JPS6245196B2 - - Google Patents
Info
- Publication number
- JPS6245196B2 JPS6245196B2 JP56157333A JP15733381A JPS6245196B2 JP S6245196 B2 JPS6245196 B2 JP S6245196B2 JP 56157333 A JP56157333 A JP 56157333A JP 15733381 A JP15733381 A JP 15733381A JP S6245196 B2 JPS6245196 B2 JP S6245196B2
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- weight
- cubic boron
- volume
- wurtzite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052582 BN Inorganic materials 0.000 claims description 57
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 57
- 239000000463 material Substances 0.000 claims description 54
- 238000005520 cutting process Methods 0.000 claims description 38
- 229910052726 zirconium Inorganic materials 0.000 claims description 23
- 229910052735 hafnium Inorganic materials 0.000 claims description 18
- 229910052750 molybdenum Inorganic materials 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 18
- 229910052719 titanium Inorganic materials 0.000 claims description 18
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 150000001247 metal acetylides Chemical class 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 150000004767 nitrides Chemical class 0.000 claims 2
- 238000005245 sintering Methods 0.000 claims 2
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 claims 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 239000000843 powder Substances 0.000 description 32
- 239000011230 binding agent Substances 0.000 description 20
- 239000000203 mixture Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910000997 High-speed steel Inorganic materials 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000010730 cutting oil Substances 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000005491 wire drawing Methods 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 229910003862 HfB2 Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910003178 Mo2C Inorganic materials 0.000 description 1
- 229910015179 MoB Inorganic materials 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical group [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 229910007948 ZrB2 Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- VWZIXVXBCBBRGP-UHFFFAOYSA-N boron;zirconium Chemical compound B#[Zr]#B VWZIXVXBCBBRGP-UHFFFAOYSA-N 0.000 description 1
- 229910052576 carbides based ceramic Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
この発明は、特にすぐれた靭性と耐摩耗性を有
し、かつ高硬度と、すぐれた耐熱性および高温強
度を備え、これらの特性が要求される高速度鋼
や、Ni基あるいはCo基スーパーアロイなどの被
削材の切削工具として、さらに軸受や線引きダイ
スなどの耐摩耗工具として使用するのに適した窒
化硼素基超高圧焼結材料に関するものである。
近年、炭化タングステン基焼結材料に比して、
きわめてすぐれた耐摩耗性を有する立方晶窒化硼
素基超高圧焼結材料(以下CBN基焼結材料とい
う)を切削工具や耐摩耗工具として使用すること
が提案されている。
このCBN基焼結材料は、分散相を形成する
CBN粒子の結合相によつて2種類に大別するこ
とができ、その1つが結合相を鉄族金属あるいは
Alなどを主成分とする金属で構成したものであ
り、もう1つが窒化チタン、炭化チタン、窒化ア
ルミニウム、または酸化アルミニウムなどを主成
分としたセラミツク系化合物で結合相を構成した
ものである。しかし、前者においては、前記のよ
うに結合相が金属であるために高温で軟化しやす
く、したがつて、これを例えば切削工具として使
用した場合には多大の熱発生を伴う苛酷な切削条
件下では耐摩耗性不足をきたして十分なる切削性
能の発揮は期待できず、熱発生の少ない条件、す
なわち負荷の少ない条件でしか使用することがで
きないものである。また、後者においては、上記
のように結合相がセラミツク系化合物で構成され
ているために、耐熱性および耐摩耗性のすぐれた
ものになつているが、反面靭性不足を避けること
ができず、例えば高速度鋼のフライス切削などの
刃先に大きな衝撃力の加わる切削条件下ではチツ
ピングや欠損を起し易いものである。
また、上記の2種類の従来CBN基焼結材料の
もつそれぞれの問題点を解消する目的で、結合相
を金属とセラミツクス系化合物で構成したCBN
基焼結材料も提案されたが、このCBN基焼結材
料においても十分満足する靭性を示さず、同様に
例えば高速度鋼のフライス切削のような刃先に大
きな衝撃力の加わる切削条件下で切削工具として
使用した場合刃先に欠損が発生し易いものであ
る。これは、上記CBN基焼結材料におけるCBN
粒子と結合相(金属+セラミツクス系化合物)と
の境界部を走査型電子顕微鏡により詳細に観察し
た結果明らかになつたものであるが、超高圧焼結
時にCBN粒子の表面における微小な凹部への前
記結合相のまわり込みが十分に行なわれないこと
に原因する微小な未結合部(ボイド)が前記境界
部に形成され、さらにCBN粒子と結合相との密
着性は、結合相の構成成分によつて異なるが、特
に炭化物系のセラミツクスの場合著しく低く、こ
のためCBN粒子と結合相との間に部分的に結合
強度の弱い部分が形成されることに原因するもの
と解される。
さらに、上記のような従来CBN基焼結材料に
おいては、これを例えば高速度鋼の湿式フライス
切削などのような熱衝撃の発生の大きな条件、す
なわち切刃が被削材に当つた瞬間は高温となり、
一方切刃が被削材より離れると冷却されて低温と
なるサイクルの繰り返しにさらされる条件で使用
した場合、CBN粒子と結合相との間に熱膨張係
数に大きな差異があると、熱による伸縮の大きな
違いにより熱亀裂が発生しやすく、しかもこの伸
縮の大きな違いにより結合相自体の強度も低下す
るようになるものである。
そこで、本発明者等は、上述のような観点か
ら、特にすぐれた靭性および耐摩耗性、さらにす
ぐれた耐熱衝撃性を具備したCBN基焼結材料を
得べく研究を行なつた結果、CBN基焼結材料
を、Ti、Hf、Zr、およびMoの1種または2種以
上の硼化物(以下それぞれの元素の硼化物を
TiB2、HfB2、ZrB2、およびMoBで示す):5〜
40重量%、Ti、Hf、Zr、Mo、およびWの1種ま
たは2種以上の炭化物(以下、それぞれの元素の
炭化物をTiC、HfC、ZrC、Mo2C、およびWCで
示す):5〜35重量%を含有し、残りがCBN
(立方晶窒化硼素)と不可避不純物からなる組成
を有し、かつCBNが体積割合で40〜90%を占め
ると共に、上記硼化物がCBN粒子を0.1〜2μm
の平均層厚で包囲した組織を有するものとする
と、分散相を構成したCBN粒子を包囲した硼化
物は、CBN粒子および結合相を構成する上記炭
化物との結合強度が高いので、これら両者と強固
に結合し、かつ上記硼化物は、原料調製時に予め
CBN粒子表面に化学蒸着法(CVD法)、プラズマ
化学蒸着法(PCVD法)、および物理蒸着法
(PVD法)などの方法により強固にして緻密に被
覆されるので、CBN粒子と硼化物包囲層との境
界部に未結合部(ボイド)は全く存在せず、この
結果靭性の高いものとなるばかりでなく、上記各
成分の構成によつて耐摩耗性の高いものとなり、
しかも上記硼化物は、CBN粒子と炭化物との中
間的熱膨張係数をもつので、著しい熱衝撃に対し
て緩衝体として作用するため熱亀裂の発生もきわ
めて起りにくくなり、また、この結果のCBN基
焼結材料に、Al、Zr、およびYの1種または2
種以上の酸化物(以下、それぞれの元素の酸化物
をAl2O3、ZrO2、およびY2O3で示す)を5〜15重
量%含有させると、実用時の高温に対する化学的
安定性が一段と増加するようになり、さらに、ま
たNi、Al、Co、およびSiのうち1種または2種
以上を0.5〜15重量%の範囲で含有させると、こ
れらの成分には脱酸作用および結合相同志の結合
力強化作用があるので、材料がより緻密となり、
また、これらCBN基焼結材料におけるCBNの一
部を、CBNより多くならない範間、すなわち、
0.05<ウルツ鉱型窒化硼素(容量%)/CBN(容量
%)<1
を満足する範囲でウルツ鉱型窒化硼素(以下
WBNで示す)で置換すると、材料の靭性が一段
と増加するようになるという知見を得たのであ
る。
この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成、CBNおよびWBN
の体積割合、並び硼化物包囲層の平均層厚を上記
の通りに限定した理由を説明する。
A 成分組成
(a) 硼化物
TiB2、HfB2、ZrB2、およびMoBには、
CBN粒子および結合相を形成する炭化物と
強固に結合し、かつ原料調製時にCBN粒子
の表面に被覆しておくことにより、その境界
部に靭性劣化の原因となる未結合部の全く存
在しない包囲層を形成し、もつて材料の靭性
を著しく向上させるほか、これら硼化物のも
つCBN粒子と結合相との中間的熱膨張係数
によつて材料に熱亀裂が発生するのを抑制す
る作用があるが、その含有量が5重量%未満
では、CBN粒子の表面を完全に、かつ所定
層厚で包囲することができないので、前記作
用に所望の効果が得られず、一方40重量%を
越えて含有させると耐摩耗性が劣化するよう
になることから、その含有量を5〜40重量%
と定めた。
(b) 炭化物
TiC、HfC、ZrC、Mo2C、およびWCに
は、材料に耐摩耗性を付与する作用がある
が、その含有量が5重量%未満では、所望の
すぐれた耐摩耗性を確保することができず、
一方35重量%を越えて含有させると材料の靭
性が劣化するようになることから、その含有
量を5〜35重量%と定めた。
(c) 酸化物
Al2O3、ZrO2、およびY2O3には、実用時の
高温に対して材料を化学的に安定化する作用
があるので、特に高温耐食性および高温耐酸
化性が要求される場合に必要に応じて含有さ
れるが、その含有量が5重量%未満では前記
作用に所望の効果が得られず、一方15重量%
を越えて含有させると、材料の靭性が劣化す
るようになることから、その含有量を5〜15
重量%と定めた。
(d) 金属成分
Ni、Al、Co、およびSiには、脱酸および
結合相同志の結合力強化作用があり、これら
金属成分の含有によつて材料は一段と緻密化
するようになることから必要に応じて含有さ
れるが、その含有量が0.5重量%未満では前
記作用に所望の効果が得られず、一方15重量
%を越えて含有させると耐摩耗性劣化をきた
すようになることから、その含有量を0.5〜
15重量%と定めた。
B CBNの体積割合
CBNの結合相に対する割合が40容量%未満
では、相対的に硬質のCBNの割合が少なすぎ
て所望の耐摩耗性を確保することができず、一
方CBNの割合が90容量%を超えると、相対的
に結合相の割合が少なくなりすぎて靭性低下を
きたすようになることから、その体積割合を40
〜90容量%と定めた。
C WBNの置換割合
WBNには材料の靭性を一段と向上させる作
用があるので、特に高靭性が要求される場合に
必要に応じてCBNの一部を置換した形で含有
させるが、その置換割合、すなわちWBN(容
量%)/CBN(容量%)が0.05未満では所望の
高靭性を確保することができず、一方1を越え
た置換割合、すなわち相対的にCBNに比して
WBNの方が多い状態にすると、材料の硬さが
低下し、耐摩耗性が劣化するようになることか
ら、CBNの一部をWBNで置換する場合には、
0.05<WBN/CBN<1
の条件を満足させなければならない。
D 硼化物の平均層厚
その平均層厚が0.1μm未満ではCBN粒子、
あるいはCBN粒子およびWBN粒子と、結合相
との間に十分な結合強度を得ることができない
ほか、これら両者間にあつて熱膨張差を満足に
緩和することができず、一方その平均層厚が2
μmを越えると、硼化物の量が25重量%を越え
て多くなりすぎ、材料の耐摩耗性が劣化するよ
うになることから、その平均層厚を0.1〜2μ
mと定めた。
なお、この発明の超高圧焼結材料は、まず、
CBN粉末、および必要に応じてWBN粉末の表面
にCVD法、PCVD法、およびPVD法などの方法を
用いて、TiB2、HfB2、ZrB2、およびMoBのうち
1種または2種以上を0.1〜2μmの平均層厚で
被覆し、さらに必要に応じてこの上にTiC、
HfC、ZrC、Mo2C、およびWCのうちの1種また
は2種以上を複層蒸着被覆し、このように調製し
た硼化物被覆のCBN粉末およびWBN粉末、並び
に硼化物および炭化物被覆のCBN粉末および
WBN粉末、さらにTiC粉末、HfC粉末、ZrC粉
末、Mo2C粉末、WC粉末、Al2O3粉末、ZrO2粉
末、Y2O3粉末、Ni粉末、Al粉末、Co粉末、Si粉
末、およびこれら金属の2種以上の合金粉末を原
料粉末として用意し、これら原料粉末のうちから
適宜選択して所定の配合組成に配合し、この配合
粉末を通常の条件で混合した後、粉末状態あるい
は成形状態で必要に応じて超硬合金製プレートな
どと一諸に金属容器に入れこれを800〜1200℃の
温度に加熱して真空脱ガスを行なつて封入し、つ
いでこの封入容器を、例えば特公昭36−23463号
公報に記載されるような超高圧高温発生装置に装
着し、圧力および温度を上げ、圧力:40〜
70Kb、温度:1200〜1600℃の範囲内の圧力およ
び温度に数分〜数10分保持した後、冷却し、最終
的に圧力を解放することからなる基本的工程によ
つて製造することができる。
つぎに、この発明の超高圧焼結材料を実施例に
より具体的に説明する。
実施例 1
原料粉末として、公知のCVD法あるいはPCVD
法を用いてそれぞれ第1表に示される状態に調製
した被覆CBN粉末並びに被覆WBN粉末、平均粒
径:2μmを有する上記各種の炭化物粉末、同2
μmを有する上記の各種酸化物粉末、さらに同2
μmの上記各種の金属粉末を用意し、これら原料
粉末を、それぞれ第1表に示される配合組成に配
合し、これら配合粉末をボールミル中で2〜10時
間湿式混合し、ついでこの混合粉末を外径:12mm
φの軟鋼製容器に詰め、温度:800℃にて真空脱
ガスして密封した後、公知の超高圧高温発生装置
に装着し、圧力:50〜60Kb、温度:1300〜1500
℃、保持時間:15〜20分の条件で焼結し、最終的
に冷却して圧力を徐々に下げることからなる基本
的工程によつて、実質的に配合組成と同一の最終
成分組成をもつた本発明超高圧焼結材料1〜22を
それぞれ製造した。
つぎに、この結果得られた本発明超高圧焼結材
料1〜22について、被削材:ダイス鋼(SKD−
11、硬さ:HRC62)、切削速度:100m/min、送
り:0.1mm/rev.、切込み:0.5mm、切削油:なし
の条件での切削に際して、刃先の逃げ面摩耗が
0.2mmに至るまでの寿命時間を測定する切削試験
This invention has particularly excellent toughness and wear resistance, high hardness, and excellent heat resistance and high-temperature strength, and is applicable to high-speed steels and Ni-based or Co-based superalloys that require these properties. The present invention relates to a boron nitride-based ultra-high-pressure sintered material suitable for use as a cutting tool for workpieces such as steel, etc., and as a wear-resistant tool for bearings, wire drawing dies, and the like. In recent years, compared to tungsten carbide-based sintered materials,
It has been proposed to use cubic boron nitride-based ultra-high pressure sintered materials (hereinafter referred to as CBN-based sintered materials), which have extremely excellent wear resistance, as cutting tools and wear-resistant tools. This CBN-based sintered material forms a dispersed phase
CBN particles can be roughly divided into two types depending on the binder phase, one of which is iron group metal or
One is composed of a metal whose main component is Al, and the other is a binder phase composed of a ceramic compound whose main component is titanium nitride, titanium carbide, aluminum nitride, or aluminum oxide. However, in the former, as the binder phase is metal as mentioned above, it easily softens at high temperatures, and therefore, when used as a cutting tool, for example, it must be used under harsh cutting conditions that generate a large amount of heat. However, it cannot be expected to exhibit sufficient cutting performance due to insufficient wear resistance, and can only be used under conditions where there is little heat generation, that is, under low load conditions. In addition, in the latter case, since the binder phase is composed of a ceramic compound as mentioned above, it has excellent heat resistance and wear resistance, but on the other hand, lack of toughness cannot be avoided. For example, chipping and chipping are likely to occur under cutting conditions in which a large impact force is applied to the cutting edge, such as when milling high-speed steel. In addition, in order to solve the respective problems of the above two types of conventional CBN-based sintered materials, we have developed CBN with a binder phase composed of a metal and a ceramic compound.
CBN-based sintered materials have also been proposed, but these CBN-based sintered materials do not exhibit sufficiently satisfactory toughness, and similarly cannot be cut under cutting conditions where large impact forces are applied to the cutting edge, such as when milling high-speed steel. When used as a tool, the cutting edge is likely to be damaged. This is due to the CBN in the above CBN-based sintered material.
This was revealed through detailed observation of the boundary between the particles and the binder phase (metal + ceramic compound) using a scanning electron microscope. Small unbonded parts (voids) are formed at the boundary due to the binder phase not wrapping around the binder phase sufficiently, and the adhesion between the CBN particles and the binder phase is affected by the constituent components of the binder phase. Although it differs depending on the case, it is particularly low in the case of carbide-based ceramics, and this is thought to be due to the formation of regions with weak bond strength between the CBN particles and the binder phase. Furthermore, with conventional CBN-based sintered materials such as those mentioned above, this is not possible under conditions where thermal shock is likely to occur, such as during wet milling of high-speed steel. Then,
On the other hand, when used under conditions where the cutting edge is exposed to repeated cycles in which the cutting edge separates from the workpiece and is cooled down to a low temperature, if there is a large difference in the coefficient of thermal expansion between the CBN particles and the binder phase, thermal expansion and contraction may occur. Due to the large difference in the bonding phase, thermal cracks are likely to occur, and this large difference in expansion and contraction also reduces the strength of the binder phase itself. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to obtain a CBN-based sintered material with particularly excellent toughness and wear resistance, as well as excellent thermal shock resistance. The sintered material is made of one or more borides of Ti, Hf, Zr, and Mo (hereinafter referred to as borides of each element).
TiB2 , HfB2 , ZrB2 , and MoB): 5~
40% by weight, one or more carbides of Ti, Hf, Zr, Mo, and W (hereinafter, the carbides of each element are referred to as TiC, HfC, ZrC, Mo 2 C, and WC): 5 to Contains 35% by weight and the rest is CBN
It has a composition consisting of (cubic boron nitride) and unavoidable impurities, and CBN occupies 40 to 90% by volume, and the boride has a CBN particle size of 0.1 to 2 μm.
Assuming that the CBN particles surrounding the dispersed phase have a structure with an average layer thickness of and the above boride is added in advance during raw material preparation.
The surface of CBN particles is strongly and densely coated using methods such as chemical vapor deposition (CVD), plasma chemical vapor deposition (PCVD), and physical vapor deposition (PVD). There are no unbonded parts (voids) at the interface between the two, which not only results in high toughness, but also high wear resistance due to the composition of each of the above components,
Moreover, since the above-mentioned boride has a coefficient of thermal expansion intermediate between that of CBN particles and carbide, it acts as a buffer against severe thermal shock, making it extremely difficult for thermal cracks to occur. One or two of Al, Zr, and Y are added to the sintered material.
When 5 to 15% by weight of oxides of various elements or more (hereinafter, oxides of each element are referred to as Al 2 O 3 , ZrO 2 , and Y 2 O 3 ) are contained, chemical stability against high temperatures in practical use is improved. Furthermore, when one or more of Ni, Al, Co, and Si are contained in the range of 0.5 to 15% by weight, these components have a deoxidizing effect and a bonding effect. Because it has the effect of strengthening the bonding force between homologs, the material becomes more dense,
In addition, a portion of CBN in these CBN-based sintered materials is added to wurtzite within a range that does not exceed CBN, that is, within a range that satisfies 0.05<wurtzite boron nitride (volume%)/CBN (volume%)<1. type boron nitride (below
They found that replacing the material with WBN (denoted by WBN) further increases the toughness of the material. This invention was made based on the above knowledge, and the component composition, CBN and WBN are as follows.
The reason why the volume ratio and the average layer thickness of the boride surrounding layer are limited as described above will be explained. A Component composition (a) Borides TiB 2 , HfB 2 , ZrB 2 and MoB include:
By strongly bonding with the CBN particles and the carbide that forms the binder phase, and coating the surface of the CBN particles during raw material preparation, there is no unbonded part at the boundary that can cause toughness deterioration. In addition to significantly improving the toughness of the material, these borides have an intermediate coefficient of thermal expansion between the CBN particles and the binder phase, which has the effect of suppressing the occurrence of thermal cracks in the material. If the content is less than 5% by weight, the surface of the CBN particles cannot be completely surrounded by a predetermined layer thickness, so the desired effect cannot be obtained; on the other hand, if the content exceeds 40% by weight, Since the abrasion resistance will deteriorate if
It was determined that (b) Carbides TiC, HfC, ZrC, Mo 2 C, and WC have the effect of imparting wear resistance to materials, but if their content is less than 5% by weight, the desired excellent wear resistance cannot be achieved. Unable to secure
On the other hand, if the content exceeds 35% by weight, the toughness of the material deteriorates, so the content was set at 5 to 35% by weight. (c) Oxides Al 2 O 3 , ZrO 2 , and Y 2 O 3 have the effect of chemically stabilizing materials against high temperatures in practical use, so they are particularly effective in high-temperature corrosion resistance and high-temperature oxidation resistance. It is included as necessary when required, but if the content is less than 5% by weight, the desired effect cannot be obtained, whereas 15% by weight
If the content exceeds 5 to 15%, the toughness of the material will deteriorate.
It was determined as weight%. (d) Metal components Ni, Al, Co, and Si have the effect of deoxidizing and strengthening the bonding force between bonding phases, and are necessary because the inclusion of these metal components makes the material even more dense. However, if the content is less than 0.5% by weight, the desired effect will not be obtained, while if the content exceeds 15% by weight, the wear resistance will deteriorate. Its content is 0.5~
It was set at 15% by weight. B Volume ratio of CBN If the ratio of CBN to the binder phase is less than 40% by volume, the ratio of relatively hard CBN is too small to ensure the desired wear resistance, whereas if the ratio of CBN is 90% by volume. If the volume ratio exceeds 40%, the ratio of the binder phase becomes relatively too small, resulting in a decrease in toughness.
It was set at ~90 capacity%. C Substitution ratio of WBN Since WBN has the effect of further improving the toughness of the material, when particularly high toughness is required, CBN may be included in a partially substituted form as necessary. In other words, if WBN (volume %)/CBN (volume %) is less than 0.05, the desired high toughness cannot be secured, while if the substitution ratio exceeds 1, that is, relatively compared to CBN.
If there is more WBN, the hardness of the material will decrease and the wear resistance will deteriorate. Therefore, when replacing part of CBN with WBN, 0.05<WBN/CBN<1. conditions must be met. D Average layer thickness of boride If the average layer thickness is less than 0.1μm, CBN particles,
Alternatively, it is not possible to obtain sufficient bonding strength between CBN particles and WBN particles and the binder phase, and it is also not possible to satisfactorily alleviate the difference in thermal expansion between the two, and on the other hand, the average layer thickness is 2
If it exceeds 25% by weight, the amount of boride will be too large and the wear resistance of the material will deteriorate, so the average layer thickness should be reduced to 0.1 to 2μm.
It was determined as m. The ultra-high pressure sintered material of this invention first has the following characteristics:
One or more of TiB 2 , HfB 2 , ZrB 2 , and MoB is added to the surface of CBN powder and, if necessary, WBN powder at a concentration of 0.1 using methods such as CVD, PCVD, and PVD. Coated with an average layer thickness of ~2 μm, and optionally further coated with TiC,
Boride-coated CBN powder and WBN powder prepared in this manner, and boride- and carbide-coated CBN powder coated with one or more of HfC, ZrC, Mo 2 C, and WC by multilayer vapor deposition. and
WBN powder, as well as TiC powder, HfC powder , ZrC powder, Mo2C powder, WC powder, Al2O3 powder, ZrO2 powder, Y2O3 powder, Ni powder, Al powder, Co powder, Si powder, and An alloy powder of two or more of these metals is prepared as a raw material powder, appropriately selected from these raw material powders and blended into a predetermined composition, and after this blended powder is mixed under normal conditions, it is processed into a powder state or molded. In this condition, if necessary, the container is placed together with a cemented carbide plate, etc., heated to a temperature of 800 to 1200°C, vacuum degassed, and sealed. It is attached to an ultra-high pressure and high temperature generator as described in Publication No. 36-23463, and the pressure and temperature are increased to a pressure of 40~
70Kb, Temperature: Can be produced by a basic process consisting of holding at a pressure and temperature in the range of 1200-1600°C for several minutes to several tens of minutes, then cooling and finally releasing the pressure. . Next, the ultra-high pressure sintered material of the present invention will be specifically explained using Examples. Example 1 As raw material powder, known CVD method or PCVD
Coated CBN powder and coated WBN powder each prepared in the state shown in Table 1 using the method, the above various carbide powders having an average particle size of 2 μm, Table 2
The above-mentioned various oxide powders having μm, and the same 2 μm
Prepare the above various metal powders with a diameter of μm, blend these raw powders into the compositions shown in Table 1, wet mix these blended powders in a ball mill for 2 to 10 hours, and then remove the mixed powders. Diameter: 12mm
Packed into a φ mild steel container, vacuum degassed and sealed at a temperature of 800℃, then installed in a known ultra-high pressure and high temperature generator, pressure: 50-60Kb, temperature: 1300-1500
°C, holding time: 15 to 20 minutes, the basic process consists of finally cooling and gradually lowering the pressure, resulting in a final composition that is essentially the same as the blended composition. Ultra-high pressure sintered materials 1 to 22 of the present invention were manufactured. Next, regarding the ultra-high pressure sintered materials 1 to 22 of the present invention obtained as a result, work material: die steel (SKD-
11. Hardness: H R C62), Cutting speed: 100m/min, Feed: 0.1mm/rev., Depth of cut: 0.5mm, Cutting oil: No wear on the flank surface of the cutting edge.
Cutting test to measure life time up to 0.2mm
【表】【table】
【表】【table】
【表】
(切削試験Aという)、並びに被削材:ダイス鋼
(SKD−61、硬さ:HRC50)、切削速度:120m/
min、切込み:0.5mm、送り:0.05、0.1、0.15、
0.2、0.3、および0.4mm/rev.、各送りごとの切削
時間:5分、切削油:ありの条件でのフライス切
削に際して、刃先にサーマルクラツクによる欠け
発生が見られた時点の送り量をチエツクする切削
試験(切削試験Bという)をそれぞれ行なつた。
この切削試験結果を第2表に示した。
なお第2表には、いずれも分散相がCBNで構
成され、結合相がTiCNで構成された市販の超高
圧焼結材料(従来超高圧焼結材料1という)、お
よび結合相がCoで構成された市販の超高圧焼結
材料(従来超高圧焼結材料2という)の同一条件
での切削試験結果も合せて示した。
第2表に示されるように、本発明超高圧焼結材
料1〜22は、いずれもすぐれた耐摩耗性および靭
性を兼ね備えているので、これら両特性のうちの
いずれかの特性に劣る従来超高圧焼結材料1、2
に比して、切削試験AおよびBのいずれにおいて
もすぐれた切削性能を示すことが明らかである。
実施例 2
被覆CBN粉末および被覆WBN粉末としてそれ
ぞれ第3表に示されるものを使用し、かつ混合粉
末または圧粉体を、Co:12重量%、WCおよび不
可避不純物:残りからなる組成を有する直径:
11.5mmφの超硬合金プレートと一諸に外径:12mm
φのMo製容器に詰め、真空脱ガス処理前に前記
容器をH2ガス中、温度:800℃に加熱して洗浄処
理を行なう以外は、実施例1におけると同一の条
件にて実質的に第3表に示される配合組成と同一
の最終成分組成をもつた本発明超高圧焼結材料23
〜28をそれぞれ製造した。
上記本発明超高圧焼結材料23〜28について、上
記の切削条件AおよびBにて切削試験を行なつた
結果を第4表にビツカース硬さと共に示した。
第4表に示されるように、本発明超高圧焼結材
料23〜28においても、実施例1の場合と同様に従
来超高圧焼結材料に比して一段とすぐれた切[Table] (referred to as cutting test A), work material: die steel (SKD-61, hardness: H R C50), cutting speed: 120 m/
min, depth of cut: 0.5mm, feed: 0.05, 0.1, 0.15,
During milling under the conditions of 0.2, 0.3, and 0.4 mm/rev., cutting time for each feed: 5 minutes, and cutting oil: with, the feed rate at the time when chipping due to thermal cracking was observed on the cutting edge. A cutting test (referred to as cutting test B) was conducted for each test.
The cutting test results are shown in Table 2. Table 2 shows commercially available ultra-high pressure sintered materials (conventionally referred to as ultra-high pressure sintered materials 1) whose dispersed phase is composed of CBN and whose binder phase is TiCN, and those whose binder phase is composed of Co. The cutting test results of a commercially available ultra-high pressure sintered material (referred to as conventional ultra-high pressure sintered material 2) under the same conditions are also shown. As shown in Table 2, the ultra-high pressure sintered materials 1 to 22 of the present invention all have excellent wear resistance and toughness, so they are superior to conventional materials that are inferior in either of these properties. High pressure sintered material 1, 2
It is clear that the material exhibited superior cutting performance in both cutting tests A and B. Example 2 The coated CBN powder and the coated WBN powder shown in Table 3 were used, and the mixed powder or green compact was prepared with a diameter having a composition consisting of Co: 12% by weight, WC and unavoidable impurities: the remainder. :
11.5mmφ cemented carbide plate and outer diameter: 12mm
It was packed in a Mo container with a diameter of φ, and the container was heated to a temperature of 800° C. in H 2 gas for cleaning treatment before vacuum degassing treatment under substantially the same conditions as in Example 1. Ultra-high pressure sintered material 23 of the present invention having the same final component composition as shown in Table 3
~28 were produced respectively. The ultra-high pressure sintered materials 23 to 28 of the present invention were subjected to a cutting test under the cutting conditions A and B, and the results are shown in Table 4 along with the Vickers hardness. As shown in Table 4, in the ultra-high pressure sintered materials 23 to 28 of the present invention, similar to the case of Example 1, the cutting ability was even better than that of the conventional ultra-high pressure sintered materials.
【表】【table】
【表】 削性能を示すことが明らかである。【table】 It is clear that it exhibits cutting performance.
【表】
上述のように、この発明の超高圧焼結材料は、
すぐれた耐摩耗性および靭性を兼ね備え、かつ高
硬度と、すぐれた耐熱性および高温強度をも備え
ているので、これらの特性が要求される切削工具
は勿論のこと、軸受や線引ダイスなどの耐摩耗工
具として使用してもすぐれた性能を発揮するので
ある。[Table] As mentioned above, the ultra-high pressure sintered material of this invention is
It has excellent wear resistance and toughness, as well as high hardness, excellent heat resistance, and high temperature strength, so it can be used not only for cutting tools that require these properties, but also for bearings, wire drawing dies, etc. It also exhibits excellent performance when used as a wear-resistant tool.
Claims (1)
上の硼化物:5〜40重量%、Ti、Hf、Zr、Mo、
およびWの1種または2種以上の炭化物:5〜35
重量%を含有し、残りが立方晶窒化硼素と不可避
不純物からなる組成を有し、かつ立方晶窒化硼素
が体積割合で40〜90%を占めると共に、上記硼化
物が立方晶窒化硼素を0.1〜2μmの平均層厚で
包囲した組織を有することを特徴とする切削およ
び耐摩耗工具用高靭性窒化硼素基超高圧焼結材
料。 2 Ti、Hf、Zr、およびMoの1種または2種以
上の硼化物:5〜40重量%、Ti、Hf、Zr、Mo、
およびWの1種または2種以上の炭化物:5〜35
重量%を含有し、さらにAl、Zr、およびYの1
種または2種以上の酸化物:5〜15重量%を含有
し、残りが立方晶窒化硼素と不可避不純物からな
る組成を有し、かつ立方晶窒化硼素が体積割合で
40〜90%を占めると共に、上記硼化物が立方晶窒
化硼素を0.1〜2μmの平均層厚で包囲した組織
を有することを特徴とする切削および耐摩耗工具
用高靭性窒化硼素基超高圧焼結材料。 3 Ti、Hf、Zr、およびMoの1種または2種以
上の硼化物:5〜40重量%、Ti、Hf、Zr、Mo、
およびWの1種または2種以上の炭化物:5〜35
重量%を含有し、さらに、Ni、Al、Co、および
Siの1種または2種以上:0.5〜15重量%を含有
し、残りが立方晶窒化硼素と不可避不純物からな
る組成を有し、かつ立方晶窒化硼素が体積割合で
40〜90%を占めると共に、上記硼化物が立方晶窒
化硼素を0.1〜2μmの平均層厚で包囲した組織
を有することを特徴とする切削および耐摩耗工具
用高靭性窒化硼素基超高圧焼結材料。 4 Ti、Hf、Zr、およびMoの1種または2種以
上の硼化物:5〜40重量%、Ti、Hf、Zr、Mo、
およびWの1種または2種以上の炭化物:5〜35
重量%を含有し、さらにAl、Zr、およびYの1
種または2種以上の酸化物:5〜15重量%と、
Ni、Al、Co、およびSiの1種または2種以上:
0.5〜15重量%を含有し、残りが立方晶窒化硼素
と不可避不純物からなる組成を有し、かつ立方晶
窒化硼素が体積割合で40〜90%を占めると共に、
上記硼化物が立方晶窒化硼素を0.1〜2μmの平
均層厚で包囲した組織を有することを特徴とする
切削および耐摩耗工具用高靭性窒化硼素基超高圧
焼結材料。 5 Ti、Hf、Zr、およびMoの1種または2種以
上の硼化物:5〜40重量%、Ti、Hf、Zr、Mo、
およびWの1種または2種以上の炭化物:5〜35
重量%を含有し、残りが立方晶窒化硼素およびウ
ルツ鉱型窒化硼素と不可避不純物からなる組成を
有し、かつ立方晶窒化硼素とウルツ鉱型窒化硼素
が体積割合で40〜90%を占めると共に、 0.05<ウルツ鉱型窒化硼素(容量%)/立方晶窒化硼
素(容量%)<1 を満足し、さらに、上記硼化物が立方晶窒化硼素
およびウルツ鉱型窒化硼素を0.1〜2μmの平均
層厚で包囲した組織を有することを特徴とする切
削および耐摩耗工具用高靭性窒化硼素基超高圧焼
結材料。 6 Ti、Hf、Zr、およびMoの1種または2種以
上の硼化物:5〜40重量%、Ti、Hf、Zr、Mo、
およびWの1種または2種以上の炭化物:5〜35
重量%を含有し、さらにAl、Zr、およびYの1
種または2種以上の酸化物:5〜15重量%を含有
し、残りが立方晶窒化硼素およびウルツ鉱型窒化
硼素と不可避不純物からなる組成を有し、かつ立
方晶窒化硼素とウルツ鉱型窒化硼素が体積割合で
40〜90%を占めると共に、 0.05<ウルツ鉱型窒化硼素(容量%)/立方晶窒化硼
素(容量%)<1 を満足し、さらに、上記硼化物が立方晶窒化硼素
およびウルツ鉱型窒化硼素を0.1〜2μmの平均
層厚で包囲した組織を有することを特徴とする切
削および耐摩耗工具用高靭性窒化硼素基超高圧焼
結材料。 7 Ti、Hf、Zr、およびMoの1種または2種以
上の硼化物:5〜40重量%、Ti、Hf、Zr、Mo、
およびWの1種または2種以上の炭化物:5〜35
重量%を含有し、さらにNi、Al、Co、およびSi
の1種または2種以上:0.5〜15重量%を含有
し、残りが立方晶窒化硼素およびウルツ鉱型窒化
硼素と不可避不純物からなる組成を有し、かつ立
方晶窒化硼素とウルツ鉱型窒化硼素が体積割合で
40〜90%を占めると共に、 0.05<ウルツ鉱型窒化硼素(容量%)/立方晶窒化硼
素(容量%)<1 を満足し、さらに、上記硼化物が立方晶窒化硼素
およびウルツ鉱型窒化硼素を0.1〜2μmの平均
層厚で包囲した組織を有することを特徴とする切
削および耐摩耗工具用高靭性窒化硼素基超高圧焼
結材料。 8 Ti、Hf、Zr、およびMoの1種または2種以
上の硼化物:5〜40重量%、Ti、Hf、Zr、Mo、
およびWの1種または2種以上の炭化物:5〜35
重量%を含有し、さらにAl、Zr、およびYの1
種または2種以上の酸化物:5〜15重量%と、
Ni、Al、Co、およびSiの1種または2種以上:
0.5〜15重量%を含有し、残りが立方晶窒化硼素
およびウルツ鉱型窒化硼素と不可避不純物からな
る組成を有し、かつ立方晶窒化硼素とウルツ鉱型
窒化硼素が体積割合で40〜90%を占めると共に、 0.05<ウルツ鉱型窒化硼素(容量%)/立方晶窒化硼
素(容量%)<1 を満足し、さらに、上記硼化物が立方晶窒化硼素
およびウルツ鉱型窒化硼素を0.1〜2μmの平均
層厚で包囲した組織を有することを特徴とする切
削および耐摩耗工具用高靭性窒化硼素基超高圧焼
結材料。[Claims] 1 One or more borides of Ti, Hf, Zr, and Mo: 5 to 40% by weight, Ti, Hf, Zr, Mo,
and one or more carbides of W: 5 to 35
% by weight, with the remainder consisting of cubic boron nitride and unavoidable impurities, and the cubic boron nitride accounts for 40 to 90% by volume, and the boride contains cubic boron nitride in a proportion of 0.1 to 90% by volume. A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having an enclosed structure with an average layer thickness of 2 μm. 2 One or more borides of Ti, Hf, Zr, and Mo: 5 to 40% by weight, Ti, Hf, Zr, Mo,
and one or more carbides of W: 5 to 35
% by weight and further contains 1 of Al, Zr, and Y.
Species or two or more oxides: Contains 5 to 15% by weight, with the remainder consisting of cubic boron nitride and unavoidable impurities, and cubic boron nitride as a volume percentage.
High-toughness boron nitride-based ultra-high-pressure sintering for cutting and wear-resistant tools, characterized in that the boride occupies 40 to 90% and has a structure in which cubic boron nitride is surrounded by an average layer thickness of 0.1 to 2 μm. material. 3 One or more borides of Ti, Hf, Zr, and Mo: 5 to 40% by weight, Ti, Hf, Zr, Mo,
and one or more carbides of W: 5 to 35
% by weight and further contains Ni, Al, Co, and
Contains one or more types of Si: 0.5 to 15% by weight, with the remainder consisting of cubic boron nitride and unavoidable impurities, and cubic boron nitride in a volume percentage.
High-toughness boron nitride-based ultra-high-pressure sintering for cutting and wear-resistant tools, characterized in that the boride occupies 40 to 90% and has a structure in which cubic boron nitride is surrounded by an average layer thickness of 0.1 to 2 μm. material. 4 One or more borides of Ti, Hf, Zr, and Mo: 5 to 40% by weight, Ti, Hf, Zr, Mo,
and one or more carbides of W: 5 to 35
% by weight and further contains 1 of Al, Zr, and Y.
Species or two or more oxides: 5 to 15% by weight;
One or more of Ni, Al, Co, and Si:
0.5 to 15% by weight, with the remainder consisting of cubic boron nitride and unavoidable impurities, and cubic boron nitride occupies 40 to 90% by volume,
A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized in that the boride has a structure in which cubic boron nitride is surrounded by an average layer thickness of 0.1 to 2 μm. 5 One or more borides of Ti, Hf, Zr, and Mo: 5 to 40% by weight, Ti, Hf, Zr, Mo,
and one or more carbides of W: 5 to 35
% by weight, with the remainder consisting of cubic boron nitride, wurtzite boron nitride, and unavoidable impurities, and cubic boron nitride and wurtzite boron nitride occupy 40 to 90% by volume. , 0.05<wurtzite boron nitride (volume %)/cubic boron nitride (volume %)<1, and further, the boride contains cubic boron nitride and wurtzite boron nitride in an average layer of 0.1 to 2 μm. A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having a thick and enclosed structure. 6 One or more borides of Ti, Hf, Zr, and Mo: 5 to 40% by weight, Ti, Hf, Zr, Mo,
and one or more carbides of W: 5 to 35
% by weight and further contains 1 of Al, Zr, and Y.
Species or two or more oxides: Contains 5 to 15% by weight, with the remainder consisting of cubic boron nitride, wurtzite boron nitride, and unavoidable impurities, and contains cubic boron nitride and wurtzite boron nitride. Boron in volume percentage
40 to 90%, and satisfies 0.05<wurtzite boron nitride (volume %)/cubic boron nitride (volume %)<1, and furthermore, the boride contains cubic boron nitride and wurtzite boron nitride. 1. A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having a structure in which the nitride is surrounded by an average layer thickness of 0.1 to 2 μm. 7 One or more borides of Ti, Hf, Zr, and Mo: 5 to 40% by weight, Ti, Hf, Zr, Mo,
and one or more carbides of W: 5 to 35
% by weight and further contains Ni, Al, Co, and Si
One or more of: 0.5 to 15% by weight, with the remainder consisting of cubic boron nitride, wurtzite boron nitride, and inevitable impurities, and cubic boron nitride and wurtzite boron nitride. is the volume percentage
40 to 90%, and satisfies 0.05<wurtzite boron nitride (volume %)/cubic boron nitride (volume %)<1, and furthermore, the boride contains cubic boron nitride and wurtzite boron nitride. 1. A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having a structure in which the nitride is surrounded by an average layer thickness of 0.1 to 2 μm. 8 One or more borides of Ti, Hf, Zr, and Mo: 5 to 40% by weight, Ti, Hf, Zr, Mo,
and one or more carbides of W: 5 to 35
% by weight and further contains 1 of Al, Zr, and Y.
Species or two or more oxides: 5 to 15% by weight;
One or more of Ni, Al, Co, and Si:
0.5 to 15% by weight, with the remainder consisting of cubic boron nitride, wurtzite boron nitride, and unavoidable impurities, and cubic boron nitride and wurtzite boron nitride account for 40 to 90% by volume. and satisfies 0.05<wurtzite boron nitride (volume %)/cubic boron nitride (volume %)<1, and furthermore, the boride has a particle size of 0.1 to 2 μm of cubic boron nitride and wurtzite boron nitride. A high-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools, characterized by having an enclosed structure with an average layer thickness of .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56157333A JPS5858247A (en) | 1981-10-02 | 1981-10-02 | High toughness boron nitride-base material sintered under superhigh pressure for wear resistant cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56157333A JPS5858247A (en) | 1981-10-02 | 1981-10-02 | High toughness boron nitride-base material sintered under superhigh pressure for wear resistant cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5858247A JPS5858247A (en) | 1983-04-06 |
JPS6245196B2 true JPS6245196B2 (en) | 1987-09-25 |
Family
ID=15647395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56157333A Granted JPS5858247A (en) | 1981-10-02 | 1981-10-02 | High toughness boron nitride-base material sintered under superhigh pressure for wear resistant cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5858247A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2794079B2 (en) * | 1991-04-05 | 1998-09-03 | 工業技術院長 | High-pressure high-hardness high-density composite sintered body containing boron nitride and method for producing the same |
JP2860393B2 (en) * | 1991-04-05 | 1999-02-24 | 工業技術院長 | High-hardness high-density composite sintered body containing coated high-pressure boron nitride and method for producing the same |
JP2662578B2 (en) * | 1991-05-18 | 1997-10-15 | 工業技術院長 | High pressure type boron nitride sintered body and method for producing the same |
KR100263594B1 (en) * | 1996-10-31 | 2000-08-01 | 오카야마 노리오 | Hard and tough sintered body |
KR100459518B1 (en) * | 1996-12-03 | 2005-05-18 | 스미토모덴키고교가부시키가이샤 | High Pressure Phase Boron Nitride Sintered Body |
KR101407109B1 (en) * | 2007-01-15 | 2014-06-13 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | cBN SINTERED BODY AND CUTTING TOOL MADE OF cBN SINTERED BODY |
EP2500332B1 (en) | 2009-11-11 | 2016-01-27 | Tungaloy Corporation | Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, method for producing cubic boron nitride sintered compact, and method for producing coated cubic boron nitride sintered compact |
EP2612719B1 (en) | 2010-09-01 | 2018-07-04 | Sumitomo Electric Hardmetal Corp. | Cubic boron nitride sintered compact tool |
US8962505B2 (en) | 2010-10-27 | 2015-02-24 | Sumitomo Electric Hardmetal Corp. | Sintered cubic boron nitride compact and sintered cubic boron nitride compact tool |
WO2012057183A1 (en) * | 2010-10-27 | 2012-05-03 | 住友電工ハードメタル株式会社 | Cubic boron nitride (cbn) sintered body and cubic boron nitride (cbn) sintered body tool |
-
1981
- 1981-10-02 JP JP56157333A patent/JPS5858247A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5858247A (en) | 1983-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5427987A (en) | Group IVB boride based cutting tools for machining group IVB based materials | |
JPS6348836B2 (en) | ||
WO2002083348A9 (en) | Ceramic cutting insert of polycrystalline tungsten carbide | |
JPS6245196B2 (en) | ||
JP7013948B2 (en) | Base material and cutting tools | |
JPS6225631B2 (en) | ||
JP2813005B2 (en) | WC based hard alloy | |
JPS6225630B2 (en) | ||
JPS6225632B2 (en) | ||
JPS6020457B2 (en) | High-toughness boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools | |
JP3648758B2 (en) | Nitrogen-containing sintered hard alloy | |
JP7035820B2 (en) | Base material and cutting tools | |
JP7031532B2 (en) | TiN-based sintered body and cutting tool made of TiN-based sintered body | |
JPS5861254A (en) | High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool | |
JPH05186844A (en) | Sintered compact based on boron nitride having high density phase | |
JP2002194474A (en) | Tungsten carbide matrix super hard composite sintered body | |
JPS5861253A (en) | High toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool | |
JP4335406B2 (en) | Cutting tool and manufacturing method thereof | |
JPH06298568A (en) | Whisker-reinforced sialon-based sintered compact and sintered and coated material | |
JP7008249B2 (en) | TiN-based sintered body and cutting tool made of TiN-based sintered body | |
JP2604155B2 (en) | Ceramic tool with coating layer | |
JP3092887B2 (en) | Surface-finished sintered alloy and method for producing the same | |
JP7307394B2 (en) | WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance | |
JPS5861256A (en) | High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear resistant tool | |
JP3560629B2 (en) | Manufacturing method of high toughness hard sintered body for tools |