JPS6141873B2 - - Google Patents

Info

Publication number
JPS6141873B2
JPS6141873B2 JP53135748A JP13574878A JPS6141873B2 JP S6141873 B2 JPS6141873 B2 JP S6141873B2 JP 53135748 A JP53135748 A JP 53135748A JP 13574878 A JP13574878 A JP 13574878A JP S6141873 B2 JPS6141873 B2 JP S6141873B2
Authority
JP
Japan
Prior art keywords
ultra
cutting
high pressure
metals
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53135748A
Other languages
Japanese (ja)
Other versions
JPS5562861A (en
Inventor
Kenichi Nishigaki
Kisho Miwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13574878A priority Critical patent/JPS5562861A/en
Publication of JPS5562861A publication Critical patent/JPS5562861A/en
Publication of JPS6141873B2 publication Critical patent/JPS6141873B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高硬度、並びにすぐれた耐摩耗
性、靭性、および耐食性などが要求される、高硬
度鋼やNi基あるいはCo基スーパーアロイなどの
切削に切削工具として用いるのに適した超高圧焼
結材料に関するものである。 一般に、従来より上記の用途に対しては、すぐ
れた靭性を有する炭化タングステン(以下WCで
示す)基超硬合金が広く使用されてきているが、
近年その使用条件が苛酷になるにしたがつて、よ
りすぐれた材料の開発が強く望まれている。 最近、かかる要望にしたがつて、立方晶窒化ほ
う素超高圧焼結材料や、これに少量のAlおよび
鉄族金属を含有させた超高圧焼結材料が提案さ
れ、市販されているが、前者の焼結材料はすぐれ
た耐摩耗性をもつものの、靭性が不足したもので
あり、また後者の焼結材料は、特に熱発生の高い
条件で使用した場合に耐摩耗性が劣化するように
なるなど、いずれも満足する特性を備えた材料で
はないのが現状である。 そこで、本発明者等は、上述のような観点か
ら、耐摩耗性および靭性にすぐれ、特に切削工具
して用いるのに適した焼結材料を得べく、立方晶
窒化ほう素(以下CBNで示す)に着目し研究を
行なつた結果、前記CBNに、周期律表の4a、
5a、および6a族金属の炭化物、同4aおよび5a族金
属の窒化物、並びに同4a族金属のほう化物のうち
の1種または2種以上(以下、これらを総称して
金属の炭・窒・ほう化物という)と、炭化けい素
(以下SiCで示す)、炭化ほう素(以下B4Cで示
す)、および窒化けい素(以下Si3N4で示す)のう
ちの1種または2種以上(以下炭・窒化物とい
う)とを含有させてなる超高圧焼結材料は、前記
CBNによつてすぐれた耐摩耗性を、また前記金
属の炭・窒・ほう化物および炭・窒化物によつて
すぐれた靭性を具備するようになり、これらの特
性が要求される高硬度鋼やスーパーアロイなどの
切削に切削工具として用いた場合にすぐれた切削
性能を発揮するという知見を得たのである。 したがつて、この発明は、上記知見にもとづい
てなされたものであつて、容量%で、 CBN:50〜90%、 金属の炭・窒・ほう化物:5〜45%、 炭・窒化物および不可避不純物:5〜20%、 からなる組成を有し、かつ靭性および耐摩耗性の
すぐれた切削工具用超高圧焼結材料に特徴を有す
るものである。 ついで、この発明の焼結材料において、成分組
成範囲を上述の通りに限定した理由を説明する。 (a) CBN CBNは温度1200℃以上、圧力40Kb以上、望
ましくは温度1800℃以上、圧力60Kb以上の条
件で合成されるもので、ダイヤモンドに次ぐ硬
さ、すなわちビツカース硬さで6000〜7000Kg/
mm2を有し、かつダイヤモンドより高温まで安定
した性質をもつと共に、鉄族金属に対して反応
しにくい性質をもつ成分であるが、その含有量
が50容量%未満では、所望の耐摩耗性を確保す
ることができず、一方90容量%を越えて含有さ
せると、焼結性が不充分となつてポアの残存も
目立ちはじめ、靭性低下も著しくなつて、切刃
に微小のチツピングや欠損などが生じるように
なることから、その含有量を50〜90容量%と定
めた。 (b) 金属の炭・窒・ほう化物 これら金属の炭・窒・ほう化物は、いずれも
高融点高硬度を有し、しかもCBN粉末と共存
した状態で超高圧超高温下で焼結すると、これ
ら金属の炭・窒・ほう化物がCBN粒子を十分
にとり巻いた緻密な組織を形成し、焼結材料の
靭性を著しく向上させる作用があるが、その含
有量が5容量%未満では、相対的にCBN成分
の含有量が多くなり過ぎて焼結性が不充分とな
つて靭性低下をきたし、一方45容量%を越えて
含有させると、相対的にCBN成分の含有量が
少なくなり過ぎて、CBN成分のもつ高硬度を
焼結材料に充分反映させることができず、この
結果耐摩耗性の低下をもたらすようになること
から、その含有量を5〜45容量%と定めた。 (c) 炭・窒化物 例えば、SiCは融点:2827℃、マイクロビツ
カース硬さ(荷重100g):3340Kg/mm2、B4Cは
融点:2350℃、マイクロビツカース硬さ:4950
Kg/mm2を有するように、これら化合物は高融点
硬度を有し、CBN粉末と混合した状態で超高
圧超高温で焼結すると、CBN粒子との間で容
易に相互拡散が発生し、粒子相互間の結合強度
を強固にして焼結材料の靭性を向上させる作用
があるが、その含有量が5容量%未満では、前
記作用に所望の効果が得られず、一方20容量%
を越えて含有させると、焼結材料の耐摩耗性が
低下するようになることから、その含有量を5
〜20容量%と定めた。 さらに、この発明の焼結材料は、従来公知の超
高圧超高温発生装置を使用して製造することがで
きる。 すなわち、CBN粉末と、金属の炭・窒・ほう
化物粉末と、炭・窒化物粉末とを所定割合に配合
し、例えば鉄製ボールミル中で長時間混合して均
質な混合粉末とした後、前記混合粉末を、例えば
鋼製あるいは高融点金属製の容器内に封入し、例
えば特公昭38−14号公報に記載されるような超高
圧超高温発生装置に装入し、圧力および温度を上
げて最終的に圧力40〜60Kb、温度1200〜1800℃
とし、この最高圧力および最高温度に0.5〜10分
間保持し、冷却後、圧力を開放することによつて
製造することができる。 ついで、この発明の超高圧焼結材料を実施例に
より説明する。 原料粉末として、無触媒法で合成された平均粒
径:3μmを有するCBN粉末、並びに0.2〜3の
範囲内の平均粒径を有する各種の金属の炭・窒・
ほう化物粉末および炭・窒化物粉末を用意し、こ
れら原料粉末をそれぞれ第1表に示される配合組
成に配合し、これらの配合粉末を、それぞれWC
基超硬合金で内張りされた小型の高速遊星運動ミ
ル内に装入し、さらに前記配合粉末に対して40容
量%のメチルアルコールを加えて1時間混合し、
混合後、前記ミルの蓋をアルゴン雰囲気中で開放
し、温度:130℃に加熱して前記メチルアルコー
ルを蒸発させ、乾燥し、ついで同じくアルゴン雰
囲気内において、別途用意した内径:10mmφ×高
さ:15mmの寸法をもつたTi製円筒型容器の底部
に、まず同じく別途用意した直径:9.8mmφ×厚
さ:2mmの寸法をもつたWC基超硬合金製円板を
装入し、この円板上に厚みが7mmとなるように上
記混合粉末を装入し、押し棒で軽く押えて充填
し、この充填混合粉末上に厚さ:2mmのWC基超
硬合金製円板を載置し、つぎにアルゴン雰囲気か
ら取出した後、さらにTi製上蓋をかぶせてプレ
スして前記Ti製円筒型容器内の混合粉末の厚み
を5.5mmに圧縮し、引続いて前記円筒型容器に前
記上蓋を溶接して、これを密封し、このように上
記混合粉末を充填して密封した円筒型容器を公知
の超高圧超高温発生装置に装入し、最高付加圧
力:50Kb、最高加熱温度:1450℃の条件で1分
間保持した後、冷却についで圧力開放を行なうこ
とによつて、実質的に配合組成と同一の成分組成
を有し、かつ、上記WC基超硬合金製の上下円板
に拡散結合した状態の本発明超高圧焼結材料1〜
18および比較超高圧焼結材料1〜8をそれぞれ
This invention is an ultra-high-pressure sintered tool suitable for use as a cutting tool for cutting high-hardness steel, Ni-based or Co-based superalloys, etc., which require high hardness, excellent wear resistance, toughness, and corrosion resistance. This relates to binding materials. Generally, tungsten carbide (hereinafter referred to as WC)-based cemented carbide, which has excellent toughness, has been widely used for the above-mentioned applications.
As the conditions for their use have become more severe in recent years, there has been a strong desire to develop better materials. Recently, in response to such demands, cubic boron nitride ultra-high pressure sintered materials and ultra-high pressure sintered materials containing small amounts of Al and iron group metals have been proposed and commercially available, but the former Although the latter sintered material has excellent wear resistance, it lacks toughness, and the wear resistance of the latter sintered material deteriorates especially when used under conditions of high heat generation. Currently, there are no materials with satisfactory properties. Therefore, from the above-mentioned viewpoints, the present inventors developed a sintered material that has excellent wear resistance and toughness and is particularly suitable for use as a cutting tool. ), and as a result of conducting research, we found that the CBN has 4a of the periodic table,
One or more of the following: carbides of group 5a and 6a metals, nitrides of group 4a and 5a metals, and borides of group 4a metals (hereinafter these are collectively referred to as metal carbons, nitrides, one or more of silicon carbide (hereinafter referred to as SiC), boron carbide (hereinafter referred to as B 4 C), and silicon nitride (hereinafter referred to as Si 3 N 4 ) (hereinafter referred to as carbon/nitride) is an ultra-high pressure sintered material containing
CBN provides excellent wear resistance, and the carbon, nitride, boride, and carbon/nitride of the metals provide excellent toughness. They found that it exhibits excellent cutting performance when used as a cutting tool to cut materials such as super alloys. Therefore, this invention was made based on the above knowledge, and in terms of volume %, CBN: 50 to 90%, metal carbon/nitride/boride: 5 to 45%, carbon/nitride, and It has a composition consisting of unavoidable impurities: 5 to 20%, and is characterized by an ultra-high pressure sintered material for cutting tools having excellent toughness and wear resistance. Next, the reason why the composition range of the sintered material of the present invention is limited as described above will be explained. (a) CBN CBN is synthesized at a temperature of 1,200℃ or higher and a pressure of 40Kb or higher, preferably at a temperature of 1,800℃ or higher and a pressure of 60Kb or higher.It has a hardness second only to diamond, that is, a Bitkers hardness of 6,000 to 7,000Kg/
mm 2 and has properties that are more stable at higher temperatures than diamond and are less likely to react with iron group metals. However, if its content is less than 50% by volume, the desired wear resistance may not be achieved. On the other hand, if the content exceeds 90% by volume, sinterability becomes insufficient and residual pores begin to become noticeable, and the toughness decreases significantly, resulting in minute chipping and chipping on the cutting edge. The content was set at 50 to 90% by volume. (b) Metal carbon, nitride, and borides These metal carbon, nitrate, and borides all have high melting points and high hardness, and when they are sintered together with CBN powder under ultra-high pressure and ultra-high temperature, Carbon, nitride, and borides of these metals form a dense structure that sufficiently surrounds CBN particles, and have the effect of significantly improving the toughness of the sintered material, but if their content is less than 5% by volume, the relative If the CBN component content is too high, sinterability becomes insufficient and toughness decreases, while if the content exceeds 45% by volume, the CBN component content becomes relatively too low. Since the high hardness of the CBN component cannot be sufficiently reflected in the sintered material, resulting in a decrease in wear resistance, the content was set at 5 to 45% by volume. (c) Carbon/Nitride For example, SiC has a melting point of 2827℃ and a micro-Vickers hardness (load of 100g): 3340Kg/mm 2 , and B 4 C has a melting point of 2350℃ and a micro-Vickers hardness of 4950
Kg/mm 2 , these compounds have a high melting point hardness, and when mixed with CBN powder and sintered at ultra-high pressure and ultra-high temperature, interdiffusion with CBN particles easily occurs, and the particles It has the effect of strengthening the mutual bonding strength and improving the toughness of the sintered material, but if the content is less than 5% by volume, the desired effect cannot be obtained;
If the content exceeds 5, the wear resistance of the sintered material will decrease, so the content should be
It was set at ~20% by volume. Furthermore, the sintered material of the present invention can be produced using a conventionally known ultra-high pressure and ultra-high temperature generator. That is, CBN powder, metal carbon/nitride/boride powder, and carbon/nitride powder are blended in a predetermined ratio, mixed for a long time in an iron ball mill to form a homogeneous mixed powder, and then the above-mentioned mixed powder is mixed. The powder is sealed in a container made of steel or a high-melting point metal, and charged into an ultra-high pressure and ultra-high temperature generator such as that described in Japanese Patent Publication No. 38-14, and the pressure and temperature are raised to produce the final product. Pressure 40~60Kb, temperature 1200~1800℃
It can be manufactured by holding at this maximum pressure and temperature for 0.5 to 10 minutes, and then releasing the pressure after cooling. Next, the ultra-high pressure sintered material of the present invention will be explained with reference to Examples. The raw material powders include CBN powder with an average particle size of 3 μm synthesized by a non-catalytic method, and carbon, nitrogen, and various metals with an average particle size in the range of 0.2 to 3.
Prepare boride powder and carbon/nitride powder, mix these raw material powders to the composition shown in Table 1, and add these mixed powders to WC.
The powder was charged into a small high-speed planetary motion mill lined with base cemented carbide, and 40% by volume of methyl alcohol was added to the blended powder and mixed for 1 hour.
After mixing, the lid of the mill was opened in an argon atmosphere, heated to a temperature of 130°C to evaporate the methyl alcohol, and dried. Then, in the same argon atmosphere, a separately prepared inner diameter: 10 mmφ x height: First, a separately prepared WC-based cemented carbide disk with dimensions of diameter: 9.8 mmφ x thickness: 2 mm was placed in the bottom of a Ti cylindrical container with dimensions of 15 mm. The above-mentioned mixed powder was charged on top so that the thickness was 7 mm, and it was filled by pressing lightly with a push rod, and a 2 mm thick WC-based cemented carbide disk was placed on top of this filled mixed powder. Next, after removing the powder from the argon atmosphere, a Ti top lid is placed on top and pressed to compress the mixed powder in the Ti cylindrical container to a thickness of 5.5 mm, and then the top lid is welded to the cylindrical container. Then, this was sealed, and the cylindrical container filled with the above mixed powder and sealed was placed in a known ultra-high pressure and ultra-high temperature generator, and was heated at a maximum applied pressure of 50 Kb and a maximum heating temperature of 1450°C. After holding the condition for 1 minute, cooling and then releasing the pressure, it is possible to obtain a diffusion bond that has substantially the same composition as the blended composition and is bonded to the upper and lower disks made of the above-mentioned WC-based cemented carbide. Ultra-high pressure sintered material 1 of the present invention in a state of
18 and comparative ultra-high pressure sintered materials 1 to 8, respectively.

【表】【table】

【表】 製造した。 なお、比較超高圧焼結材料1〜8は、いずれも
構成成分のうちの少なくともいずれかの成分含有
量がこの発明の範囲から外れた組成をもつもので
ある。 つぎに、上記の本発明超高圧焼結材料1〜18、
比較超高圧焼結材料1〜8、並びに第1表に示さ
れる組成をもつた市販の超高圧焼結材料から、切
断および研磨により切刃を仕上げ、上記WC基超
硬合金製円板と結合したままの状態で、別途用意
した四角形状のWC基超硬合金製チツプに銀ろう
によつて固定し、さらにノーズRを0.4mmに仕上
げて切削工具とし、 被削材:浸炭焼入鋼(ロツクウエル硬さ:60)、 切削速度:150m/min、 送り:0.1mm/rev.、 切込み:0.5mm、 の条件での高硬度鋼の連続切削試験、並びに、 被削材:ハステロイX(Ni基合金)、 切削速度:100m/min、 送り:0.1mm/rev.、 切込み:0.2mm、 の条件でのNi基合金の連続切削試験を行ない、
いずれの切削試験でも切刃の逃げ面摩耗幅が0.2
mmに達するまでの切削時間を測定した。これらの
測定結果を第1表に示した。 第1表に示される結果から、本発明超高圧焼結
材料1〜18は、いずれもすぐれた靭性と耐摩耗性
を有するので、これらの特性が要求される高硬度
鋼やNi基合金の切削にすぐれた切削性能を長期
に亘つて発揮するのに対して、市販の超高圧焼結
材料は、耐摩耗性不足が原因で、比較的短かい切
削時間しか示さないことが明らかである。 また、比較超高圧焼結材料1〜8に見られるよ
うに、構成成分のうちのいずれかの成分含有量で
もこの発明の範囲から外れると、靭性および耐摩
耗性のうちの少なくともいずれかの性質が劣つた
ものになり、所望のすぐれた切削性能を長時間に
亘つて発揮することができないことが明らかであ
る。 以上の結果から明らかなように、この発明の超
高圧焼結材料は、すぐれた耐摩耗性と、従来WC
基超硬合金のもつ靭性に匹適するすぐれた靭性を
有するので、特に高硬度鋼や、スーパーアロイな
どの切削に切削工具として使用した場合に、一般
切削から仕上げ切削までの広範囲に亘つてすぐれ
た切削性能を発揮するのである。
[Table] Manufactured. Note that Comparative Ultra High Pressure Sintered Materials 1 to 8 all have compositions in which the content of at least one of the constituent components is outside the scope of the present invention. Next, the above-mentioned ultra-high pressure sintered materials 1 to 18 of the present invention,
Comparative ultra-high-pressure sintered materials 1 to 8 and commercially available ultra-high-pressure sintered materials having the compositions shown in Table 1 were used to finish cutting edges by cutting and polishing, and then combined with the above-mentioned WC-based cemented carbide disk. In this state, it was fixed to a separately prepared rectangular WC-based cemented carbide chip with silver solder, and the nose radius was finished to 0.4 mm to make a cutting tool. Work material: carburized and quenched steel ( Continuous cutting test of high-hardness steel under the following conditions: Rockwell hardness: 60), cutting speed: 150 m/min, feed: 0.1 mm/rev., depth of cut: 0.5 mm, and work material: Hastelloy X (Ni-based Continuous cutting tests were conducted on Ni-based alloys under the following conditions: cutting speed: 100 m/min, feed: 0.1 mm/rev., depth of cut: 0.2 mm.
In all cutting tests, the flank wear width of the cutting edge was 0.2
The cutting time to reach mm was measured. The results of these measurements are shown in Table 1. From the results shown in Table 1, the ultra-high pressure sintered materials 1 to 18 of the present invention all have excellent toughness and wear resistance, so they are suitable for cutting high-hardness steel and Ni-based alloys that require these properties. It is clear that commercially available ultra-high pressure sintered materials exhibit relatively short cutting times due to lack of wear resistance, whereas they exhibit excellent cutting performance over long periods of time. In addition, as seen in Comparative Ultra-High Pressure Sintered Materials 1 to 8, if the content of any of the constituent components falls outside the scope of the present invention, at least one of the properties of toughness and wear resistance may deteriorate. It is clear that the cutting performance becomes inferior and the desired excellent cutting performance cannot be exhibited for a long period of time. As is clear from the above results, the ultra-high pressure sintered material of this invention has excellent wear resistance and
It has excellent toughness comparable to that of base cemented carbide, so when used as a cutting tool for cutting high-hardness steel or super alloy, it is an excellent tool for a wide range of applications from general cutting to finishing cutting. It demonstrates cutting performance.

Claims (1)

【特許請求の範囲】 1 立方晶窒化ほう素:50〜90%、 周期律表の4a、5a、および6a族金属の炭化物、
同4aおよび5a族金属の窒化物、並びに同4a族金属
のほう化物のうちの1種または2種以上:5〜45
%、 炭化けい素、炭化ほう素、および窒化けい素の
うちの1種または2種以上および不可避不純物:
5〜20%、 からなる組成(以上容量%)を有することを特徴
とする靭性および耐摩耗性のすぐれた切削工具用
超高圧焼結材料。
[Scope of Claims] 1. Cubic boron nitride: 50 to 90%, carbides of metals of groups 4a, 5a, and 6a of the periodic table,
One or more nitrides of group 4a and 5a metals, and borides of group 4a metals: 5 to 45
%, one or more of silicon carbide, boron carbide, and silicon nitride and unavoidable impurities:
An ultra-high pressure sintered material for cutting tools having excellent toughness and wear resistance, characterized by having a composition (volume %) consisting of 5 to 20%.
JP13574878A 1978-11-06 1978-11-06 Sintering material with tenacity and abrasion resistance Granted JPS5562861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13574878A JPS5562861A (en) 1978-11-06 1978-11-06 Sintering material with tenacity and abrasion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13574878A JPS5562861A (en) 1978-11-06 1978-11-06 Sintering material with tenacity and abrasion resistance

Publications (2)

Publication Number Publication Date
JPS5562861A JPS5562861A (en) 1980-05-12
JPS6141873B2 true JPS6141873B2 (en) 1986-09-18

Family

ID=15158939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13574878A Granted JPS5562861A (en) 1978-11-06 1978-11-06 Sintering material with tenacity and abrasion resistance

Country Status (1)

Country Link
JP (1) JPS5562861A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5860678A (en) * 1981-10-02 1983-04-11 三菱マテリアル株式会社 High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JPS58190874A (en) * 1982-04-30 1983-11-07 日本油脂株式会社 High pressure phase boron nitride-containing sintered body and manufacture
DK0531310T3 (en) * 1990-05-25 1997-07-14 Univ Australian Abrasive compaction of cubic boron nitride and a process for making the same
WO1992017618A1 (en) * 1991-03-26 1992-10-15 The Australian National University Abrasive compact composed mainly of cubic boron nitride and method of making same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972142A (en) * 1972-11-13 1974-07-12
JPS5091005A (en) * 1973-12-17 1975-07-21
JPS5298632A (en) * 1976-02-14 1977-08-18 Denki Kagaku Kogyo Kk Metal evaporating vessel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4972142A (en) * 1972-11-13 1974-07-12
JPS5091005A (en) * 1973-12-17 1975-07-21
JPS5298632A (en) * 1976-02-14 1977-08-18 Denki Kagaku Kogyo Kk Metal evaporating vessel

Also Published As

Publication number Publication date
JPS5562861A (en) 1980-05-12

Similar Documents

Publication Publication Date Title
US4647546A (en) Polycrystalline cubic boron nitride compact
EP1313887B1 (en) Method of producing an abrasive product containing cubic boron nitride
EP1309732A2 (en) Method of producing an abrasive product containing diamond
JPS627149B2 (en)
JPS6141873B2 (en)
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JPS6143312B2 (en)
JPS607022B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS6137221B2 (en)
JPH0215515B2 (en)
JPH02236253A (en) High hardness sintered body for tool
JPS6335591B2 (en)
JPS6114110B2 (en)
JPS5935423B2 (en) Sintered material for cutting tools containing cubic boron nitride
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JPH075384B2 (en) Cubic boron nitride based sintered body
JPS62877B2 (en)
JPS5917180B2 (en) Sintered material with toughness and wear resistance
JPS6141866B2 (en)
JPS6143307B2 (en)
JPS5917181B2 (en) Sintered material with toughness and wear resistance
JPS60131867A (en) High abrasion resistance superhard material
JPS5929666B2 (en) Sintered material for cutting tools with excellent toughness and wear resistance
JPS6146429B2 (en)
JPS602378B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools