried out in a vibrating ball mill for about 2 hours, followed by dry granulation in N2 gas.

この混合粉末を黒鉛型(内径28 mm )に充填し、
第1表 Ti化合物の組成(重量%) 第2表 複硼1ヒ物の組成(重量%) 真空中において、150 kmdで加圧しながら1.5
50℃または1.600℃の温度で、30分間焼結した
。この焼結体から、4X8X25mの抗折試験片を切り
出し、抗折力、硬度および密度を1定した。また、28
m*X8■の焼結体の両面を200メツシユのダイヤモ
ンド砥石で平面研削し、入超式迅速摩耗試験機を用いて
、比摩耗量を測定した。これら゛の測定結果を比較材料
の測定結果とともに第3表に示した。密度はすべての実
施例で100%であった。なお、比摩耗量の測定条件は
、相手材8841.厚擦距#200m、最終荷重18.
9 kff、摩擦速度は0.94 (低速)と439(
高速) m/sである。比較例として示した実施例の8
と9は、同1〜7と同じ製法でつくったもので比摩耗量
が大きくなっている。
This mixed powder was filled into a graphite mold (inner diameter 28 mm),
Table 1 Composition of Ti compound (wt%) Table 2 Composition of compound porcelain (wt%) In a vacuum, while pressurizing at 150 kmd,
Sintering was carried out at a temperature of 50°C or 1.600°C for 30 minutes. A 4 x 8 x 25 m bending test piece was cut out from this sintered body, and its bending strength, hardness, and density were determined to be constant. Also, 28
Both surfaces of the sintered body of m*×8 cm were surface-ground using a 200-mesh diamond grindstone, and the specific wear amount was measured using a rapid abrasion tester. These measurement results are shown in Table 3 together with the measurement results of comparative materials. Density was 100% for all examples. Note that the specific wear amount measurement conditions were as follows: mating material 8841. Thick friction distance #200m, final load 18.
9 kff, friction speed is 0.94 (low speed) and 439 (
high speed) m/s. Example 8 shown as a comparative example
and No. 9 were made using the same manufacturing method as Nos. 1 to 7, and had a large specific wear amount.

実施例B TiB2粉末に、Wと鉄族金属との複硼化物の粉末、T
iC帖NO,8の粉末、および、TiH2の粉末を、第
4表の実施例10〜15に示すそれぞれの割合に配合し
て、実施例Aと同様の方法で焼結体をつくり、特性を測
定した。実施例16にはMoとの複硼化物を添加した場
合を示した。これらの特性を第4表に示した。
Example B TiB2 powder, complex boride powder of W and iron group metal, T
The powder of iC Chapter No. 8 and the powder of TiH2 were mixed in the respective proportions shown in Examples 10 to 15 in Table 4, and a sintered body was made in the same manner as in Example A, and the characteristics were determined. It was measured. Example 16 shows the case where a complex boride with Mo was added. These properties are shown in Table 4.

以上の実施例かられかるように、硬度2.100〜2.
600 、抗折力125〜150晦−1蜜度100%で
、しかも、鉄鋼材料に対する比摩耗量が、摩擦速度の広
い範囲にオ〕たって0.2〜0.5×10 ”−” d
/に9fという優れた焼結体が得られた。
As can be seen from the above examples, the hardness is between 2.100 and 2.100.
600, transverse rupture strength of 125 to 150, 100% hardness, and the specific wear amount to steel material is 0.2 to 0.5 x 10"-" over a wide range of friction speeds.
An excellent sintered body of /9f was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、Ti)Ifを添加しない場合、第2図は、T
iH2を添加した場合の焼結体の@織の顕微鏡写真であ
る。 図面の浄書(内容に変更な1.) 第 1 図 第2図 手続補正書(方式) %式% 事件の表示 昭和58年特許願第236399号発明の
名称 高耐摩耗性超硬質桐材 補正をする者 事件との関係 特許出願人 住 所 東京都千代田区霞が関−丁目4番3号代理人 郵便番号 100 住 所 東京都千代田区霞が関−r目4番3号補正の対
象 図 面
FIG. 1 shows the case where Ti) If is not added, and FIG. 2 shows the case where T
It is a micrograph of the @ weave of the sintered compact when iH2 is added. Engraving of drawings (changes in content 1.) Figure 1 Figure 2 Procedural amendment (method) % formula % Indication of case 1982 Patent Application No. 236399 Title of invention Highly wear-resistant super hard paulownia wood correction Patent applicant address: 4-3, Kasumigaseki-chome, Chiyoda-ku, Tokyo Agent postal code: 100 Address: No. 4-3, Kasumigaseki-chome, Chiyoda-ku, Tokyo Subject of amendment Drawings

Claims (1)

【特許請求の範囲】[Claims] TiBz粉末に、複硼化物MotFeBz、Mo*Co
Bz、MozNiB2、MoCoB %WzFeBz、
W2 CoB 2、WzNilh、WFeBおよびWC
oBの粉末の中から選ばれた少なくとも1種以上を2〜
15重景%(以下%は重量%を示す)、Ti0%TiN
およびT1CNの粉末の中からCハの原子比が0.25
〜4.0の範囲であるように選ばれた混合粉末を10〜
55%、および、TiH2粉末を0.1′〜10%をそ
れぞれ添加混合して、真空中において、焼結したことを
特徴とする高耐摩耗性超硬質材料。
TiBz powder, complex boride MotFeBz, Mo*Co
Bz, MozNiB2, MoCoB%WzFeBz,
W2 CoB 2, WzNilh, WFeB and WC
At least one or more selected from oB powders
15 weight% (hereinafter % indicates weight%), Ti0%TiN
And the atomic ratio of C in the T1CN powder is 0.25
The mixed powder selected to be in the range of 10 to 4.0
55% of TiH2 powder and 0.1' to 10% of TiH2 powder are added and mixed and sintered in vacuum.
JP58236399A 1983-12-16 1983-12-16 High abrasion resistance superhard material Granted JPS60131867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58236399A JPS60131867A (en) 1983-12-16 1983-12-16 High abrasion resistance superhard material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58236399A JPS60131867A (en) 1983-12-16 1983-12-16 High abrasion resistance superhard material

Publications (2)

Publication Number Publication Date
JPS60131867A true JPS60131867A (en) 1985-07-13
JPS6150909B2 JPS6150909B2 (en) 1986-11-06

Family

ID=17000180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58236399A Granted JPS60131867A (en) 1983-12-16 1983-12-16 High abrasion resistance superhard material

Country Status (1)

Country Link
JP (1) JPS60131867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348806A (en) * 1991-09-21 1994-09-20 Hitachi Metals, Ltd. Cermet alloy and process for its production
WO1998024593A1 (en) * 1996-12-02 1998-06-11 Norton Company Abrasive tool
CN109576547A (en) * 2018-12-21 2019-04-05 中南大学 A kind of ternary boride enhancing Ti(C, N) base metal-ceramic material and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348806A (en) * 1991-09-21 1994-09-20 Hitachi Metals, Ltd. Cermet alloy and process for its production
WO1998024593A1 (en) * 1996-12-02 1998-06-11 Norton Company Abrasive tool
US5976205A (en) * 1996-12-02 1999-11-02 Norton Company Abrasive tool
CN109576547A (en) * 2018-12-21 2019-04-05 中南大学 A kind of ternary boride enhancing Ti(C, N) base metal-ceramic material and preparation method thereof
CN109576547B (en) * 2018-12-21 2021-06-04 中南大学 Ternary boride reinforced Ti (C, N) -based metal ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JPS6150909B2 (en) 1986-11-06

Similar Documents

Publication Publication Date Title
US4217113A (en) Aluminum oxide-containing metal compositions and cutting tool made therefrom
US5905937A (en) Method of making sintered ductile intermetallic-bonded ceramic composites
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JPS627149B2 (en)
JPS60131867A (en) High abrasion resistance superhard material
JP2502364B2 (en) High hardness sintered body for tools
JPS5861255A (en) High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool
JPS5861253A (en) High toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS61146763A (en) Manufacture of sintered body for cutting tool
JPS5861254A (en) High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool
JP2502322B2 (en) High toughness cermet
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JPS58213842A (en) Manufacture of high strength cermet
JP2796011B2 (en) Whisker reinforced cemented carbide
JP2502362B2 (en) High hardness sintered body for tools
JP3232599B2 (en) High hardness cemented carbide
JPH01122971A (en) Cubic boron nitride sintered product
JP2900545B2 (en) Cutting tool whose cutting edge is made of cubic boron nitride based sintered body
JP7429432B2 (en) Pressure sintered body and its manufacturing method
JPS6141873B2 (en)
JPH09316589A (en) Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
JPH075384B2 (en) Cubic boron nitride based sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees