JP3648758B2 - Nitrogen-containing sintered hard alloy - Google Patents

Nitrogen-containing sintered hard alloy Download PDF

Info

Publication number
JP3648758B2
JP3648758B2 JP10558494A JP10558494A JP3648758B2 JP 3648758 B2 JP3648758 B2 JP 3648758B2 JP 10558494 A JP10558494 A JP 10558494A JP 10558494 A JP10558494 A JP 10558494A JP 3648758 B2 JP3648758 B2 JP 3648758B2
Authority
JP
Japan
Prior art keywords
less
nitrogen
weight
hard phase
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10558494A
Other languages
Japanese (ja)
Other versions
JPH07316716A (en
Inventor
和孝 磯部
圭一 津田
明彦 池ヶ谷
信行 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP10558494A priority Critical patent/JP3648758B2/en
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to DE69523342T priority patent/DE69523342T2/en
Priority to DE69513086T priority patent/DE69513086T2/en
Priority to EP95107670A priority patent/EP0687744B1/en
Priority to EP97115279A priority patent/EP0822265B1/en
Priority to KR1019950012885A priority patent/KR0180522B1/en
Priority to TW84105128A priority patent/TW379253B/en
Publication of JPH07316716A publication Critical patent/JPH07316716A/en
Priority to US08/709,176 priority patent/US6057046A/en
Application granted granted Critical
Publication of JP3648758B2 publication Critical patent/JP3648758B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、窒素含有焼結硬質合金に関し、特に、切削加工用工具の材質としての耐熱衝撃性、耐摩耗性および強度の向上を図り、かつ湿式切削への適用を可能にする窒素含有焼結硬質合金に関するものである。
【0002】
【従来の技術】
Tiを主成分とする炭窒化物などを硬質相とし、これをNiおよびCoを含む金属で結合した窒素を含有する焼結硬質合金が、切削工具として既に実用化されている。この窒素含有焼結硬質合金は、従来の窒素を含有しない焼結硬質合金に比べて硬質相が著しく微粒になり、その結果耐高温クリープ特性が大幅に改善されるため、WCを主成分としたいわゆる超硬合金と並んで、切削工具として広く使用されてきている。
【0003】
しかしながら、この窒素含有焼結硬質合金は、
▲1▼ 主成分であるTiの炭窒化物の熱伝導度が超硬合金の主成分であるWCの熱伝導度に比べて著しく小さいため、この窒素含有焼結硬質合金の熱伝導度は超硬合金の熱伝導の約2分の1であること、
▲2▼ 熱膨張係数も、熱伝導度と同様に主成分の特性値に依存するため、窒素含有焼結硬質合金の熱膨張係数は超硬合金の熱膨張係数の約1.3倍になること、
などの理由により、熱衝撃に対する抵抗が低くなる。そのため、たとえばフライス切削や角材の旋盤による切削加工、あるいは切込みが大きく変動する湿式での倣い切削などのように特に熱衝撃が厳しくなる条件下での切削においては、被覆超硬合金などに比べて、窒素含有焼結硬質合金の信頼性が低いという問題があった。
【0004】
このような窒素含有焼結硬質合金の従来の問題点を解消するため、以下に示すようなさまざまな改良が試みられている。たとえば、特開平2−15139号公報には、Tiを炭化物などに換算して50重量%以上、Wなどの6A族元素を炭化物換算で40重量%未満、N/(C+N)の原子比が0.4〜0.6の窒素含有量の高いものを、焼結雰囲気を制御して表面粗さを向上させ、表層部に高い靱性と硬度とを有する改質部を形成させることが提案されている。また、特開平5−9646号公報には、Tiを主成分とし、W,Mo,Crを炭化物換算で合計40重量%未満含有したものを焼結後の冷却工程を制御して、表面部に内部よりも結合相の減少した領域を形成し、表面に圧縮応力を残すサーメットが開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら上記いずれの公報に開示されたサーメットにおいても、耐摩耗性および靱性は向上しているが、被覆超硬合金に比べれて耐欠損性は不十分である。また耐熱衝撃性に乏しく、特に、熱亀裂の発生や、熱衝撃および機械的衝撃の両者に起因する亀裂の進展による突発欠損が生じやすく、十分な信頼性が得られない。すなわち、このような先行技術では、コーティング工程を省略することによって製造コストが下がるものの、性能的にはそれに見合っただけのものしか発揮できない。これは、ある程度以上のTiの含有を前提としたいわゆるサーメットという範疇においては、欠損に対する強度向上を図ることに自ずと限界があるということを示している。
【0006】
そこで本発明者らは、種々の切削における温度分布などの切削現象の解析と、工具内の材料成分の配置との詳細な研究を行なった結果、以下の知見を得た。
【0007】
切削中において切削部は被削材と接触している切れ刃表面部分やすくい面の切り屑の擦過していく部分など、部分的に高温環境にさらされる。サーメットと超硬合金とを比較すると、上述のようにサーメットは熱伝導度が超硬合金の2分の1程度であるため、表面で発生する熱が内部へ拡散しにくく、表面は高温であるにもかかわらず内部では急激に温度が低下するという状態が生じる。このような状態においては一度亀裂が入ると、著しく欠損しやすくなるという問題がある。さらに、高温のサーメットが水溶性切削油によって急冷却されたり、切削空転して冷却されたりすると、その極表面部分のみが急冷されることになる。
【0008】
サーメットと超硬合金とを比較すると、上述のようにサーメットは熱膨張係数が超硬合金の約1.3倍であるため、表層部に引張り応力が発生し、熱亀裂が非常に発生しやすくなる。いずれの特性も耐熱衝撃性では、超硬合金よりもサーメットのほうが不利である。
【0009】
さらに、同一粒度および同一結合相量で見た場合、サーメットは超硬合金に比べて破壊靱性値も30ないし50%低下するため、合金内部での亀裂進展抵抗も低くなる。
【0010】
すなわち、窒素含有焼結硬質合金において、切削仕上げ面を良好にできかつ資源的にも有利なTiを多量に含有したまま、熱伝導度の向上、熱膨張係数の低減、および亀裂進展抵抗の向上を図ることには、限界があるという問題があった。
【0011】
本発明は、従来は高価な被覆超硬合金でしか使用できなかった、厳しい熱衝撃を受ける条件下での加工領域においても、表面被覆を施すことなくかつ高い信頼性を持って切削工具として使用可能な窒素含有焼結硬質合金を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の窒素含有焼結硬質合金は、組織的に従来の窒素含有焼結硬質合金に比べて内部にWCを多く存在させ、亀裂進展に対する抵抗を向上させることを狙いとしている。WCを多く配合させると、従来の窒素含有焼結硬質合金においては、合金表面へのWC粒子が出現して、いわゆるP種と呼ばれている工具材料となるが、この工具材料は切削仕上げ面の性状が低い。そのため、耐アブレッシブ摩耗性も、いわゆるサーメットや被覆超硬合金に比べると格段に劣るものとなっていた。
【0013】
しかしながら、焼結を特定の高窒素雰囲気で行なうと、切削仕上げ面の性状を決定する、工具の最表面に存在する軟質層、すなわちいわゆる染み出し層直下から特定の深さまでの表面部分の、WC粒子を消失させ得ることが判明した。これにより、耐アブレッシブ摩耗性や耐クレーター摩耗性が大幅に向上できること、それに加えて冷却を真空などの脱炭雰囲気で行なうと、表面層付近は結合相量が減少し、それと同時に硬質相粒子にWなどの6A族金属が多く固溶する。また、結合相量勾配により熱膨張係数差に起因する表面部への圧縮応力が発生することなどの効果により合金表面が硬化し、かつ靱性を向上させることができ、その結果、耐摩耗性や靱性、耐熱衝撃性を顕著に向上させ得ることが可能になった。
【0014】
そこで、本発明の請求項1に記載の窒素含有焼結硬質合金は、
(Ti・Wx y )(Cu 1-u )(ただし、MはWを除く周期律表6A族金属の少なくとも1種、0<x<1,0≦y≦0.9,0≦u<0.9)およびWCを含む硬質相を75重量%以上95重量%以下、Ni,Coおよび不可避不純物を含む結合相を5重量%以上25重量%以下含み、
Tiを炭化物、窒化物あるいは炭窒化物に換算して5重量%以上60重量%以下、周期律表6A族金属を炭化物に換算して30重量%以上70重量%以下含有し、かつ、
前記硬質相の窒素/(炭素+窒素)が原子比で0.2以上0.5未満であり、最表面に結合相金属とWCとを含む軟質層が存在し、該軟質層の直下に3μm以上30μm以下の厚みでWCを含む硬質相が1体積%以下である層を有することを特徴とする。
【0015】
また、請求項2に記載の窒素含有焼結硬質合金は、上記請求項1に記載の組成において、WCを含む硬質相が1体積%以下である層から、最表面からの最大深さ1mmまで、内部に向かってWCを含む硬質相の存在量が漸次増加することを特徴とする。
【0016】
さらに、請求項3に記載の窒素含有焼結硬質合金は、上記請求項1または2に記載の組成において、WCを含む硬質相の存在量が、最表面から1mm以上の深さの内部において5体積%以上50体積%未満であることを特徴とする。
【0017】
本発明の請求項4に記載の窒素含有焼結硬質合金は、
(Ti・Wx y )(Cu 1-u )(ただし、MはTi,Wを除く周期律表4A,5A,6A族金属の少なくとも1種、0<x<1,0<y≦0.9,0≦u<0.9)およびWCを含む硬質相を75重量%以上95重量%以下、Ni,Coおよび不可避不純物を含む結合相を5重量%以上25重量%以下含み、
Tiを炭化物、窒化物あるいは炭窒化物に換算して5重量%以上60重量%以下、周期律表6A族金属を炭化物に換算して30重量%以上70重量%以下、Ta,Nbの合計含有量を炭化物、窒化物あるいは炭窒化物に換算して2重量%以上15重量%以下、V,Zr,およびHfの合計含有量を炭化物、窒化物あるいは炭窒化物に換算して5重量%以下含有し、かつ、
硬質相の窒素/(炭素+窒素)が原子比で0.2以上0.5未満であり、最表面に結合相金属およびWCを含む軟質層が存在し、該軟質層の直下に3μm以上30μm以下の厚みでWCを含む硬質相が1体積%以下である層を有することを特徴とする。
【0018】
また請求項5に記載の窒素含有焼結硬質合金は、上記請求項4に記載の組成において、前記WCを含む硬質相が1体積%以下である層から、最表面からの最大深さ1mmまで、内部に向かってWCを含む硬質相が漸次増加することを特徴とする。
【0019】
さらに、請求項6記載の窒素含有焼結硬質合金は、上記請求項4または5に記載の組成において、前記WCを含む硬質相の存在量が、最表面から深さ1mm以上の内部において5体積%以上50体積%未満であることを特徴とする。
【0020】
【作用】
請求項1に記載の本発明の窒素含有焼結硬質合金によれば、まず、硬質相の含有量が75重量%以上95重量%以下としている。これは、硬質相が75重量%未満では耐摩耗性、耐塑性変形性の低下が著しく、95重量%を超えると強度および靱性が不足するためである。またTiの含有量を炭化物などに換算して5重量%以上60重量%以下としたのは、5重量%未満では耐摩耗性が所望のレベルに達せず、60重量%を超えると靱性が劣化するためである。このTiの含有量は、5重量%以上50重量%以下であることが望ましく、20重量%以上50重量%以下であることが特に望まれる。
【0021】
周期律表6A族金属を炭化物に換算して30重量%以上70重量%以下としたのは、30重量%未満では所望の靱性が得られず、70重量%を超えるとWC粒子が表面にも多く残存するようになり、耐摩耗性が不十分となって好ましくないからである。この周期律表6A族金属を炭化物に換算した含有量は、40重量%以上70重量%以下であることが望ましく、40重量%以上60重量%以下であることが特に望ましい。
【0022】
また、硬質相の窒素/(炭素+窒素)の原子比を0.2以上0.5未満としたのは、この原子比が0.2未満であると靱性および耐摩耗性ともに所望のレベルに達せず、0.5を超えると焼結性が低下し、靱性が劣化するためである。この原子比は、0.2以上0.4未満であることが望ましい。
【0023】
さらに、WCを含む硬質相がほとんど存在しない層、具体的には1体積%以下である層の厚みを、最表面の結合相金属とWCとからなる軟質層の直下において3μm以上30μm以下としたのは、3μm未満では所望の耐アブレッシブ摩耗性および耐クレータ摩耗性を得ることができず、30μmを超えると亀裂進展抵抗を促進する効果が発揮されず、その結果靱性が低下するためである。
【0024】
本発明の請求項2に記載の窒素含有焼結硬質合金によれば、WCを含む硬質相が1体積%以下の層から、最表面から最大深さ1mmまで、内部に向かってWCを含む硬質相の存在量が漸次増加することにより、WCが存在する領域と存在しない領域との境界におけるWC含有分布の急激な変化が防止され、その境界での残留応力の発生が緩和される。
【0025】
本発明の請求項3に記載の窒素含有焼結硬質合金において、WCを含む硬質相が、最表面から最大深さ1mm以上の内部において、5体積%以上50体積%未満であるとしたのは、5体積%未満では所望の靱性向上効果が得られず、50体積%では表層部分の熱衝撃に対する靱性と合金の耐塑性変形性が低下するためである。
【0026】
さらに、上記請求項1に記載の窒素含有焼結硬質合金の硬質相の組成に代えて、請求項4に記載の組成のように、Wを除く周期律表6A族金属に加えて、Tiを除く周期律表4A族金属および/または5A族金属を含有し、Ta,Nbの合計含有量を炭化物、窒化物あるいは炭窒化物に換算して2重量%以上15重量%以下とし、V,Zr,Hfの合計含有量を炭化物、窒化物あるいは炭窒化物に換算して5重量%以下含むことによっても、請求項1に記載の組成と同様の作用効果を有する。Ta,Nbの炭化物等に換算した合計含有量が2重量%未満では耐クレーター摩耗性が向上せず、15重量%を超えると耐欠損性が低下する。V,Zr,Hfは高温における強度や硬度を向上させるために含有することが好ましいが、炭化物等に換算した合計含有量が5重量%を超えると、焼結性が低下し、その結果耐欠損性も低下する。
【0027】
請求項5および6に記載の窒素含有焼結硬質合金の作用効果は、請求項2および3に記載の構造の作用効果と同様である。
【0028】
【実施例】
以下、本発明の具体的な実施例について説明する。
【0029】
実施例1
平均粒径が2μmで、有芯構造の外郭部分が、反射電子顕微鏡像で純白に見え、芯部分が真っ黒に見える(Ti0.85Ta0.04Nb0.040.07)(C0.560.44)粉末と、平均粒径が0.7μmのWC粉末と、平均粒径1.5μmのNi粉末とCo粉末とを、それぞれ45重量%、40重量%、7重量%、8重量%の割合で、湿式混合後、型押し成形し、10-2Torrの真空中で1200℃で脱ガスした。その後、窒素ガス分圧30Torrで、1450℃で1時間焼結後、真空中で5℃/分で冷却し、試料1を形成した。この試料1のTi含有量はTiCN換算で34重量%、W含有量はWC換算で45重量%、TaおよびNbの含有量はTaC+Nb換算で6重量%であった。またN/(C+N)は、原子比で0.3となった。軟質層直下から厚さ10μmの領域においては、WC粒子が全く存在せず、最表面から1mmの深さにおける内部のWCを含む硬質相の存在量は15体積%となっていた。
【0030】
比較のために、従来の製法によって形成したサンプルとして、試料2ないし4を形成した。試料2は、試料1と同一の型押し成形体を窒素分圧5Torr、1400℃で焼結したものである。また、試料3は、試料2と同一の焼結体を、焼結後にCO分圧200Torrで冷却したものである。また試料4は、試料2と同一の焼結体を、焼結後に窒素分圧180Torrで冷却したものである。
【0031】
試料2ないし4の構造は、軟質層直下のWCを含む硬質相の存在量が、それぞれ10体積%、15体積%、5体積%であった。さらに、試料1と同一原料に加えて、平均粒径1〜3μmのTaC、NbC、ZrC、VCを使用し、下記の表1に示す重量比率で配合し、試料1と同様の工程で焼結合金を形成し、表1に示す換算含有量を有する試料5ないし10とした。Ni,Co,ZrC,VCは、換算含有量が配合組成とほぼ同じ量であるため、記載を省略した。また、このときのN/(C+N)の原子比と、合金表面部の軟質層直下のWCを含む硬質相が1体積%以下の層の厚みと、最表面から1mmにおけるWCを含む硬質相の存在量を、下記の表2に示した。
【0032】
【表1】

Figure 0003648758
【0033】
【表2】
Figure 0003648758
【0034】
上記各試料1ないし10の窒素含有焼結硬質合金について、下記の表3の切削条件1ないし3を用いて切削加工を実施し、その結果下記の表4に示す判定結果を得た。
【0035】
【表3】
Figure 0003648758
【0036】
【表4】
Figure 0003648758
【0037】
表4に示した判定結果からわかるように、請求項1または4に記載された本発明の条件を満たす組成などを有する試料1,5および6を用いた場合には、本発明の条件から外れる組成等を有する試料2ないし4および7ないし10を用いた場合と比べて、いずれも優れた耐摩耗性、靱性および耐熱衝撃性を示している。
【0038】
実施例2
下記の表5に示す原料粉末を用いて、それぞれの換算含有重量になるように配合および混合粉砕して、試料11ないし23を成形した。ここで、TiCN粉末は平均粒径2μmでC/N原子比5/5のものを用い、その他の粉末は平均粒径1〜3μmのものを用いた。試料12は、Ta、Nb源として平均粒径1.5μmの(TaNb)C粉末(TaC:NbC=2:1(重量比))を用い、試料17は、Ti、W源として平均粒径2μmの(Ti0.80.2 )(C0.70.3 )粉末を使用した。これらの固溶体原料粉末の配合量については、表5においては単体の化合物に換算して示した。各試料の配合組成については、換算含有量が配合組成とほぼ同量であるため、その記載を省略した。
【0039】
【表5】
Figure 0003648758
【0040】
試料11ないし23を、10-2Torrの真空中で3℃/分で昇温し、1200℃で15分間脱ガス後、窒素ガス分圧15〜40Torr、1450℃で1時間焼結後、真空中で3℃/分で1200℃まで制御冷却した後、窒素急冷した。試料11,12については、同一条件での焼結後に、冷却条件を変えて、試料11Aないし11Cおよび12Aないし12Cを形成した。そのうち11A,12Aは、試料11,12とそれぞれ同一条件での焼結後、CO分圧150Torrで冷却し、試料11B,12Bについては、窒素分圧200Torrで冷却し、試料11C,12Cについては1530℃まで昇温後1.5時間焼結した後に制御冷却したものである。
【0041】
試料11ないし23および試料11Aないし11C,12Aないし12CのN/(C+N)原子比と、合金表面部の軟質層直下のWCを含む硬質相が1体積%以下の領域の厚みと、最表面から1mmの深さにおけるWCを含む硬質相の存在量とを、下記の表6に示した。
【0042】
【表6】
Figure 0003648758
【0043】
表6に示した各試料について、下記の表7に示す切削条件4ないし6で切削加工を実施し、下記の表8に示す判定結果を得た。比較のため、市販の被覆超硬合金P10グレードについても切削テストを行なった。
【0044】
【表7】
Figure 0003648758
【0045】
【表8】
Figure 0003648758
【0046】
表8に示した判定結果からわかるように、請求項1または4に記載された本発明の条件を満たす組成等を有する試料11,12および13ないし17を用いた場合には、本発明の条件から外れる組成等を有する試料11Aないし11C,12Aないし12Cおよび18ないし23を用いた場合と比べて、いずれも優れた耐摩耗性、靱性および耐熱衝撃性を示している。
【0047】
【発明の効果】
以上説明したように、請求項1あるいは4に記載の本発明の窒素含有焼結硬質合金によれば、硬質相の含有量を70重量%以上とすることにより耐摩耗性、耐塑性変形性の低下を抑え、90重量%以下とすることにより強度および靱性の不足を来すことがない。また、Tiの含有量を炭化物などに換算して5重量%以上とすることにより耐摩耗性を所望のレベルに維持するととにもに、60重量%以下とすることにより靱性の劣化を抑える。
【0048】
また、周期律表6A族金属を炭化物に換算して30重量%以上含有することにより所望の靱性が維持され、70重量%以下とすることにより表面でのWC粒子の残存量が減少して十分な耐摩耗性を得ることができる。
【0049】
また、硬質相の窒素/(炭素+窒素)の原子比を0.2以上とすることにより靱性および耐摩耗性が所望のレベルに維持され、0.5以下とすることにより焼結性の低下および靱性の劣化が抑制される。
【0050】
さらに、WCを含む硬質相が1体積%以下である層の厚みを、最表面の結合相金属とWCとからなる軟質層の直下において3μm以上とすることにより所望の耐アブレッシブ摩耗性および耐クレータ摩耗性が得られ、30μm以下とすることにより亀裂進展抵抗が維持されて靱性の劣化が抑えられる。
【0051】
すなわち、請求項1あるいは4に記載の組成と構造を有することにより、表面被覆を施すことなく、切削工具用材料として優れた耐摩耗性、耐熱衝撃性および靱性を備えた窒素含有焼結硬質合金を得ることができる。
【0052】
また、請求項2あるいは5に記載の窒素含有焼結硬質合金によれば、WCが存在する領域と存在しない領域との境界で発生する残留応力は緩和され、その結果合金の強度を維持あるいは向上させることができる。
【0053】
さらに、請求項3あるいは6に記載の窒素含有焼結硬質合金によれば、WCを含む硬質相の存在量を、最表面から最大深さ1mm以上の内部において5体積%以上とすることにより所望の靱性向上効果が得られ、50体積%以下とすることにより表層部分での熱衝撃に対する靱性と合金の耐塑性変形性が保持され、高温での過酷な切削条件下で使用される工具用材料としても優れた特性が発揮される。[0001]
[Industrial application fields]
The present invention relates to a nitrogen-containing sintered hard alloy, and in particular, nitrogen-containing sintering that improves thermal shock resistance, wear resistance, and strength as a material for a cutting tool and enables application to wet cutting. It relates to hard alloys.
[0002]
[Prior art]
Sintered hard alloys containing nitrogen in which carbonitrides mainly composed of Ti are used as a hard phase and bonded with a metal containing Ni and Co have already been put into practical use as cutting tools. In this nitrogen-containing sintered hard alloy, the hard phase becomes remarkably finer than the conventional sintered hard alloy not containing nitrogen, and as a result, the high temperature creep resistance is greatly improved. Along with so-called cemented carbide, it has been widely used as a cutting tool.
[0003]
However, this nitrogen-containing sintered hard alloy is
(1) Since the thermal conductivity of Ti carbonitride, which is the main component, is significantly smaller than that of WC, which is the main component of the cemented carbide, the thermal conductivity of this nitrogen-containing sintered hard alloy is extremely high. About half the heat conduction of hard alloys,
(2) Since the thermal expansion coefficient depends on the characteristic value of the main component as well as the thermal conductivity, the thermal expansion coefficient of the nitrogen-containing sintered hard alloy is about 1.3 times the thermal expansion coefficient of the cemented carbide. about,
For such reasons, the resistance to thermal shock is low. Therefore, compared to coated cemented carbide, for example, when cutting under conditions where thermal shock is severe, such as milling, cutting with a square lathe, or profiling in wet conditions where the depth of cut varies greatly. There was a problem that the reliability of the nitrogen-containing sintered hard alloy was low.
[0004]
In order to solve the conventional problems of such nitrogen-containing sintered hard alloys, various improvements as described below have been attempted. For example, in Japanese Patent Laid-Open No. 2-15139, Ti is converted into carbide or the like to 50 wt% or more, 6A group element such as W is less than 40 wt% in terms of carbide, and N / (C + N) atomic ratio is 0. It is proposed that a high nitrogen content of 4-0.6 is controlled to improve the surface roughness by controlling the sintering atmosphere and to form a modified portion having high toughness and hardness in the surface layer portion. Yes. Japanese Patent Laid-Open No. 5-9646 discloses a method for controlling a cooling step after sintering a material containing Ti as a main component and containing a total of less than 40% by weight of W, Mo, and Cr in terms of carbide. A cermet is disclosed that forms a region with a reduced binder phase relative to the interior and leaves a compressive stress on the surface.
[0005]
[Problems to be solved by the invention]
However, although the cermet disclosed in any of the above publications has improved wear resistance and toughness, it has insufficient fracture resistance compared to a coated cemented carbide. Further, the thermal shock resistance is poor, and in particular, the occurrence of thermal cracks and sudden defects due to the development of cracks due to both thermal and mechanical shocks are likely to occur, and sufficient reliability cannot be obtained. That is, in such a prior art, although the manufacturing cost is reduced by omitting the coating process, only the performance corresponding to the performance can be exhibited. This indicates that, in the category of so-called cermet that presupposes a certain amount of Ti content, there is a limit to improving the strength against defects.
[0006]
Therefore, as a result of detailed studies on analysis of cutting phenomena such as temperature distribution in various cuttings and arrangement of material components in the tool, the inventors have obtained the following knowledge.
[0007]
During cutting, the cutting portion is partially exposed to a high temperature environment, such as a portion where the cutting edge surface portion that is in contact with the work material is easily scraped off by a chip. Comparing cermet and cemented carbide, as mentioned above, cermet is about half the thermal conductivity of cemented carbide, so the heat generated on the surface is difficult to diffuse inside, and the surface is hot. Nevertheless, a state occurs in which the temperature rapidly decreases inside. In such a state, once a crack has occurred, there is a problem that it is extremely easy to be lost. Furthermore, when the high-temperature cermet is rapidly cooled by the water-soluble cutting oil or cooled by cutting idle, only the extreme surface portion is rapidly cooled.
[0008]
Comparing cermet and cemented carbide, as mentioned above, cermet has a thermal expansion coefficient about 1.3 times that of cemented carbide, so tensile stress is generated in the surface layer and thermal cracks are very likely to occur. Become. In any case, cermet is more disadvantageous than cemented carbide in terms of thermal shock resistance.
[0009]
Further, when viewed with the same grain size and the same amount of binder phase, cermet also has a fracture toughness value of 30 to 50% lower than that of cemented carbide, so that the crack propagation resistance inside the alloy is also lowered.
[0010]
In other words, in a nitrogen-containing sintered hard alloy, the thermal conductivity is improved, the thermal expansion coefficient is reduced, and the crack propagation resistance is improved while containing a large amount of Ti, which has a good cutting finish and is advantageous in terms of resources. There was a problem that there was a limit in trying to.
[0011]
The present invention can be used as a cutting tool without applying a surface coating and with high reliability even in a processing region under severe thermal shock conditions that could only be used with expensive coated cemented carbides. An object is to provide a possible nitrogen-containing sintered hard alloy.
[0012]
[Means for Solving the Problems]
The nitrogen-containing sintered hard alloy of the present invention aims to improve the resistance to crack propagation by having a larger amount of WC in the interior than the conventional nitrogen-containing sintered hard alloy. When a large amount of WC is blended, in the conventional nitrogen-containing sintered hard alloy, WC particles appear on the alloy surface and become a so-called P-type tool material. The property of is low. For this reason, the abrasive wear resistance is also inferior to that of so-called cermet or coated cemented carbide.
[0013]
However, when the sintering is performed in a specific high nitrogen atmosphere, the WC of the soft layer existing on the outermost surface of the tool, that is, the surface portion from a position immediately below the so-called exudation layer to a specific depth, which determines the properties of the cut finish surface. It has been found that the particles can disappear. As a result, the abrasive wear resistance and crater wear resistance can be greatly improved. In addition, when cooling is performed in a decarburizing atmosphere such as a vacuum, the amount of the binder phase decreases in the vicinity of the surface layer, and at the same time, the hard phase particles A lot of Group 6A metals such as W are dissolved. In addition, the surface of the alloy can be hardened and the toughness can be improved due to the effects such as the generation of compressive stress on the surface due to the difference in thermal expansion coefficient due to the binder phase gradient. It has become possible to significantly improve toughness and thermal shock resistance.
[0014]
Therefore, the nitrogen-containing sintered hard alloy according to claim 1 of the present invention is
(Ti · W x M y) (C u N 1-u) ( however, M is at least one periodic table group 6A metals excluding W, 0 <x <1,0 ≦ y ≦ 0.9,0 ≦ u <0.9) and the hard phase containing WC is 75 wt% or more and 95 wt% or less, and the binder phase containing Ni, Co and inevitable impurities is contained 5 wt% or more and 25 wt% or less,
Containing 5 wt% or more and 60 wt% or less of Ti in terms of carbide, nitride or carbonitride, and containing 30 wt% or more and 70 wt% or less of the periodic table 6A group metal in terms of carbide, and
The hard phase nitrogen / (carbon + nitrogen) has an atomic ratio of 0.2 or more and less than 0.5, a soft layer containing a binder phase metal and WC is present on the outermost surface, and 3 μm immediately below the soft layer. The hard phase containing WC with a thickness of 30 μm or less has a layer of 1% by volume or less .
[0015]
Further, the nitrogen-containing sintered hard alloy according to claim 2 is the composition according to claim 1, wherein the hard phase containing WC is 1% by volume or less from the layer having a maximum depth of 1 mm from the outermost surface. The amount of hard phase containing WC gradually increases toward the inside.
[0016]
Furthermore, the nitrogen-containing sintered hard alloy according to claim 3 is the composition according to claim 1 or 2, wherein the abundance of the hard phase containing WC is 5 within a depth of 1 mm or more from the outermost surface. It is characterized by being not less than 50% by volume and not less than 50% by volume.
[0017]
The nitrogen-containing sintered hard alloy according to claim 4 of the present invention,
(Ti · W x M y) (C u N 1-u) ( however, M is Ti, Periodic Table 4A except W, 5A, 6A Group at least one metal, 0 <x <1,0 <y ≦ 0.9, 0 ≦ u <0.9) and 75% by weight to 95% by weight of a hard phase containing WC, and 5% by weight to 25% by weight of a binder phase containing Ni, Co and unavoidable impurities,
Ti is converted to carbide, nitride or carbonitride in the range of 5 wt% to 60 wt%, Periodic Table 6A Group metal in terms of carbide to 30 wt% to 70 wt%, and total content of Ta and Nb 2 to 15% by weight in terms of carbide, nitride or carbonitride, and 5% by weight in terms of total content of V, Zr and Hf in terms of carbide, nitride or carbonitride Containing, and
The hard phase nitrogen / (carbon + nitrogen) has an atomic ratio of 0.2 or more and less than 0.5, a soft layer containing a binder phase metal and WC is present on the outermost surface, and 3 μm or more and 30 μm immediately below the soft layer. The hard phase containing WC with the following thickness has a layer of 1% by volume or less .
[0018]
Further, the nitrogen-containing sintered hard alloy according to claim 5 is the composition according to claim 4, wherein the hard phase containing the WC is 1% by volume or less from a layer having a maximum depth of 1 mm from the outermost surface. The hard phase containing WC gradually increases toward the inside.
[0019]
Furthermore, the nitrogen-containing sintered hard alloy according to claim 6 is the composition according to claim 4 or 5, wherein the amount of the hard phase containing WC is 5 volumes in a depth of 1 mm or more from the outermost surface. % Or more and less than 50% by volume.
[0020]
[Action]
According to the nitrogen-containing sintered hard alloy of the first aspect of the present invention, first, the content of the hard phase is 75 wt% or more and 95 wt% or less. This is because when the hard phase is less than 75% by weight, the wear resistance and the plastic deformation resistance are remarkably lowered, and when it exceeds 95% by weight, the strength and toughness are insufficient. In addition, the Ti content is set to 5% by weight or more and 60% by weight or less in terms of carbide or the like. If it is less than 5% by weight, the wear resistance does not reach the desired level, and if it exceeds 60% by weight, the toughness deteriorates. It is to do. The Ti content is desirably 5% by weight or more and 50% by weight or less, and particularly desirably 20% by weight or more and 50% by weight or less.
[0021]
The reason why the group 6A metal of the periodic table is 30 wt% or more and 70 wt% or less in terms of carbide is that if it is less than 30 wt%, the desired toughness cannot be obtained. This is because a large amount remains and the wear resistance becomes insufficient. The content of the Periodic Table 6A group metal converted to carbide is preferably 40% by weight or more and 70% by weight or less, and particularly preferably 40% by weight or more and 60% by weight or less.
[0022]
Moreover, the atomic ratio of nitrogen / (carbon + nitrogen) of the hard phase was set to 0.2 or more and less than 0.5. When this atomic ratio is less than 0.2, both toughness and wear resistance are at a desired level. If it exceeds 0.5 and sinterability decreases, the toughness deteriorates. This atomic ratio is desirably 0.2 or more and less than 0.4.
[0023]
Furthermore, the thickness of the layer containing almost no WC-containing hard phase, specifically, the layer having a volume of 1% by volume or less was set to 3 μm or more and 30 μm or less immediately below the soft layer composed of the outermost binder phase metal and WC. This is because the desired abrasive wear resistance and crater wear resistance cannot be obtained when the thickness is less than 3 μm, and the effect of promoting crack propagation resistance is not exhibited when the thickness exceeds 30 μm, resulting in a decrease in toughness.
[0024]
According to the nitrogen-containing sintered hard alloy according to claim 2 of the present invention, the hard phase containing WC contains hard WC from the layer of 1% by volume or less to the maximum depth of 1 mm from the outermost surface toward the inside. By gradually increasing the abundance of the phase, a sudden change in the WC content distribution at the boundary between the region where WC exists and the region where WC does not exist is prevented, and the occurrence of residual stress at the boundary is mitigated.
[0025]
In the nitrogen-containing sintered hard alloy according to claim 3 of the present invention, the hard phase containing WC is said to be 5% by volume or more and less than 50% by volume within the maximum depth of 1 mm or more from the outermost surface. This is because if it is less than 5% by volume, the desired effect of improving toughness cannot be obtained, and if it is 50% by volume, the toughness against thermal shock of the surface layer portion and the plastic deformation resistance of the alloy are lowered.
[0026]
Furthermore, in place of the composition of the hard phase of the nitrogen-containing sintered hard alloy according to claim 1, in addition to the group 6A metal of the periodic table excluding W, as in the composition according to claim 4, Ti is added. Excluding the 4A group metal and / or 5A group metal in the periodic table, the total content of Ta and Nb is 2 wt% or more and 15 wt% or less in terms of carbide, nitride or carbonitride, and V, Zr , Hf, the same effect as the composition of claim 1 can be obtained by including 5% by weight or less in terms of carbide, nitride or carbonitride. If the total content converted to Ta, Nb carbide or the like is less than 2% by weight, the crater wear resistance is not improved, and if it exceeds 15% by weight, the fracture resistance is lowered. V, Zr, and Hf are preferably contained in order to improve strength and hardness at high temperatures. However, if the total content converted to carbide or the like exceeds 5% by weight, the sinterability decreases, resulting in fracture resistance. The nature is also reduced.
[0027]
The operational effects of the nitrogen-containing sintered hard alloy according to claims 5 and 6 are the same as the operational effects of the structures according to claims 2 and 3.
[0028]
【Example】
Hereinafter, specific examples of the present invention will be described.
[0029]
Example 1
The average particle diameter is 2 μm, the outer part of the cored structure looks pure white in the reflection electron microscope image, and the core part looks black (Ti 0.85 Ta 0.04 Nb 0.04 W 0.07 ) (C 0.56 N 0.44 ) powder, average WC powder having a particle size of 0.7 μm, Ni powder and Co powder having an average particle size of 1.5 μm are wet-mixed in proportions of 45% by weight, 40% by weight, 7% by weight, and 8% by weight, respectively. The mold was molded and degassed at 1200 ° C. in a vacuum of 10 −2 Torr. Thereafter, sintering was performed at 1450 ° C. for 1 hour at a nitrogen gas partial pressure of 30 Torr, and then cooled at 5 ° C./min in vacuum to form Sample 1. The Ti content of Sample 1 was 34% by weight in terms of TiCN, the W content was 45% by weight in terms of WC, and the contents of Ta and Nb were 6% by weight in terms of TaC + Nb. N / (C + N) was 0.3 in atomic ratio. In the region having a thickness of 10 μm immediately below the soft layer, no WC particles were present, and the abundance of the hard phase containing WC inside at a depth of 1 mm from the outermost surface was 15% by volume.
[0030]
For comparison, Samples 2 to 4 were formed as samples formed by a conventional manufacturing method. Sample 2 was obtained by sintering the same stamped molded body as Sample 1 at a nitrogen partial pressure of 5 Torr and 1400 ° C. Sample 3 is obtained by cooling the same sintered body as Sample 2 at a CO partial pressure of 200 Torr after sintering. Sample 4 is obtained by cooling the same sintered body as that of Sample 2 at a nitrogen partial pressure of 180 Torr after sintering.
[0031]
In the structures of Samples 2 to 4, the abundance of the hard phase containing WC immediately below the soft layer was 10% by volume, 15% by volume, and 5% by volume, respectively. Furthermore, in addition to the same raw materials as Sample 1, TaC, NbC, ZrC, and VC having an average particle diameter of 1 to 3 μm are used and blended at the weight ratio shown in Table 1 below. Gold 5 was formed, and Samples 5 to 10 having the converted contents shown in Table 1 were used. Ni, Co, ZrC, and VC are omitted because the equivalent content is almost the same as the blend composition. Moreover, the atomic ratio of N / (C + N) at this time, the thickness of the hard phase containing 1% by volume or less of the hard phase containing WC immediately below the soft layer on the alloy surface, and the hard phase containing WC at 1 mm from the outermost surface The abundance is shown in Table 2 below.
[0032]
[Table 1]
Figure 0003648758
[0033]
[Table 2]
Figure 0003648758
[0034]
The nitrogen-containing sintered hard alloys of Samples 1 to 10 were cut using the cutting conditions 1 to 3 in Table 3 below, and as a result, the determination results shown in Table 4 below were obtained.
[0035]
[Table 3]
Figure 0003648758
[0036]
[Table 4]
Figure 0003648758
[0037]
As can be seen from the determination results shown in Table 4, when Samples 1, 5 and 6 having a composition that satisfies the conditions of the present invention described in claim 1 or 4 are used, they deviate from the conditions of the present invention. Compared with the case of using samples 2 to 4 and 7 to 10 having the composition, etc., all show excellent wear resistance, toughness and thermal shock resistance.
[0038]
Example 2
Samples 11 to 23 were formed using the raw material powders shown in Table 5 below and blending, mixing and pulverizing them so as to obtain the respective converted content weights. Here, TiCN powder having an average particle diameter of 2 μm and a C / N atomic ratio of 5/5 was used, and other powders having an average particle diameter of 1 to 3 μm were used. Sample 12 uses (TaNb) C powder (TaC: NbC = 2: 1 (weight ratio)) having an average particle diameter of 1.5 μm as a Ta and Nb source, and Sample 17 has an average particle diameter of 2 μm as a Ti and W source. (Ti 0.8 W 0.2 ) (C 0.7 N 0.3 ) powder was used. About the compounding quantity of these solid solution raw material powder, in Table 5, it converted into a single compound, and showed. About the compounding composition of each sample, since the conversion content was substantially the same as the compounding composition, the description was abbreviate | omitted.
[0039]
[Table 5]
Figure 0003648758
[0040]
Samples 11 to 23 were heated at a rate of 3 ° C./min in a vacuum of 10 −2 Torr, degassed at 1200 ° C. for 15 minutes, sintered at 1450 ° C. with a nitrogen gas partial pressure of 15 to 40 Torr, and then vacuumed. After controlled cooling to 1200 ° C. at 3 ° C./min, nitrogen quenching was performed. For samples 11 and 12, samples 11A to 11C and 12A to 12C were formed by changing the cooling conditions after sintering under the same conditions. Among them, 11A and 12A were sintered at a CO partial pressure of 150 Torr after sintering under the same conditions as Samples 11 and 12, respectively. Samples 11B and 12B were cooled at a nitrogen partial pressure of 200 Torr, and Samples 11C and 12C were 1530. After cooling to 1.5 ° C. and sintering for 1.5 hours, controlled cooling is performed.
[0041]
The N / (C + N) atomic ratio of Samples 11 to 23 and Samples 11A to 11C, 12A to 12C, the thickness of the hard phase containing WC immediately below the soft layer on the alloy surface, and the thickness of the region of 1% by volume or less, The abundance of the hard phase containing WC at a depth of 1 mm is shown in Table 6 below.
[0042]
[Table 6]
Figure 0003648758
[0043]
Each sample shown in Table 6 was cut under the cutting conditions 4 to 6 shown in Table 7 below, and the determination results shown in Table 8 below were obtained. For comparison, a cutting test was also performed on a commercially available coated cemented carbide P10 grade.
[0044]
[Table 7]
Figure 0003648758
[0045]
[Table 8]
Figure 0003648758
[0046]
As can be seen from the determination results shown in Table 8, when the samples 11, 12, and 13 to 17 having the composition satisfying the conditions of the present invention described in claim 1 or 4 are used, the conditions of the present invention are used. Compared to the case of using samples 11A to 11C, 12A to 12C, and 18 to 23 having compositions deviating from the above, all show excellent wear resistance, toughness, and thermal shock resistance.
[0047]
【The invention's effect】
As described above, according to the nitrogen-containing sintered hard alloy of the present invention according to claim 1 or 4, the wear resistance and plastic deformation resistance can be improved by setting the hard phase content to 70% by weight or more. By suppressing the decrease and setting it to 90% by weight or less, there is no shortage of strength and toughness. Further, the wear resistance is maintained at a desired level by converting the Ti content to 5% by weight or more in terms of carbide and the like, and the deterioration of toughness is suppressed by setting it to 60% by weight or less.
[0048]
In addition, by containing 30% by weight or more of the group 6A metal in the periodic table in terms of carbide, desired toughness is maintained, and by making it 70% by weight or less, the remaining amount of WC particles on the surface is sufficiently reduced. High wear resistance can be obtained.
[0049]
Further, the toughness and wear resistance are maintained at desired levels by setting the atomic ratio of nitrogen / (carbon + nitrogen) of the hard phase to 0.2 or more, and the sinterability is reduced by setting it to 0.5 or less. And deterioration of toughness is suppressed.
[0050]
Furthermore, by setting the thickness of the layer having a hard phase containing WC of 1% by volume or less to 3 μm or more directly below the soft layer composed of the outermost binder phase metal and WC, desired abrasion resistance and crater resistance Abrasion is obtained, and when the thickness is 30 μm or less, crack propagation resistance is maintained and deterioration of toughness is suppressed.
[0051]
That is, the nitrogen-containing sintered hard alloy having the wear resistance, thermal shock resistance, and toughness which is excellent as a cutting tool material without having a surface coating by having the composition and structure according to claim 1 or 4. Can be obtained.
[0052]
According to the nitrogen-containing sintered hard alloy according to claim 2 or 5, residual stress generated at the boundary between the region where WC exists and the region where WC does not exist is relieved, and as a result, the strength of the alloy is maintained or improved. Can be made.
[0053]
Furthermore, according to the nitrogen-containing sintered hard alloy according to claim 3 or 6, the amount of hard phase containing WC is desired to be 5% by volume or more in the interior having a maximum depth of 1 mm or more from the outermost surface. Toughness improvement effect is obtained, and the material for tool used under severe cutting conditions at high temperature is maintained by maintaining the toughness against the thermal shock in the surface layer part and the plastic deformation resistance of the alloy by making it 50% by volume or less. As a result, excellent characteristics are exhibited.

Claims (6)

(Ti・Wx y )(Cu 1-u )(ただし、MはWを除く周期律表6A族金属の少なくとも1種、0<x<1,0≦y≦0.9,0≦u<0.9)およびWCを含む硬質相を75重量%以上95重量%以下、Ni,Coおよび不可避不純物を含む結合相を5重量%以上25重量%以下含み、
Tiを炭化物、窒化物あるいは炭窒化物に換算して5重量%以上60重量%以下、周期律表6A族金属を炭化物に換算して30重量%以上70重量%以下含有し、かつ、
前記硬質相の窒素/(炭素+窒素)が原子比で0.2以上0.5未満であり、最表面に結合相金属とWCとを含む軟質層が存在し、該軟質層の直下に3μm以上30μm以下の厚みでWCを含む硬質相が1体積%以下である層を有する、窒素含有焼結硬質合金。
(Ti · W x M y) (C u N 1-u) ( however, M is at least one periodic table group 6A metals excluding W, 0 <x <1,0 ≦ y ≦ 0.9,0 ≦ u <0.9) and the hard phase containing WC is 75 wt% or more and 95 wt% or less, and the binder phase containing Ni, Co and inevitable impurities is contained 5 wt% or more and 25 wt% or less,
Containing 5 wt% or more and 60 wt% or less of Ti in terms of carbide, nitride or carbonitride, and containing 30 wt% or more and 70 wt% or less of the periodic table 6A group metal in terms of carbide, and
The hard phase nitrogen / (carbon + nitrogen) has an atomic ratio of 0.2 or more and less than 0.5, a soft layer containing a binder phase metal and WC is present on the outermost surface, and 3 μm immediately below the soft layer. A nitrogen-containing sintered hard alloy having a layer having a thickness of 30 μm or less and a hard phase containing WC of 1% by volume or less .
前記WCを含む硬質相が1体積%以下である層から、最表面からの最大深さ1mmまで、内部に向かってWCを含む硬質相の存在量が漸次増加する、請求項1記載の窒素含有焼結硬質合金。2. The nitrogen-containing composition according to claim 1, wherein the abundance of the hard phase containing WC gradually increases from the layer in which the hard phase containing WC is 1% by volume or less to a maximum depth of 1 mm from the outermost surface. Sintered hard alloy. 前記WCを含む硬質相の存在量が、最表面から1mm以上の深さの内部において5体積%以上50体積%未満である、請求項1または2記載の窒素含有焼結硬質合金。  The nitrogen-containing sintered hard alloy according to claim 1 or 2, wherein the abundance of the hard phase containing WC is 5% by volume or more and less than 50% by volume inside a depth of 1 mm or more from the outermost surface. (Ti・Wx y )(Cu 1-u )(ただし、MはTi,Wを除く周期律表4A,5A,6A族金属の少なくとも1種、0<x<1,0<y≦0.9,0≦u<0.9)およびWCを含む硬質相を75重量%以上95重量%以下、Ni,Coおよび不可避不純物を含む結合相を5重量%以上25重量%以下含み、
Tiを炭化物、窒化物あるいは炭窒化物に換算して5重量%以上60重量%以下、周期律表6A族金属を炭化物に換算して30重量%以上70重量%以下、Ta,Nbの合計含有量を炭化物、窒化物あるいは炭窒化物に換算して2重量%以上15重量%以下、V,Zr,およびHfの合計含有量を炭化物、窒化物あるいは炭窒化物に換算して5重量%以下含有し、かつ、
前記硬質相の窒素/(炭素+窒素)が原子比で0.2以上0.5未満であり、最表面に結合相金属およびWCを含む軟質層が存在し、該軟質層の直下に3μm以上30μm以下の厚みでWCを含む硬質相が1体積%以下である層を有する、窒素含有焼結硬質合金。
(Ti · W x M y) (C u N 1-u) ( however, M is Ti, Periodic Table 4A except W, 5A, 6A Group at least one metal, 0 <x <1,0 <y ≦ 0.9, 0 ≦ u <0.9) and 75% by weight to 95% by weight of a hard phase containing WC, and 5% by weight to 25% by weight of a binder phase containing Ni, Co and unavoidable impurities,
Ti is converted to carbide, nitride or carbonitride in the range of 5 wt% to 60 wt%, Periodic Table 6A Group metal in terms of carbide to 30 wt% to 70 wt%, and total content of Ta and Nb 2 to 15% by weight in terms of carbide, nitride or carbonitride, and 5% by weight in terms of total content of V, Zr and Hf in terms of carbide, nitride or carbonitride Containing, and
Nitrogen / (carbon + nitrogen) of the hard phase is 0.2 or more and less than 0.5 in atomic ratio, a soft layer containing a binder phase metal and WC is present on the outermost surface, and 3 μm or more immediately below the soft layer A nitrogen-containing sintered hard alloy having a layer having a thickness of 30 µm or less and a hard phase containing WC of 1 vol% or less .
前記WCを含む硬質相が1体積%以下である層から、最表面からの最大深さ1mmまで、内部に向かってWCを含む硬質相の存在量が漸次増加する、請求項4記載の窒素含有焼結硬質合金。The nitrogen-containing content according to claim 4, wherein the abundance of the hard phase containing WC gradually increases from the layer in which the hard phase containing WC is 1% by volume or less to a maximum depth of 1 mm from the outermost surface. Sintered hard alloy. 前記WCを含む硬質相の存在量が、最表面から深さ1mm以上の内部において5体積%以上50体積%未満である、請求項4または5記載の窒素含有焼結硬質合金。  6. The nitrogen-containing sintered hard alloy according to claim 4, wherein the abundance of the hard phase containing WC is 5% by volume or more and less than 50% by volume in the interior having a depth of 1 mm or more from the outermost surface.
JP10558494A 1994-05-19 1994-05-19 Nitrogen-containing sintered hard alloy Expired - Lifetime JP3648758B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP10558494A JP3648758B2 (en) 1994-05-19 1994-05-19 Nitrogen-containing sintered hard alloy
DE69513086T DE69513086T2 (en) 1994-05-19 1995-05-18 Hard sintered alloy containing nitrogen
EP95107670A EP0687744B1 (en) 1994-05-19 1995-05-18 Nitrogen-containing sintered hard alloy
EP97115279A EP0822265B1 (en) 1994-05-19 1995-05-18 Nitrogen-containing sintered hard alloy
DE69523342T DE69523342T2 (en) 1994-05-19 1995-05-18 Hard sintered alloy containing nitrogen
KR1019950012885A KR0180522B1 (en) 1994-05-19 1995-05-19 Nitrogen containing sintered hard alloy
TW84105128A TW379253B (en) 1994-05-19 1995-05-23 Nitrogen-containing sintered hard alloy
US08/709,176 US6057046A (en) 1994-05-19 1996-09-06 Nitrogen-containing sintered alloy containing a hard phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10558494A JP3648758B2 (en) 1994-05-19 1994-05-19 Nitrogen-containing sintered hard alloy

Publications (2)

Publication Number Publication Date
JPH07316716A JPH07316716A (en) 1995-12-05
JP3648758B2 true JP3648758B2 (en) 2005-05-18

Family

ID=14411557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10558494A Expired - Lifetime JP3648758B2 (en) 1994-05-19 1994-05-19 Nitrogen-containing sintered hard alloy

Country Status (2)

Country Link
JP (1) JP3648758B2 (en)
TW (1) TW379253B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480338A (en) * 2014-12-15 2015-04-01 技锋精密刀具(马鞍山)有限公司 Production system of hard alloy ultrathin round blade

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157300B2 (en) * 2007-07-30 2013-03-06 株式会社タンガロイ Cermet having composite surface layer and method for producing the same
BRPI1011920A2 (en) * 2009-06-30 2016-04-19 Tungaloy Corp cermet and coated cermet.
TWI555856B (en) 2012-12-05 2016-11-01 財團法人工業技術研究院 Multi-element alloy material and method of manufacturing the same
JP6278232B2 (en) * 2013-11-01 2018-02-14 住友電気工業株式会社 cermet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104480338A (en) * 2014-12-15 2015-04-01 技锋精密刀具(马鞍山)有限公司 Production system of hard alloy ultrathin round blade
CN104480338B (en) * 2014-12-15 2016-08-17 技锋精密刀具(马鞍山)有限公司 A kind of hard alloy ultra-thin circular knife production system

Also Published As

Publication number Publication date
JPH07316716A (en) 1995-12-05
TW379253B (en) 2000-01-11

Similar Documents

Publication Publication Date Title
EP0499223B1 (en) High toughness cermet and process for preparing the same
WO2011002008A1 (en) Cermet and coated cermet
EP0864661B1 (en) Nitrogen-containing sintered hard alloy
JP7272353B2 (en) Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method
WO2010104094A1 (en) Cermet and coated cermet
KR0180522B1 (en) Nitrogen containing sintered hard alloy
JP3648758B2 (en) Nitrogen-containing sintered hard alloy
JP5063129B2 (en) cermet
JPS6245196B2 (en)
JP4703122B2 (en) Method for producing TiCN-based cermet
JP4069749B2 (en) Cutting tool for roughing
JP5381616B2 (en) Cermet and coated cermet
JPH04231467A (en) Coated tic-base cermet
JP7035820B2 (en) Base material and cutting tools
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JP2003342667A (en) TiCN GROUP CERMET AND ITS MANUFACTURING METHOD
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP3359221B2 (en) TiCN-based cermet tool and its manufacturing method
JP2578677B2 (en) TiCN-based cermet
JPS6225632B2 (en)
JPH0813077A (en) Nitrogen-containing sintered hard alloy
JP6819017B2 (en) TiCN-based cermet cutting tool
JP2020055050A (en) SURFACE-COATED TiN-BASED CERMET-MADE CUTTING TOOL HAVING HARD COATING LAYER EXERTING EXCELLENT CHIPPING RESISTANCE
JPS6245290B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term