JPS5857502B2 - Sintered material with toughness and wear resistance - Google Patents

Sintered material with toughness and wear resistance

Info

Publication number
JPS5857502B2
JPS5857502B2 JP8833278A JP8833278A JPS5857502B2 JP S5857502 B2 JPS5857502 B2 JP S5857502B2 JP 8833278 A JP8833278 A JP 8833278A JP 8833278 A JP8833278 A JP 8833278A JP S5857502 B2 JPS5857502 B2 JP S5857502B2
Authority
JP
Japan
Prior art keywords
sintered material
powder
toughness
wear resistance
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8833278A
Other languages
Japanese (ja)
Other versions
JPS5518508A (en
Inventor
賢一 西垣
則文 菊池
紀章 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP8833278A priority Critical patent/JPS5857502B2/en
Publication of JPS5518508A publication Critical patent/JPS5518508A/en
Publication of JPS5857502B2 publication Critical patent/JPS5857502B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、高硬度、耐摩耗性、靭性、および耐食性な
どが要求される、高硬度鋼、Ni基あるいはCo基スー
パーアロイなどの切削用工具、軸受、および線引ダイス
などとして使用するのに適した、ダイヤモンドに次ぐ硬
さを有する立方晶窒化硼素含有の緻密な焼結材料に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to cutting tools, bearings, and wire-drawn materials made of high-hardness steel, Ni-based or Co-based superalloy, which require high hardness, wear resistance, toughness, and corrosion resistance. The present invention relates to a dense sintered material containing cubic boron nitride, which has a hardness second only to diamond and is suitable for use as a die.

従来、一般に、上記の用途に対しては、すぐれた靭性を
有する炭化タングステン(以下WCで示す)基超硬合金
が広く使用されてきているが、近年その使用条件が荷酷
になるにしたがって、よりすぐれた材料の開発が強く望
筐れている。
Conventionally, tungsten carbide (hereinafter referred to as WC)-based cemented carbide, which has excellent toughness, has generally been widely used for the above-mentioned applications, but in recent years, as the conditions for its use have become harsher, There is a strong desire to develop better materials.

最近、かかる要望にしたがって、立方晶窒化硼素焼結材
料や、これに少量のAlおよび鉄族金属を含有させた焼
結材料が提案され、市販されているが、前者の焼結材料
はすぐれた耐摩耗性をもつものの、靭性が不足したもの
であり、捷た後者の焼結材料は、特に熱発生の高い条件
で使用した場合に耐摩耗性が劣化するようになるなど、
いずれも満足する特性を備えた材料ではないのが現状で
ある。
Recently, in response to such demands, cubic boron nitride sintered materials and sintered materials containing small amounts of Al and iron group metals have been proposed and commercially available, but the former sintered materials have excellent Although it has wear resistance, it lacks toughness, and the latter sintered material deteriorates in wear resistance especially when used under conditions with high heat generation.
At present, neither material has satisfactory properties.

本発明者等は、上述のような観点から、耐摩耗性督よび
靭性にすぐれた焼結材料を得べく、立方晶窒化硼素(以
下BNで示す)に着目し研究を行なった結果、前記BN
に、W + Mo t Ta t T itおよびNb
のうちの1種または2種以上の高融点金属を含有させる
と、前記BNによってもたらされるすぐれた耐摩耗性と
、前記高融点金属によってもたらされるすぐれた靭性と
を兼ね備えた焼結材料が得られるという知見を得たので
ある。
From the above-mentioned viewpoint, the present inventors conducted research focusing on cubic boron nitride (hereinafter referred to as BN) in order to obtain a sintered material with excellent wear resistance and toughness.
, W + Mo t Ta t T it and Nb
When one or more of these high melting point metals are included, a sintered material that has both the excellent wear resistance provided by the BN and the excellent toughness provided by the high melting point metal can be obtained. We obtained this knowledge.

したがって、この発明の焼結材料は上記知見にもとづい
てなされたもので、 上記BN:40〜97容量饅、 W tMo t Ta 、’ri tおよびNbのうち
の1種塗たは2種以上の高融点金属=3〜60容量φ、
からなる焼結材料に特徴を有するものである。
Therefore, the sintered material of the present invention has been made based on the above knowledge, and includes one or more of the above BN: 40 to 97 capacity, WtMotTa, 'rit, and Nb. High melting point metal = 3 to 60 capacity φ,
It is characterized by a sintered material made of

ついで、この発明の焼結材料において、成分組成範囲を
上述のように限定した理由を説明する。
Next, the reason why the composition range of the sintered material of the present invention is limited as described above will be explained.

(a) BN BNは、温度1200℃以上、圧力40kb以上、望筐
しくは温度1800℃以上、圧力60kb以上の条件で
合成されるもので、ダイヤモンドに次ぐ硬さくビッカー
ス硬さで6000〜7000に57/mrn2)を有し
、かつダイヤモンドより高温1で安定した性質をもつと
共に、鉄族金属に対して反応しにくい性質をもつ成分で
あるが、その含有量が40容量饅未満では、所望の耐摩
耗性を確保することができず、一方97容量饅を越えて
含有させると、焼結性が不充分となってボアの残存も目
立ちはじめ、靭性低下も著しくなることから、その含有
量を40〜97容量多と定めた。
(a) BN BN is synthesized under conditions of a temperature of 1200°C or higher and a pressure of 40kb or higher, preferably a temperature of 1800°C or higher and a pressure of 60kb or higher, and is the second hardest material after diamond, with a Vickers hardness of 6000 to 7000. 57/mrn2) and has properties that are more stable at high temperatures1 than diamond, as well as being less reactive to iron group metals.However, if its content is less than 40%, it will not reach the desired It is not possible to ensure wear resistance, and on the other hand, if the content exceeds 97 capacity, the sinterability becomes insufficient, the remaining bores become noticeable, and the decrease in toughness becomes significant, so the content should be reduced. It is determined that the capacity is 40 to 97.

(b) 高融点金属 高融点金属は、常温および高温、特に約ioo。(b) High melting point metal Refractory metals can be used at room and high temperatures, especially at about ioOo.

℃以上の高温において高い硬さと強度を有すると共に、
靭性にもすぐれたものであるが、その含有量が、3容量
φ未満では、相対的にBN成分の含有量が多くなり過ぎ
て焼結性が不充分となり、この結果ボアが存在するよう
になって靭性低下をきたすようになり、一方60容量饅
を越えて含有させると、相対的にBNの含有量が少なく
なり過ぎて所望の高硬度、すなわちすぐれた耐摩耗性を
保持することができなくなることから、その含有量を3
〜60容量多と定めた。
It has high hardness and strength at high temperatures above ℃, and
Although it has excellent toughness, if the content is less than 3 volume φ, the content of BN component will be relatively too large and the sinterability will be insufficient, resulting in the presence of bores. On the other hand, if the content exceeds 60 BN, the content of BN becomes relatively too low, making it impossible to maintain the desired high hardness, that is, excellent wear resistance. Since it disappears, its content is reduced to 3
~60 capacity is determined.

渣た、この発明の焼結材料の製造に際して、原料粉末と
して高融点金属の2種以上からなる合金粉末を使用する
場合、前記合金粉末は、 (1)所定割合に配合後、混合し、真空、不活性、およ
び窒素のいずれかの雰囲気中において、比較的高温に加
熱して反応させ、反応後粉砕する、(2)所定含有割合
の合金溶湯を形成し、ついで前記溶湯に対して水、筐た
は窒素、アルゴンなどのガスを噴射することによってア
トマイズド合金粉末を得る、 などの方法によって製造されるものである。
When producing the sintered material of the present invention, when an alloy powder consisting of two or more high-melting point metals is used as a raw material powder, the alloy powder is: (1) blended in a predetermined proportion, mixed, and vacuum (2) forming a molten alloy with a predetermined content ratio; then adding water to the molten metal; It is manufactured by methods such as obtaining atomized alloy powder by injecting a gas such as nitrogen or argon into a container.

なお、水噴射によって得られたアトマイズド合金粉末は
、表面酸化が著しいために、使用に際しては水素還元処
理を施すのが望ましい。
Note that since the atomized alloy powder obtained by water injection has significant surface oxidation, it is desirable to perform a hydrogen reduction treatment upon use.

また、特に難還元性金属であるTi、Ta、およびNb
を含有するアトマイズド合金粉末の製造に際しては、不
活性ガスあるいはアルゴンガスの適用が望ましく、これ
らのガスの使用によって前記合金粉末は良好な特性をも
つようになるのである。
In particular, Ti, Ta, and Nb, which are difficult to reduce metals,
When producing an atomized alloy powder containing , it is desirable to use an inert gas or argon gas, and by using these gases, the alloy powder will have good properties.

昔た、この結果得られたアトマイズド合金粉末は概して
脆く、したがってボール□ル、振動□ルなどの通常用い
られている粉砕機で比較的容易に粉砕することができる
In the past, the resulting atomized alloy powders were generally brittle and therefore relatively easy to grind in commonly used grinders such as ball mills, vibrating mills, and the like.

さらに、この発明の焼結材料は従来公知の超高圧超高温
発生装置を使用して製造することができる。
Furthermore, the sintered material of the present invention can be produced using a conventionally known ultra-high pressure and ultra-high temperature generator.

すなわち、BN粉末と、高融点金属の1種からなる単体
粉末、あるいは2種以上からなる混合粉末昔たは合金粉
末とを、所定割合に配合し、鉄製ボールミル中で長時間
混合して均質な混合粉末とした後、前記混合粉末を鋼製
あるいは高融点金属製の容器に封入し、例えば特公昭3
8−14号公報に記載されるような超高圧超高温発生装
置に装入し、圧力釦よび温度を上げて最終的に圧力40
〜60kb、温度1200〜1800℃とし、この最終
圧力および温度に0.5〜10分間保持し、冷却後、圧
力を開放することによって製造することができる。
That is, BN powder and a single powder made of one type of high-melting point metal, or a mixed powder or alloy powder made of two or more types are mixed in a predetermined ratio and mixed for a long time in an iron ball mill to form a homogeneous powder. After forming a mixed powder, the mixed powder is sealed in a container made of steel or a high melting point metal.
It is charged into an ultra-high pressure and ultra-high temperature generator as described in Publication No. 8-14, and the pressure button and temperature are raised until the pressure reaches 40.
60 kb and a temperature of 1200 to 1800° C., holding this final pressure and temperature for 0.5 to 10 minutes, and releasing the pressure after cooling.

つぎに、この発明の焼結材料を実施例により説明する。Next, the sintered material of the present invention will be explained using examples.

実施例 1 原料粉末として、無触媒法で合成された平均粒径3μm
のBN粉末=70容量多と、同粒径の高融点金属である
W粉末=20容量多と、同粒径の同じく高融点金属であ
るTi粉末=10容量饅とを配合し、この配合粉末をW
CC超超硬合金製内張の小型高速運動ミル内に装入し、
湿式で1時間の混合を行なった後、真空乾燥した。
Example 1 Average particle size of 3 μm synthesized by non-catalytic method as raw material powder
BN powder = 70 volumes, W powder = 20 volumes which is a high melting point metal with the same particle size, and Ti powder = 10 volumes which is also a high melting point metal with the same particle size, and this blended powder W
Charged into a small high-speed motion mill lined with CC cemented carbide,
After wet mixing for 1 hour, the mixture was vacuum dried.

ついで、アルゴン雰囲気内に釦いて、上記混合粉末を、
篩分けした後、それぞれ別途用意した直径9.8間Φ×
厚さ2闘の寸法をもったWCC超超硬合金製円板底部に
下敷きとして装着した内径10mmΦ×高さ15間の寸
法をもったTi製円筒型容器内に、厚みが7問となるよ
うに押し棒で軽く押えて装入し、この装入混合粉末上に
厚さ2朋のWCC超超硬合金円板載置してアルゴン雰囲
気から取出した。
Then, in an argon atmosphere, the above mixed powder was
After sieving, each separately prepared 9.8-diameter Φ×
In a Ti cylindrical container with an inner diameter of 10 mm Φ and a height of 15 mm, which was attached as an underlay to the bottom of a WCC cemented carbide disk with a thickness of 2 mm, there were 7 samples with a thickness of 7. A WCC cemented carbide disk having a thickness of 2 mm was placed on the charged mixed powder, and the powder was removed from the argon atmosphere.

つぎに、上記容器にTi製上蓋をかぶせ、プレスにて前
記上蓋を押して前記容器内の混合粉末の厚みを5.5朋
に圧縮した後、溶接によって前記容器を前記上蓋にて密
封した。
Next, the container was covered with a Ti top lid, and the top lid was pressed using a press to compress the mixed powder in the container to a thickness of 5.5 mm, and then the container was sealed with the top lid by welding.

このように上記混合粉末を密封した容器を公知の超高圧
超高温発生装置に装入し、最終付加圧力50kb、同加
熱温度1350℃の条件で3分間保持することによって
、上記WC基超硬合金製の上下円板に拡散結合した状態
の本発明焼結材料を製造した。
The container containing the mixed powder sealed in this manner is charged into a known ultra-high pressure and ultra-high temperature generator, and held for 3 minutes under the conditions of a final applied pressure of 50 kb and a heating temperature of 1350°C. The sintered material of the present invention was manufactured in a state in which it was diffusion bonded to upper and lower disks made of

つぎに、上記本発明焼結材料を、切断および研磨により
90° の角を有する切削用切刃に仕上げ、上記WCC
超超硬合金製円板結合したitの状態で、別途用意した
、より大寸の4角形状のWCC超超硬合金製チップ銀ろ
うにより固定し、さらにノーズRをQ、4tnmに仕上
げて本発明焼結材料製切削工具を製造した。
Next, the above-mentioned sintered material of the present invention was cut and polished into a cutting edge having a 90° angle, and the above-mentioned WCC
With the cemented carbide discs connected together, they were fixed using a separately prepared larger rectangular WCC cemented carbide chip with silver solder, and the nose radius was finished to Q, 4tnm. A cutting tool made of the invented sintered material was manufactured.

上記本発明焼結材料を、自動車車軸の仕上切削に使用し
たところ、従来サーメツト製切削工具の約20倍の使用
寿命を示した。
When the above-mentioned sintered material of the present invention was used for finishing cutting of an automobile axle, it exhibited a service life approximately 20 times longer than that of a conventional cermet cutting tool.

実施例 2 平均粒径5μmのTa粉末=50容量係と、同0.6μ
mのMo粉末=50容量係とを、ボールミル中で24時
間湿式混合した後、大気乾燥し、ついでこの結果得られ
た混合粉末から圧力50KI!/iで圧粉体を成形し、
前記圧粉体を、圧力10−4mm H?の真空中、温度
1300℃に1時間保持して、固溶拡散反応させること
によって高融点金属であるTa−Mo固溶体粉末を原料
粉末として調製した。
Example 2 Ta powder with an average particle size of 5 μm = 50 capacity and 0.6 μm
m of Mo powder=50 volume were wet mixed in a ball mill for 24 hours, dried in the air, and then the resulting mixed powder was mixed under a pressure of 50 KI! /i to form a green compact,
The green compact was subjected to a pressure of 10-4 mm H? Ta-Mo solid solution powder, which is a high-melting point metal, was prepared as a raw material powder by holding the temperature at 1300° C. for 1 hour in a vacuum to cause a solid solution diffusion reaction.

つぎに、粉砕して粒度100メツシユ以下とした上記T
a −M o固溶体粉末=40容量饅と、同じく10
0メツシユ以下のBN粉末=60容量係とを配合し、こ
の配合粉末を、WCC超超硬合金製高速遊星運動ミル中
1時間湿式混合し、この混合粉末より、圧力1tOn/
dでプレスして直径9.5朋Φ×高さ10朋の円柱状圧
粉体を形成し、この圧粉体を黒鉛製の上下パンチを備え
た型内に装入し、温度900℃、圧力200 K9/i
の条件で5分間保持のホットプレスを施して密度85%
を有する仮焼結材料を成形した。
Next, the above T was crushed to a particle size of 100 mesh or less.
a-Mo solid solution powder = 40 volume and same 10
0 mesh or less BN powder = 60 volume ratio is blended, and this blended powder is wet mixed for 1 hour in a WCC cemented carbide high speed planetary motion mill.
d to form a cylindrical green compact with a diameter of 9.5 mm and a height of 10 mm, and this green compact was charged into a mold equipped with upper and lower punches made of graphite, and heated at a temperature of 900°C. Pressure 200 K9/i
Hot press for 5 minutes under the following conditions to achieve a density of 85%.
The pre-sintered material having the following properties was molded.

引続いて、前記仮焼結材料を、ステンレス鋼製容器に装
入して密封した後、公知の超高圧超高温発生装置におい
て、圧力45kb、温度1350℃の条件で5分間保持
して焼結することによって本発明焼結材料を製造した。
Subsequently, the pre-sintered material was charged into a stainless steel container and sealed, and then sintered by holding it for 5 minutes at a pressure of 45 kb and a temperature of 1350° C. in a known ultra-high pressure and ultra-high temperature generator. The sintered material of the present invention was produced by the following steps.

この結果得られた上記本発明焼結材料は、ボアのない緻
密な組織を有し、密度8.1 ?/d、ビッカース硬さ
く200/−)3600にり/朋2をもつものであった
The resulting sintered material of the present invention has a dense structure without bores, and has a density of 8.1? /d, Vickers hardness 200/-) 3600/2.

実施例 3 第1表に示される成分組成をもつように、原料粉末を適
宜割合に配合すると共に、製造条件である最終圧力およ
び温度を同じ〈第1表に示される条件とする以外は、実
施例1におけると同一の条件で本発明焼結材料1〜4と
、本発明範囲から外れた成分組成を有する比較焼結材料
1,2とをそれぞれ製造した。
Example 3 The raw material powders were mixed in appropriate proportions to have the component composition shown in Table 1, and the final pressure and temperature, which are the manufacturing conditions, were the same (except for the conditions shown in Table 1). Sintered materials 1 to 4 of the present invention and comparative sintered materials 1 and 2 having component compositions outside the range of the present invention were produced under the same conditions as in Example 1, respectively.

ついで、上記本発明焼結材料1〜4、比較焼結材料1,
2、および市販の立方晶窒化硼素焼結材料より、実施例
1に釦けると同一の条件で切削工具をそれぞれ製造し、 被削材:JIS@SNCM−8(HRC:53)、切削
速度:100m/病、 切込み=0.5間 送り=0.1朋/rev、、 の条件で切削試験を行ない、逃げ面摩耗が0.1mmに
なるまでの切削時間を測定した。
Next, the above-mentioned sintered materials 1 to 4 of the present invention, comparative sintered material 1,
Cutting tools were manufactured from 2 and a commercially available cubic boron nitride sintered material under the same conditions as in Example 1. Work material: JIS@SNCM-8 (HRC: 53), cutting speed: A cutting test was conducted under the following conditions: 100 m/rev, depth of cut = 0.5, feed rate = 0.1 m/rev, and the cutting time until flank wear reached 0.1 mm was measured.

この測定結果を第2表に示したが、第2表には上記各種
焼結材料の比重とビッカース硬さを合せて示した。
The measurement results are shown in Table 2, which also shows the specific gravity and Vickers hardness of the various sintered materials.

第2表に示されるように、本発明焼結材料は、切削工具
として使用した場合、比較焼結材料および市販焼結材料
に比して著しくすぐれた切削性能を示すことが明らかで
ある。
As shown in Table 2, it is clear that the sintered material of the present invention, when used as a cutting tool, exhibits significantly superior cutting performance compared to the comparative sintered material and the commercially available sintered material.

上述のように、この発明の焼結材料は、すぐれた靭性を
有するWCC超超硬合金同等のすぐれた靭性と、ダイヤ
モンドに次ぐ高硬度を有する立方晶窒化硼素の含有に帰
因するすぐれた耐摩耗性とを有するので、高硬度鋼や、
Ni基あるいばC。
As mentioned above, the sintered material of the present invention has excellent toughness comparable to that of WCC cemented carbide, and excellent durability due to the inclusion of cubic boron nitride, which has a hardness second only to diamond. Because of its abrasive properties, high hardness steel,
Ni group or C.

基スーパーアロイなどの切削に使用した場合に、一般切
削から仕上切削昔での広範囲に亘ってすぐれた切削性能
を示し、さらに耐食性にもすぐれているので、軸受や線
引ダイスの製造に用いた場合にもきわめてすぐれた性能
を発揮するのである。
When used for cutting materials such as base super alloys, it shows excellent cutting performance in a wide range of applications from general cutting to finishing cutting.It also has excellent corrosion resistance, so it is used in the manufacture of bearings and wire drawing dies. It also exhibits excellent performance in many cases.

Claims (1)

【特許請求の範囲】 1 立方晶窒化硼素=40〜97容量係、W 、 Mo
t Ta ? Ti t$−よびNbのうちの1積重
たば2種以上の高融点金属および不可避不純物=3〜6
0容量φ、 からなることを特徴とする靭性表よび耐摩耗性を有する
焼結材料。
[Claims] 1 Cubic boron nitride = 40-97 capacity coefficient, W, Mo
tTa? One stack of Tit$- and Nb, two or more high melting point metals and unavoidable impurities = 3 to 6
A sintered material having toughness and wear resistance characterized by having a capacity of 0, φ.
JP8833278A 1978-07-21 1978-07-21 Sintered material with toughness and wear resistance Expired JPS5857502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8833278A JPS5857502B2 (en) 1978-07-21 1978-07-21 Sintered material with toughness and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8833278A JPS5857502B2 (en) 1978-07-21 1978-07-21 Sintered material with toughness and wear resistance

Publications (2)

Publication Number Publication Date
JPS5518508A JPS5518508A (en) 1980-02-08
JPS5857502B2 true JPS5857502B2 (en) 1983-12-20

Family

ID=13939912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8833278A Expired JPS5857502B2 (en) 1978-07-21 1978-07-21 Sintered material with toughness and wear resistance

Country Status (1)

Country Link
JP (1) JPS5857502B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425405B2 (en) * 1984-04-25 1992-04-30 Hitachi Ltd

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55125257A (en) * 1979-03-20 1980-09-26 Nachi Fujikoshi Corp Sintered body for cutting tool and manufacture thereof
JPS593240B2 (en) * 1980-08-08 1984-01-23 栗田工業株式会社 Sludge dewatering method
JPS5763056A (en) * 1980-09-30 1982-04-16 Yoshiaki Kinoshita Treatment of lees of shochu
JPS5763055A (en) * 1980-09-30 1982-04-16 Yoshiaki Kinoshita Treatment of lees of shochu
JPS6020457B2 (en) * 1981-10-06 1985-05-22 三菱マテリアル株式会社 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
US4937414A (en) * 1988-09-12 1990-06-26 Perreault David J Wire guide for electrical discharge machining apparatus
JP3641794B2 (en) * 1999-07-14 2005-04-27 きみ子 末田 Diamond blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425405B2 (en) * 1984-04-25 1992-04-30 Hitachi Ltd

Also Published As

Publication number Publication date
JPS5518508A (en) 1980-02-08

Similar Documents

Publication Publication Date Title
JPWO2017191744A1 (en) Cemented carbide and cutting tools
CN110102752A (en) Solid solution alloy powder for metal ceramic and preparation method thereof
JPS627149B2 (en)
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JPH09316587A (en) High strength fine-grained diamond sintered compact and tool using the same
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPS5915971B2 (en) Densely structured sintered material with toughness and wear resistance
JPS6141873B2 (en)
JPS5917181B2 (en) Sintered material with toughness and wear resistance
JPS6137221B2 (en)
JPS6143312B2 (en)
JPS5917180B2 (en) Sintered material with toughness and wear resistance
JPH0215515B2 (en)
JPS5935423B2 (en) Sintered material for cutting tools containing cubic boron nitride
JP2023048855A (en) Hard sintered body, method for producing hard sintered body, cutting tool, wear-resistant tool and high-temperature member
JPS60228634A (en) Manufacture of tungsten-base sintered material
JPH05302136A (en) Whisker reinforced sintered hard alloy
JPH05320814A (en) Composite member and its production
JPS5929666B2 (en) Sintered material for cutting tools with excellent toughness and wear resistance
JPS62877B2 (en)
JPS6114110B2 (en)
JPS5823450B2 (en) Production method of C↓o-based sintered alloy for decorative parts with good machinability
JPS60145351A (en) Ultra high pressure sintered material consisting essentially of cubic boron nitride for cutting tool and its production
KR820001538B1 (en) Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys
JPS60131867A (en) High abrasion resistance superhard material