JPS6020457B2 - High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools - Google Patents

High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Info

Publication number
JPS6020457B2
JPS6020457B2 JP56159193A JP15919381A JPS6020457B2 JP S6020457 B2 JPS6020457 B2 JP S6020457B2 JP 56159193 A JP56159193 A JP 56159193A JP 15919381 A JP15919381 A JP 15919381A JP S6020457 B2 JPS6020457 B2 JP S6020457B2
Authority
JP
Japan
Prior art keywords
boron nitride
weight
cutting
wear
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56159193A
Other languages
Japanese (ja)
Other versions
JPS5861255A (en
Inventor
利基 石松
紀章 三輪
文洋 植田
和男 山本
薫 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP56159193A priority Critical patent/JPS6020457B2/en
Publication of JPS5861255A publication Critical patent/JPS5861255A/en
Publication of JPS6020457B2 publication Critical patent/JPS6020457B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、特にすぐれた籾性と耐摩耗性を有し、かつ
高硬度と、すぐれた耐熱性および高温強度を備え、これ
らの特性が要求される高速度鋼や、Ni基あるいはCo
基スーパーアロィなどの被削材の切削工具として、さら
に軸受や線引きダイスなどの耐摩耗工具として使用する
のに通した窒化棚素基超高圧競結材料に関するものであ
る。
Detailed Description of the Invention This invention has particularly excellent grain hardness and wear resistance, as well as high hardness, excellent heat resistance and high temperature strength, and is suitable for use in high-speed steel and other steels that require these properties. , Ni group or Co
The present invention relates to a nitride-base ultra-high-pressure bonding material that can be used as a cutting tool for work materials such as base super alloys, and as wear-resistant tools for bearings, wire drawing dies, and the like.

近年、炭化タングステン基焼結材料に比して、きわめて
すぐれた耐摩耗性を有する立方晶窒化棚素基超高圧齢結
材料(以下CBN基暁結材料という)を切削工具や耐摩
耗工具として使用することが提案されている。このCB
N基暁緒材料は、分散相を形成するCBN粒子の結合相
によって2種類に大別することができ、その1つが結合
相を鉄族金属あるいはNなどを主成分とする金属で構成
したものであり、もう1つが窒化チタン、炭化チタン、
窒化アルミニウム、または酸化アルミニウムなどを主成
分としたセラミック系化合物で結合相を構成したもので
ある。
In recent years, cubic nitride-based ultra-high pressure aged materials (hereinafter referred to as CBN-based sintered materials), which have extremely superior wear resistance compared to tungsten carbide-based sintered materials, have been used for cutting tools and wear-resistant tools. It is proposed to do so. This CB
N-based materials can be roughly divided into two types depending on the binder phase of the CBN particles that form the dispersed phase. One of these is one in which the binder phase is composed of iron group metals or metals containing N as the main component. Yes, the other is titanium nitride, titanium carbide,
The binder phase is made of a ceramic compound whose main component is aluminum nitride or aluminum oxide.

しかし、前者においては、前記のように結合相が金属で
あるために高温で軟化しやすく、したがって、これを例
えば切削工具として使用した場合には多大の熱発生を伴
う苛酸な切削条件下では耐摩耗性不足をきたして十分な
る切削性能の発揮は期待できず、熱発生の少ない条件、
すなわち負荷の少ない条件でしか使用することができな
いものである。また、後者においては、上記のように結
合相がセラミック系化合物で構成されているために、耐
熱性および耐摩耗性のすぐれたものになっているが、反
面籾性不足を避けることができず、例えば高速度鋼のフ
ライス切削などの刃先に大きな衝撃力の加わる切削条件
下ではチツピングや欠損を起し易いものである。また、
上記の2種類の従来CBN基暁縞材料のもつそれぞれの
問題点を解消する目的で、結合相を金属とセラミックス
系化合物で構成したCBN基焼結材料も提案されたが、
このCBN基凝結材料においても十分満足する級性を示
さず、同様に例えば高速度鋼のフライス切削のような刃
先に大きな衝撃力の加わる切削条件下で切削工具として
使用した場合刃先に欠損が発生し易いものである。
However, in the former, as the binder phase is metal as mentioned above, it easily softens at high temperatures, and therefore, when used as a cutting tool, for example, under caustic cutting conditions that generate a large amount of heat. Due to lack of wear resistance, sufficient cutting performance cannot be expected, and under conditions with little heat generation,
In other words, it can only be used under light load conditions. In addition, in the latter case, as the binder phase is composed of a ceramic compound as mentioned above, it has excellent heat resistance and abrasion resistance, but on the other hand, it cannot avoid the lack of rice grain properties. For example, chipping and breakage are likely to occur under cutting conditions in which a large impact force is applied to the cutting edge, such as when milling high-speed steel. Also,
In order to solve the problems of the above two conventional CBN-based materials, a CBN-based sintered material in which the binder phase was composed of a metal and a ceramic compound was also proposed.
This CBN-based condensed material also does not show sufficiently satisfactory quality, and similarly, when used as a cutting tool under cutting conditions where a large impact force is applied to the cutting edge, such as when milling high-speed steel, the cutting edge will break. It is easy to do.

これは、上記CBN基嬢結材料におけるCBN粒子と結
合相(金属十セラミックス系化合物)との境界部を走査
型電子顕微鏡により詳細に観察した結果明らかになった
ものであるが、超高圧焼結時にCBN粒子の表面におけ
る微小な凹部への前記結合相のまわり込みが十分に行な
われないことに原因する微小な未結合部(ボィド)が前
記境界部に形成され、さらにCBN粒子と結合相との密
着性は、結合相の構成成分によって異なるが、特に炭化
物系のセラミックスの場合著しく低く、このためCBN
粒子と結合相との間に部分的に結合強度の弱い部分が形
成されることに原因するものと解される。そこで、本発
明者等は、上述のような観点から、特にすぐれた靭性と
耐摩耗性とを兼ね備えたCBN基鱗結材料を得べ〈研究
を行なった結果、CBN基焼縞材料を、結合強化金属と
してのTi:4〜25重量%、Tiの窒化物、炭化物、
炭窒化物、および棚化物のうちの1種または2種以上:
5〜40重量%を含有し、残りがCBN(立方晶窒化側
素)と不可避不純物からなる組成を有し、かつCBNが
体積割合で40〜90%を占めると共に、上記結合強化
金属がCBNを0.1〜IA仇の平均層厚で包囲した紬
織を有するものとすると、分散相を構成したCBN粒子
を包囲した結合強化金属としてのTiは、CBN粒子と
のぬれ性がよく、かつCBN粒子表面に付着する徴量の
酸素、水、酸化物などの不純物と反応し、これを除去し
て清浄化し、さらに原料調製時に予めCBN粒子表面に
無電解〆ツキ法、化学蒸着法(CVD法)、物理蒸着法
(PVD法)、およびプラズマ化学蒸着法(PCVD法
)などの方法により強固にして繊密に被覆されているの
で、CBN粒子とTi包囲層との境界部に末結合部(ボ
イド)は全く存在せず、一方結合相を構成するTiの窒
化物(以下TINで示す)、炭化物(以下TICで示す
)、炭窒化物(以下TICNで示す)、および棚化物(
以下TiBで示す)とは、その表面層部分で相互拡散し
た状態になっているので、CBN粒子と結合相とはTi
を介して強固に結合しており、この結果材料は鞠性の著
しく高いものとなり、また、すぐれた耐摩耗性と高硬度
力ミCBN粒子と前記のTi化合物によって確保される
ばかりでなく、前記のTj化合物の含有によって材料の
耐溶着性および高温における化学的安定性も向上し、さ
らにこのCBN基凝結材料に、Ni、N、Co、Si、
およびCrのうちの1種または2種以上の金属成分を0
.5〜1の重量%の範囲で含有させると、これらの成分
には結合相同志の結合力を強化する作用があることから
、材料がより繊密となり、さらに、また上記CBN基擁
結材料におけるCBNの一部を、CBNより多くならな
い範囲、すなわち、〇.〇5<ウルツ鍵型窒化棚素(容
量%)<ICBN(容量%)を満足する範囲でウルッ鉱
型窒化棚素(以下WBNで示す)で置換すると、材料の
靭性が一段と増大するようになるという知見を得たので
ある。
This was revealed through detailed observation using a scanning electron microscope of the boundary between the CBN particles and the binder phase (metal/ceramic compound) in the above CBN-based sintering material. Sometimes, minute unbonded parts (voids) are formed at the boundary part due to the binder phase not being sufficiently wrapped around the minute recesses on the surface of the CBN particles, and furthermore, the bonding phase between the CBN particles and the binder phase is The adhesion of CBN varies depending on the constituent components of the binder phase, but it is particularly low in the case of carbide ceramics.
It is understood that this is caused by the formation of regions with weak bonding strength between the particles and the binder phase. Therefore, from the above-mentioned viewpoint, the inventors of the present invention aimed to obtain a CBN-based scale material that has particularly excellent toughness and wear resistance. Ti as reinforcing metal: 4 to 25% by weight, Ti nitride, carbide,
One or more of carbonitrides and shelved substances:
5 to 40% by weight, with the remainder being CBN (cubic nitride) and unavoidable impurities, and CBN occupies 40 to 90% by volume, and the bond-strengthening metal contains CBN. Assuming that the pongee weave is surrounded by an average layer thickness of 0.1 to IA, Ti as a bond-strengthening metal surrounding the CBN particles constituting the dispersed phase has good wettability with the CBN particles, and It reacts with impurities such as oxygen, water, oxides, etc. that adhere to the particle surface, removes them, and cleans them. Furthermore, when preparing the raw material, electroless coating method or chemical vapor deposition method (CVD method) is applied to the CBN particle surface in advance. ), physical vapor deposition method (PVD method), and plasma chemical vapor deposition method (PCVD method) to make the coating strong and dense, so that end bonds ( On the other hand, there are no Ti nitrides (hereinafter referred to as TIN), carbides (hereinafter referred to as TIC), carbonitrides (hereinafter referred to as TICN), and shelving (hereinafter referred to as TICN) of Ti that constitute the binder phase.
(Hereafter referred to as TiB) is in a state of mutual diffusion in the surface layer, so the CBN particles and the binder phase are TiB.
As a result, the material has extremely high ballability, and is not only ensured by the excellent wear resistance and high hardness of the CBN particles and the Ti compound, but also by the Ti compound. The welding resistance and chemical stability at high temperatures of the material are also improved by containing the Tj compound, and this CBN-based condensed material also contains Ni, N, Co, Si,
and one or more metal components of Cr.
.. When contained in a range of 5 to 1% by weight, these components have the effect of strengthening the bonding force between bonding phases, making the material more dense. A portion of the CBN is set to a range that does not exceed the CBN, that is, 0. 〇5< Wurtzke type shelarynic nitride (volume %) < ICBN (volume %) When replaced with wurtzite type shelchloric nitride (hereinafter referred to as WBN), the toughness of the material will further increase. We obtained this knowledge.

この発明は、上記知見にもとづいてなされたものであっ
て、以下に成分組成、CBNおよびWBNの体積割合、
並びに結合強化金属の平均層厚を上記の通りに限定した
理由を説明する。
This invention was made based on the above knowledge, and the following is the component composition, the volume ratio of CBN and WBN,
Also, the reason why the average layer thickness of the bond-strengthening metal is limited as described above will be explained.

A 成分組成 ‘aI Ti Ti成分には、上記の通りCBN粒子およびWBN粒子
、並びに上記のTi化合物(TIN、TIC、TICN
、およびTiB2)と強固に結合して材料の鰯性を著し
く改善する作用があるが、その含有量が4重量%未満で
は所望の結合強化作用を確保することができず、一方2
5重量%を越えて含有させると、特に高温硬さが低下す
るようになることから、その含有量を4〜25重量%と
定めた。
A Component composition 'aI Ti The Ti component contains CBN particles and WBN particles as described above, as well as the above Ti compounds (TIN, TIC, TICN).
, and TiB2), and have the effect of significantly improving the sardonic properties of the material, but if the content is less than 4% by weight, the desired bond-strengthening effect cannot be secured;
If the content exceeds 5% by weight, the high-temperature hardness in particular decreases, so the content was set at 4 to 25% by weight.

‘bl TIN、TIC、TICN、およびTiB2こ
れらの成分には、材料の耐摩耗性、耐溶着性、および高
温化学的安定性を向上させる作用があるが、その含有量
が5重量%未満では前記作用に所望の効果が得られず、
一方40重量%を越えて含有させると轍性が低下するよ
うになることから、その含有量を5〜4の重量%と定め
た。
'bl TIN, TIC, TICN, and TiB2 These components have the effect of improving the wear resistance, welding resistance, and high-temperature chemical stability of the material, but if their content is less than 5% by weight, the above-mentioned The desired effect is not obtained,
On the other hand, if the content exceeds 40% by weight, the rutting property will deteriorate, so the content was set at 5 to 4% by weight.

【cl Ni、山、Co、Si、およびCrこれら金属
成分には、上記の通り結合相を繊密化して、材料の強度
および耐衝撃性を一段と向上させる作用があるので、特
にこれらの特性が要求される場合に必要に応じて含有さ
れるが、その含有量が0.5重量%未満では前記作用に
所望の効果が得られず、一方1の重量%を越えて含有さ
せると硬さ低下が著しくなることから、その含有量を0
.5〜10重量%と定めた。
[cl Ni, Co, Si, and Cr These metal components have the effect of densifying the binder phase and further improving the strength and impact resistance of the material, so these properties are particularly important. It is contained as needed when required, but if the content is less than 0.5% by weight, the desired effect cannot be obtained in the above action, while if it is contained in excess of 1% by weight, the hardness decreases. Since the content becomes significant, its content is reduced to 0.
.. The content was determined to be 5 to 10% by weight.

B CBNの体積割合 CBNの結合相に対する割合が4坪容量%未満では、相
対的に硬質のCBNの割合が少なすぎて所望の耐摩耗性
を確保することができず、一方CBNの割合が90容量
%を越えると、相対的に結合相の割合が少なくなりすぎ
て級性低下をきたすようになることから、その体積割合
を40〜9岬容量%と定めた。
B Volume ratio of CBN When the ratio of CBN to the binder phase is less than 4 tsubo volume %, the ratio of relatively hard CBN is too small to ensure the desired wear resistance; If it exceeds 40 to 9% by volume, the proportion of the binder phase becomes relatively too small and the quality deteriorates, so the volume proportion was set at 40 to 9% by volume.

C WBNの置換割合 WBNには、材料の籾性を一段と向上させる作用がある
ので、特に高靭性が要求される場合に必要に応じてCB
Nの一部を置換した形で含有させるが、その置換割合、
すなわちWBN(容量%)/CBN(容量%)が0.0
5未満では所望の轍性向上効果が得られず、一方1を越
えた置換割合、すなわち相対的にCBNに比してWBN
の方が多い状態にすると、材料の硬さが低下し、耐摩耗
性が低下するようになることから、CBNの一部をWB
Nで置換する場合には、。
C WBN substitution ratio WBN has the effect of further improving the graininess of the material, so when particularly high toughness is required, CB
Although N is contained in a partially substituted form, the substitution ratio,
In other words, WBN (capacity%)/CBN (capacity%) is 0.0
If the substitution ratio is less than 5, the desired rutting property improvement effect cannot be obtained, while if the substitution ratio exceeds 1, that is, WBN relative to CBN.
If the amount of CBN is higher than that of WB, the hardness of the material will decrease and the wear resistance will decrease.
When replacing with N,.

‐〇5<溝若く・の条件を満足させなければならない。-〇5<Mizowaka・Must satisfy the following conditions.

D Tiの平均層厚 その平均層厚が0.小机未満では、CBN粒子およびW
BN粒子と結合相との間に十分な結合強度を確保するこ
とができず、一方1仏のを越えた平均層厚にすると、材
料の硬さが低下するようになることから、その平均層厚
を0.1〜1Amと定めた。
D Average layer thickness of Ti: The average layer thickness is 0. Below Kozuke, CBN particles and W
It is not possible to secure sufficient bonding strength between the BN particles and the binder phase, and on the other hand, if the average layer thickness exceeds 1 mm, the hardness of the material will decrease. The thickness was determined to be 0.1 to 1 Am.

なお、この発明の超高圧糠結材料は、まず、CBN粉末
、さらに必要に応じてWBN粉末の表面に、無電解〆ッ
キ法、CVD法、PVD法、およびPCVD法などの方
法を用いて、Tiを0.1〜lr仇の平均層厚で被覆し
、さらに必要に応じて前記Ti被覆層の上にTIN、T
IC、TICN、およびTiB2のうちの1種または2
種以上を榎層被覆し、このように調製したTi被覆のC
BN粉末およびWBN粉末、並びにTiと、TIN、T
IC、TICN、およびTiB2のうちの1種または2
種以上を複覆したCBN粉末およびWBN粉末、さらに
TIN粉末、TIC粉末、TICN粉末、Ti弦粉末、
Ni粉末、Co粉末、山粉末、Si粉末、Cr粉末、お
よびこれら金属の2種以上の合金粉末を原料粉末として
用意し、これら原料粉末のうちから適宜選択して所定の
配合組成に配合し、この配合粉末を通常の条件で混合し
た後、粉末状態あるし、は圧粉体の形で金属容器に入れ
、真空脱ガスして密封し、ついでこの密封容器を、例え
ば特公昭36−23463号公報に記載されるような超
高圧高温発生装置に装着し、圧力および温度を上げ、圧
力:40〜6皿b、温度:1200〜1600qoの範
囲内の圧力と温度に数分〜数10分保持した後、冷却し
、最終的に圧力を解放することからなる基本的工程によ
って製造することができる。
The ultra-high pressure bonded material of the present invention is produced by first coating the surface of CBN powder and, if necessary, WBN powder using a method such as an electroless plating method, a CVD method, a PVD method, or a PCVD method. , Ti is coated with an average layer thickness of 0.1 to lr, and if necessary, TIN, T is coated on the Ti coating layer.
One or two of IC, TICN, and TiB2
The Ti-coated C
BN powder and WBN powder, and Ti, TIN, T
One or two of IC, TICN, and TiB2
CBN powder and WBN powder which are double coated with more than one species, as well as TIN powder, TIC powder, TICN powder, Ti string powder,
Ni powder, Co powder, mountain powder, Si powder, Cr powder, and alloy powder of two or more of these metals are prepared as raw material powders, appropriately selected from these raw material powders and blended into a predetermined composition, After mixing this blended powder under normal conditions, it is placed in a metal container in the form of powder or green compact, vacuum degassed and sealed, and then this sealed container is used, for example, in Japanese Patent Publication No. 36-23463. Attach it to an ultra-high pressure and high temperature generator as described in the publication, raise the pressure and temperature, and maintain the pressure and temperature within the range of pressure: 40 to 6 plates B, temperature: 1200 to 1600 qo for several minutes to several tens of minutes. It can be manufactured by a basic process consisting of cooling, then finally releasing the pressure.

つぎに、この発明の超高圧暁結材料を実施例により具体
的に説明する。
Next, the ultra-high pressure lathered material of the present invention will be specifically explained using examples.

実施例 公知のPVD法およびCVD法を用いて、それぞれ第1
表に示される被覆CBN粉末および被覆WBN粉末を調
製し、これらの粉末、平均粒径:2rmを有するTIN
粉末、同2仏机を有するTIC粉末、同2r仇を有する
TICN粉末、同2“凧のTiB2粉末、いずれも同2
仏のを有するNi粉末、山粉末、Co粉末、Si粉末、
およびCr粉末をそれぞれ原料粉末として用意し、これ
ら原料粉末を、それぞれ第1表に示される配合組成に配
合し、これら配合粉末をボールミル中で約2時間湿式混
合した後、乾燥し、ついでこの混合粉末を外蓬:12柳
?の欧鋼製容器内に、直径:12柳少×厚さ:1.5欄
の寸法をもった超硬合金プレートと一諸に詰め込み装入
し、真空中で脱気し、密封した後、この密封容器を公知
の超高圧高温発生装置に装入し、圧力:5歌b、温度:
13000C、保持時間:10分の条件で碗結し、最終
的に冷却して圧力を徐々に下げることからなる基本的工
程によって、実質的に配合組成と同一の最終成分組成を
もった本発明超高圧燐結材料1〜12をそれぞれ製造し
た。
Example 1 Using the known PVD method and CVD method, the first
Coated CBN powder and coated WBN powder shown in the table were prepared and these powders were TIN with average particle size: 2rm.
Powder, TIC powder with the same 2-meter, TICN powder with the same 2r, TiB2 powder with the same 2" kite, all with the same 2
Ni powder, mountain powder, Co powder, Si powder,
and Cr powder are prepared as raw material powders, and these raw material powders are blended into the compositions shown in Table 1, and these blended powders are wet mixed in a ball mill for about 2 hours, then dried, and then this mixed powder is mixed. Powder: 12 willows? After filling and charging the cemented carbide plates with the dimensions of diameter: 12 yanagi x thickness: 1.5 into a European steel container, degassing in a vacuum and sealing, This sealed container is placed in a known ultra-high pressure and high temperature generator, pressure: 5cm, temperature:
By the basic process of condensing at 13,000C and holding time: 10 minutes, and finally cooling and gradually lowering the pressure, the present invention has a final component composition that is substantially the same as the blended composition. High-pressure phosphorized materials 1 to 12 were produced, respectively.

つぎに、この結果得られた本発明超高圧嬢結材料1〜1
2について、被削材:ダイス鋼(SKD−11、硬さ:
HRC59)、切削速度:120の/mjn、送り:0
.1側′revへ切込み:0.5脚、切削油:なしの条
件で切削試験を行ない、刃先の逃げ面摩耗が0.2欄に
至るまでの切削時間を測定すると共に、さらに被削材:
長手方向にそつて中4仇肋×深さ40側の]溝を相互対
称位置に2本有する外径130側◇のダイス鋼丸棒(S
KD−61、硬さ:HRC53)、切削速度:110の
/min、切込み:0.5肌、送り:0.05、0.1
、0.15、0.2、0.3、および0.4肋/rev
.、各送り毎の切削時間:3分、切削油:なしの条件で
の断続切削試験を行ない、刃先に欠け発生が見られた時
点の送り量をチェックした。この切削試験結果を第1表
に合せて示した。船 船 なお、第1表には、いずれも分散相がCBNで構成され
ているが、結合相の異なる市販の超高圧暁結材料、すな
わち結合相がAI−Coからなる金属で構成された材料
(以下従来超高圧暁結材料1という)、および結合相が
TICNのセラミック系化合物からなる材料(以下従来
超高圧凝結材料2という)の同一条件での切削試験結果
も示した。
Next, the ultra-high pressure bonding materials 1 to 1 of the present invention obtained as a result
Regarding 2, work material: die steel (SKD-11, hardness:
HRC59), cutting speed: 120/mjn, feed: 0
.. A cutting test was conducted under the following conditions: depth of cut to the 1st side 'rev: 0.5 feet, no cutting oil, and the cutting time until the flank wear of the cutting edge reached the 0.2 column, and the work material:
A die steel round bar with an outer diameter of 130 mm (S
KD-61, hardness: HRC53), cutting speed: 110/min, depth of cut: 0.5 skin, feed: 0.05, 0.1
, 0.15, 0.2, 0.3, and 0.4 ribs/rev
.. An intermittent cutting test was conducted under the following conditions: cutting time for each feed: 3 minutes, cutting oil: absent, and the feed rate at the time when chipping was observed on the cutting edge was checked. The cutting test results are shown in Table 1. Ships and shipsIn Table 1, the dispersed phase is composed of CBN, but commercially available ultra-high pressure lathering materials with a different binder phase, that is, materials whose binder phase is composed of a metal consisting of AI-Co, are listed. (hereinafter referred to as conventional ultra-high-pressure condensed material 1) and a material whose binder phase is a ceramic compound of TICN (hereinafter referred to as conventional ultra-high-pressure condensed material 2) under the same conditions are also shown.

第1表に示されるように、本発明超高圧競綾材料1〜1
2は、いずれもすぐれた耐摩耗性および轍性を兼ね備え
ているので、いずれの切削試験におし、てもすぐれた切
削性能を示すのに対して、耐摩耗性および鞭性のいずれ
かの特性が劣る従来超高圧暁結材料1、2においては、
両試験とも満足する結果を示さないことが明らかである
。上述のように、この発明の超高圧塚結材料は、すぐれ
た耐摩耗性と級性を有し、かつ高硬度をもつほか、耐熱
性および高温強度にもすぐれているので、これらの特性
が要求される切削工具は勿論のこと、軸受や線引ダイス
などの耐摩耗工具として使用してもすぐれた性能を発揮
するのである。
As shown in Table 1, the ultra-high pressure competitive twill materials 1 to 1 of the present invention
No. 2 has both excellent wear resistance and rutting resistance, so it showed excellent cutting performance in all cutting tests. In the conventional ultra-high pressure lathered materials 1 and 2, which have inferior properties,
It is clear that both tests do not give satisfactory results. As mentioned above, the ultra-high pressure curing material of the present invention has excellent wear resistance and toughness, as well as high hardness, as well as excellent heat resistance and high temperature strength. It exhibits excellent performance not only as cutting tools, but also as wear-resistant tools such as bearings and wire drawing dies.

Claims (1)

【特許請求の範囲】 1 結合強化金属としてのTi:4〜25重量%、Ti
の炭化物、窒化物、炭窒化物、および硼化物のうちの1
種または2種以上:5〜40重量%を含有し、残りが立
方晶窒化硼素と不可避不純物からなる組成を有し、かつ
立方晶窒化硼素が体積割合で40〜90%を占めると共
に、上記結合強化金属が立方晶窒化硼素を0.1〜1μ
mの平均層厚で包囲した組織を有することを特徴とする
切削および耐摩耗工具用高靭性窒化硼素基超高圧焼結材
料。 2 結合強化金属としてのTi:4〜25重量%、Ti
の炭化物、窒化物、炭窒化物、および硼化物のうちの1
種または2種以上:5〜40重量%を含有し、さらにN
i、Al、Co、Si、およびCrのうちの1種または
2種以上:0.5〜10重量%を含有し、残りが立方晶
窒化硼素と不可避不純物からなる組成を有し、かつ立方
晶窒化硼素が体積割合で40〜90%を占めると共に、
上記結合強化金属が立方晶窒化硼素を0.1〜1μmの
平均層厚で包囲した組織を有することを特徴とする切削
および耐摩耗工具用高靭性窒化硼素基超高圧焼結材料。 3 結合強化金属としてのTi:4〜25重量%、Ti
の炭化物、窒化物、炭窒化物、および硼化物のうちの1
種または2種以上:5〜40重量%を含有し、残りが立
方晶窒化硼素およびウルツ鉱型窒化硼素と不可避不純物
からなる組成を有し、かつ立方晶窒化硼素とウルツ鉱型
窒化硼素が体積割合で40〜90%を占めると共に、
0.05<(ウルツ鉱型窒化硼素(容量%))/(立方
晶窒化硼素(容量%))<1を満足し、さらに上記結合
強化金属が立方晶窒化硼素およびウルツ鉱型窒化硼素を
0.1〜1μmの平均層厚で包囲した組織を有すること
を特徴とする切削および耐摩耗工具用高靭性窒化硼素超
高圧焼結材料。 4 結合強化金属としてのTi:4〜25重量%、Ti
の炭化物、窒化物、炭窒化物、および硼化物のうちの1
種または2種以上:5〜40重量%を含有し、さらにN
i、Al、Co、Si、およびCrのうちの1種または
2種以上:0.5〜10重量%を含有し、残りが立方晶
窒化硼素およびウルツ鉱型窒化硼素と不可避不純物から
なる組成を有し、かつ立方晶窒化硼素とウルツ鉱型窒化
硼素が体積割合で40〜90%を占めると共に、0.0
5<(ウルツ鉱型窒化硼素(容量%))/(立方晶窒化
硼素(容量%))<1を満足し、さらに上記結合強化金
属が立方晶窒化硼素およびウルツ鉱型窒化硼素を0.1
〜1μmの平均層厚で包囲した組織を有することを特徴
とする切削および耐摩耗工具用高靭性窒化硼素基超高圧
焼結材料。
[Claims] 1. Ti as a bond-strengthening metal: 4 to 25% by weight, Ti
one of carbides, nitrides, carbonitrides, and borides of
Species or two or more species: Contains 5 to 40% by weight, with the remainder consisting of cubic boron nitride and unavoidable impurities, and the cubic boron nitride occupies 40 to 90% by volume, and the above bonds The reinforcing metal is cubic boron nitride with a thickness of 0.1 to 1μ
A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having an enclosed structure with an average layer thickness of m. 2 Ti as bond-strengthening metal: 4 to 25% by weight, Ti
one of carbides, nitrides, carbonitrides, and borides of
species or two or more species: Contains 5 to 40% by weight, and further contains N
i, Al, Co, Si, and Cr: 0.5 to 10% by weight; the remainder is cubic boron nitride and unavoidable impurities; Boron nitride occupies 40 to 90% by volume, and
A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized in that the bond-strengthening metal has a structure in which cubic boron nitride is surrounded by an average layer thickness of 0.1 to 1 μm. 3 Ti as bond-strengthening metal: 4-25% by weight, Ti
one of carbides, nitrides, carbonitrides, and borides of
Species or two or more species: Contains 5 to 40% by weight, with the remainder consisting of cubic boron nitride, wurtzite boron nitride, and unavoidable impurities, and cubic boron nitride and wurtzite boron nitride are It accounts for 40-90%, and
0.05 < (wurtzite boron nitride (volume %)) / (cubic boron nitride (volume %)) A high-toughness boron nitride ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having an enclosed structure with an average layer thickness of 1 to 1 μm. 4 Ti as bond-strengthening metal: 4-25% by weight, Ti
one of carbides, nitrides, carbonitrides, and borides of
species or two or more species: Contains 5 to 40% by weight, and further contains N
i, Al, Co, Si, and Cr: 0.5 to 10% by weight, and the remainder consists of cubic boron nitride, wurtzite boron nitride, and inevitable impurities. and cubic boron nitride and wurtzite boron nitride occupy 40 to 90% by volume, and 0.0
5 < (wurtzite boron nitride (volume %)) / (cubic boron nitride (volume %))
A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having an enclosed structure with an average layer thickness of ~1 μm.
JP56159193A 1981-10-06 1981-10-06 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools Expired JPS6020457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159193A JPS6020457B2 (en) 1981-10-06 1981-10-06 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159193A JPS6020457B2 (en) 1981-10-06 1981-10-06 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Publications (2)

Publication Number Publication Date
JPS5861255A JPS5861255A (en) 1983-04-12
JPS6020457B2 true JPS6020457B2 (en) 1985-05-22

Family

ID=15688344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159193A Expired JPS6020457B2 (en) 1981-10-06 1981-10-06 High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools

Country Status (1)

Country Link
JP (1) JPS6020457B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0811712B2 (en) * 1988-12-28 1996-02-07 工業技術院長 Cubic boron nitride sintered body and manufacturing method thereof
CA2242891C (en) * 1996-12-03 2004-02-10 Sumitomo Electric Industries, Ltd. High-pressure phase boron nitride-based sintered body
JP3641794B2 (en) * 1999-07-14 2005-04-27 きみ子 末田 Diamond blade
ITTO20050692A1 (en) * 2005-10-04 2007-04-05 Dipartimento Di Meccanica-Politecnico Di Torino MATERIALS MADE OF A TITANIUM METAL MATRIX AND THEIR USE FOR THE PRODUCTION OF CUTTING TOOLS
JP5988430B2 (en) * 2012-10-26 2016-09-07 住友電工ハードメタル株式会社 Cubic boron nitride sintered body and method for producing the same
JP7336062B2 (en) * 2021-08-24 2023-08-31 株式会社タンガロイ Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP7336063B2 (en) * 2021-08-24 2023-08-31 株式会社タンガロイ Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514207A (en) * 1974-07-01 1976-01-14 Kagaku Gijutsucho Mukizai
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation
JPS5518508A (en) * 1978-07-21 1980-02-08 Mitsubishi Metal Corp Sintering material having toughness and abrasion resisting property
JPS5597448A (en) * 1978-12-28 1980-07-24 Nippon Oil & Fats Co Ltd Sintered body containing high density phase boron nitride and preparation of the same
JPS55119150A (en) * 1979-03-03 1980-09-12 Tatsuro Kuratomi Cubic system boron nitride solid solution and preparation thereof
JPS55164475A (en) * 1979-06-06 1980-12-22 Mitsubishi Metal Corp Coated cubic boron nitride powder for grindstone and powder metallurgy
JPS5677359A (en) * 1979-11-30 1981-06-25 Nippon Oil & Fats Co Ltd High density phase boron nitride composite sintered body and its manufacture
JPS6020458A (en) * 1983-07-13 1985-02-01 Yoshitoshi Uchisawa A sum-3 dry cell can be substituted for a sum-1 or sum-2 dry cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514207A (en) * 1974-07-01 1976-01-14 Kagaku Gijutsucho Mukizai
JPS5377811A (en) * 1976-12-21 1978-07-10 Sumitomo Electric Ind Ltd Sintered material for tools of high hardness and its preparation
JPS5518508A (en) * 1978-07-21 1980-02-08 Mitsubishi Metal Corp Sintering material having toughness and abrasion resisting property
JPS5597448A (en) * 1978-12-28 1980-07-24 Nippon Oil & Fats Co Ltd Sintered body containing high density phase boron nitride and preparation of the same
JPS55119150A (en) * 1979-03-03 1980-09-12 Tatsuro Kuratomi Cubic system boron nitride solid solution and preparation thereof
JPS55164475A (en) * 1979-06-06 1980-12-22 Mitsubishi Metal Corp Coated cubic boron nitride powder for grindstone and powder metallurgy
JPS5677359A (en) * 1979-11-30 1981-06-25 Nippon Oil & Fats Co Ltd High density phase boron nitride composite sintered body and its manufacture
JPS6020458A (en) * 1983-07-13 1985-02-01 Yoshitoshi Uchisawa A sum-3 dry cell can be substituted for a sum-1 or sum-2 dry cell

Also Published As

Publication number Publication date
JPS5861255A (en) 1983-04-12

Similar Documents

Publication Publication Date Title
JP5716577B2 (en) Hard material, manufacturing method thereof, and cutting tool
JPS6020457B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS6053721B2 (en) Composite sintered parts for cutting tools
JPS6225631B2 (en)
JPS627149B2 (en)
JPS5858247A (en) High toughness boron nitride-base material sintered under superhigh pressure for wear resistant cutting tool
JPS6225630B2 (en)
JPS6020456B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS6033893B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS5927303B2 (en) Sintered material for cutting tools with toughness and wear resistance
JP3648758B2 (en) Nitrogen-containing sintered hard alloy
JPH06198504A (en) Cutting tool for high hardness sintered body
JPS6225632B2 (en)
JPH10193206A (en) Cutting tool whose cutting edge piece has excellent brazing joining strength
JPS6020458B2 (en) High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPH04116134A (en) Wc base sintered hard alloy excellent in toughness and sintered hard alloy coated with hard layer
JPS607022B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPH0742170B2 (en) Cubic boron nitride based sintered body
JPH0551267A (en) Sintering material for tool
JP2835255B2 (en) Cemented carbide
JPH075384B2 (en) Cubic boron nitride based sintered body
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JPS602378B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting tools
JPS6245290B2 (en)
JPS602379B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools