JP3560629B2 - Manufacturing method of high toughness hard sintered body for tools - Google Patents

Manufacturing method of high toughness hard sintered body for tools Download PDF

Info

Publication number
JP3560629B2
JP3560629B2 JP32428793A JP32428793A JP3560629B2 JP 3560629 B2 JP3560629 B2 JP 3560629B2 JP 32428793 A JP32428793 A JP 32428793A JP 32428793 A JP32428793 A JP 32428793A JP 3560629 B2 JP3560629 B2 JP 3560629B2
Authority
JP
Japan
Prior art keywords
sintered body
powder
diamond
cbn
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32428793A
Other languages
Japanese (ja)
Other versions
JPH07172918A (en
Inventor
誠 鏡田
忠克 鍋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Read Co Ltd
Original Assignee
Read Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Read Co Ltd filed Critical Read Co Ltd
Priority to JP32428793A priority Critical patent/JP3560629B2/en
Publication of JPH07172918A publication Critical patent/JPH07172918A/en
Application granted granted Critical
Publication of JP3560629B2 publication Critical patent/JP3560629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、優れた靱性、強度、硬度、耐摩耗性及び耐食性を有し、特にアルミニウム、ハイシリコンアルミニウム合金等の切削工具材料として好適な焼結体の製造法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、アルミニウム、ハイシリコンアルミニウム合金等の切削工具材料に用いられる焼結体としては、超硬合金が広く使用されていたが、近年の高速切削化及び精密切削化の傾向に伴い、主成分がダイヤモンドで、Co等の金属結合相により固めた超高圧焼結材料が特に注目されている。
【0003】
このダイヤモンド焼結体は超硬合金に比較して著しく高硬度であるため、特に高速切削において優れた耐摩耗性を示すものの、超硬合金に比較して充分な靱性、強度を備えたものではないため、特に硬質なシリコンを多量に含むアルミニウム合金の切削においては、チッピング摩耗、工具の破損をおこすといった問題を有していた。また、ダイヤモンド焼結体中には概して多量のCo等の結合相が含まれているため、アルミニウム合金切削時に、刃先に構成刃先を生じやすく、それが原因で被削材の面精度が往々にして低下するといった問題もあった。さらに、市販されているダイヤモンド焼結体工具は、通常50kb以上の超高圧力下で焼結されるため、超硬合金工具に比較して数十倍以上の価格になるという問題もあった。
【0004】
吉田らは、ダイヤモンド又は立方晶窒化硼素(以下、cBNという)含有無機複合焼結体は、これを焼結する際には、ダイヤモンド又はcBNが安定ではない(準安定な)圧力温度条件であっても、1200℃以下の低温度であれば、ダイヤモンド又はcBNの相転移速度が著しく抑えられるため、その結合相を形成する無機材料の緻密化を促進することにのみ効果のある圧力を作用させれば、ダイヤモンド又はcBN含有無機複合焼結体をある程度緻密化させることが可能であると報告している(第29回高圧討論会講演要旨集(1988年)、特開平2−302371号公報)。
【0005】
しかしながら、この圧力が2000MPa以内で、1500℃を超えない温度で焼結するという条件においても、焼結条件は原料により異なるため、必ずしも高硬度の焼結体が得られるというものではなかった。また、硬度の面でも未だ充分ではなかった。
従って、靱性、強度、硬度、耐摩耗性、耐食性、加工性などの特性に優れ、しかも経済的に得ることができ、切削工具材料として好適な焼結体が望まれていた。
【0006】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意研究を行った結果、ダイヤモンド粉末及び/又はcBN粉末と酸化ジルコニウム粉末、周期律表第4a、5a、6a族の遷移金属の炭化物、窒化物を組合わせた原料粉末を、1100〜1250℃で5〜20kbの、従来のダイヤモンド焼結体に比較して著しく低圧力下で焼結することにより、前記課題を解決した優れた特性を有する工具用高靱性硬質焼結体が得られることを見出し、本発明を完成した。
【0007】
すなわち、本発明は、次の(A)〜(C):
(A)ダイヤモンド粉末及び/又は立方晶窒化硼素粉末 30〜70容量%、
(B)酸化ジルコニウム粉末 20〜40容量%、
(C)周期律表第4a、5a、6a族の遷移金属の炭化物及び窒化物から選ばれ
る1種又は2種以上 15〜30容量%
を含有する原料粉末を、温度1100〜1250℃、圧力5〜20kbで焼結することを特徴とする工具用高靱性硬質焼結体の製造法を提供するものである。
【0008】
本発明で用いられる(A)ダイヤモンド粉末及びcBN粉末としては特に制限されないが、その平均粒径が10μm以下のものが好ましい。平均粒径が10μmを超えたものを用いると、刃先強度が低下し、切削加工時に被削材面精度が低下する傾向がある。
これらのダイヤモンド及びcBNは、著しい硬度を有するため、焼結体の硬度、耐摩耗性の向上、さらに結合相中に分散することによる焼結体の強靱化に役立つものである。
【0009】
ダイヤモンド粉末及びcBN粉末は、それぞれ単独又はこれらを組合わせて用いることができ、原料粉末中に30〜70容量%、好ましくは45〜65容量%配合される。30容量%未満では、充分な硬度、耐摩耗性を有する焼結体が得られず、70容量%を超えると、連続したネットワークを形成する結合相の割合が低下し、その緻密化が阻害され、緻密でかつ高硬度の焼結体を得ることができない。
【0010】
このダイヤモンド粉末及びcBN粉末は、結合相を形成する後記成分(B)、(C)のいずれかと同じ物質、すなわち、酸化ジルコニウム並びに周期律表第4a、5a、6a族の遷移金属の炭化物及び窒化物から選ばれる1種以上の成分により表面をコーティングして用いるのが好ましい。
このようにコーティングすることにより、ダイヤモンド粉末及び/又はcBN粉末と結合相を形成する物質の濡れ性を改善し、塑性変形し難いダイヤモンド及び/又はcBN同志が直接に接する部分を排除し、かつ結合相を形成する塑性変形し易い物質の塑性変形によってダイヤモンド粉末及び/又はcBN粒子間の空隙を充填して緻密化し、機械的物性に優れた焼結体を可能にする。なお、焼結時に付加する圧力はこの緻密化を助長する作用をも有する。
【0011】
コーティング方法としては特に制限されず、例えばPVD法、CVD法を適用することができる。
また、コーティング量は、ダイヤモンド粉末及び/又はcBN粉末に対して外割りで0.5〜15容量%、特に5〜10容量%であるのが好ましい。0.5容量%未満では充分なコーティング効果が得られず、15容量%を超えると、ダイヤモンド粉末やcBN粉末にコーティングされない遊離物質が生成するので好ましくない。
【0012】
また、(B)酸化ジルコニウム粉末としては、特に制限されないが、強度、靱性等の点から、イットリウムを1〜4モル%含有するものが好ましい。
酸化ジルコニウム粉末は、原料粉末中に20〜40容量%、好ましくは25〜35容量%配合される。20容量%未満では、難焼結性成分である(A)又は(C)の配合割合が大きくなり、本発明の焼結温度である1100〜1250℃のような、ダイヤモンド又はcBNの相転移速度の非常に遅い低温下での緻密化が行われず、また強度、靱性、耐酸化性、化学的安定性及び耐食性に優れ、アルミニウム合金との化学的親和性が低いといった酸化ジルコニウム特有の特長が生かされない。また、40容量%を超えると、原料粉末中における成分(A)又は(C)の配合割合が小さくなるため、耐摩耗性、高温特性等が低下し、良好な焼結体が得られない。
【0013】
本発明で用いる(C)周期律表第4a、5a、6aの族の遷移金属の炭化物、窒化物としては、例えばTiC、ZrC、WC、TaC、VC、MoC、TiN、ZrN、TaN等が挙げられる。これらは1種又は2種以上を組合わせて用いることができ、さらに、これらの固溶体粉末を用いることもできる。
これらの成分(C)は、原料粉末中に15〜30容量%、好ましくは15〜25容量%配合される。15容量%未満では、切削工具として使用した場合の、これらの化合物に特徴的な高温時の特性(硬度、強度、熱伝導率、熱膨張率)及び通電性を有することによる易加工性が生かされず、30容量%を超えると、結合相に占めるこれら難焼結性の高融点化合物の割合が多くなり、結合相の緻密化が阻害されるため好ましくない。
【0014】
本発明においては、まず、前記(A)〜(C)を含む成分を混合して原料粉末を調製する。この原料粉末は、そのまま又は型押し成型等の処理後、例えばピストンシリンダー型高温高圧発生装置等の高温高圧発生装置を使用し、1100〜1250℃、5〜20kbの熱力学的にダイヤモンド又はcBNの準安定な領域で焼結する。
【0015】
焼結温度が1100℃未満では焼結体は緻密化せず、1250℃を超える場合は、ダイヤモンド及び/又はcBNの著しい相転移が起こり、機械的に軟弱な六方晶窒化硼素(hBN)が多量に生じ、ダイヤモンド及び/又はcBN固有の硬度、耐摩耗性が損なわれる。特に1150〜1200℃で焼結するのが好ましい。
【0016】
また、焼結圧力が5kb未満では、1100〜1250℃の温度領域において結合相の緻密化に寄与する圧力の効果が充分に作用しないため、高硬度、高密度の焼結体が得られず、焼結圧力が20kbを超えると、驚くべきことに焼結体の靱性及び強度が低下する。
20kbを超える焼結圧力にて得られた焼結体の靱性及び強度が低下する理由については必ずしも完全には解明されていないが、以下の理由によると推測される。すなわち、焼結圧力が高い場合には、焼結体を構成するダイヤモンド及び/又はcBN並びに結合相粒子が塑性変形すると同時に相当量の歪み、粒内破壊が導入される。この歪み、粒内破壊の存在によって、焼結体の靱性を決定する亀裂の伸長に対する抵抗が著しく低下し、靱性及び強度が低下したものと考えられる。従って、焼結圧力は、5〜20kbとすることが必要であり、特に5〜15kbで焼結するのが好ましい。
【0017】
また、焼結の際には、原料粉末を超硬合金原料基板上に積層配置し、これらを同時に焼結、接合することもできる。
基板となる超硬合金原料としては、WC−Co等が挙げられ、これらは靱性、剛性、及び熱伝導性に優れ、切削工具として使用するのに適しているものである。本発明においては、焼結温度が1100〜1250℃と低いため、通常の超硬合金焼結プロセスにおいて認められる液相は、超硬合金基板中には出現しないが、高圧力下での焼結であるため、充分に固相焼結する。そしてこのように、焼結中に液相が出現しないため、超硬合金に積層配置した上記のダイヤモンド及び/又はcBN含有硬質層を形成する原料中に、Co等の液相が侵入することも無いために、硬質層が変質したり、Co等の液相侵入によるダイヤモンド及び/又はcBNの相転移の著しい促進に起因した耐摩耗性の低下もない。
硬質層を形成する焼結体厚さは、用途、経済性及び工具強度を考慮して適宜決定すればよく、0.5〜10mmが好ましく、0.5〜2mmであるのが更に好ましい。
【0018】
本発明により得られる焼結体は、成分(B)及び(C)が結合相を形成し、この結合相がダイヤモンド及び/又はcBN粒子間に連続的に分布して強固なネットワークを形成し、その状態が焼結体の靱性を著しく左右する。そして、本発明によれば、靱性、耐欠損性、強度、硬度、耐摩耗性及び加工性に優れた焼結体が得られる。
【0019】
【実施例】
次に、実施例を挙げて本発明を更に説明するが、本発明はこれら実施例に限定されるものではない。
【0020】
実施例1
表1〜表6に示す組成の原料を混合して原料粉末を調製し、これを表1〜表6に示す圧力及び温度で焼成した。
原料に使用したダイヤモンド粉末及びcBN粉末の平均粒径は2μm程度であるが、他の粒度においても粒径依存性はあまり認められず、物性はほぼ同等であった。結合相に使用した各種化合物粉末は、平均粒径数μm以下の市販品を使用した。
また、ダイヤモンド粉末及び/又はcBN粉末のコーティングは、CVD法により行った。
コーティング粒子の表面状態を電子顕微鏡にて観察したところ、いずれの粒子も均一にコーティングされているのが確認された。
【0021】
得られた焼結体について、相対密度、ビッカース硬度、破壊靱性値(K1c)及び曲げ強度を測定した。結果を表1〜表6に示す。
(測定方法)
相対密度:
JIS C 2141(電気絶縁用セラミックス材料試験方法)に準じて測定した。
ビッカース硬度:
圧子荷重を500gとし、JIS C 2141(ビッカース硬さ試験方法)に準じて測定した。
破壊靱性値(K1c):
JIS R 1607(ファインセラミックスの破壊靱性試験方法)のIF法に基づき行い、試料には充分に研磨を施した。
曲げ強度:
焼結体を切断して1mm×1.3mm×12mm(±0.1mm)の角形試験片を作製した。作製した試験片を、JIS R 1601(ファインセラミックスの曲げ強さ試験方法)にのっとり3点曲げ強度を測定した。なお、支点間のスパンは10mmとした。
【0022】
【表1】

Figure 0003560629
【0023】
【表2】
Figure 0003560629
【0024】
【表3】
Figure 0003560629
【0025】
【表4】
Figure 0003560629
【0026】
【表5】
Figure 0003560629
【0027】
【表6】
Figure 0003560629
【0028】
表1〜表6の結果から明らかなように、本発明により得られた焼結体は、相対密度、ビッカース硬度、破壊靱性値及び曲げ強度のいずれも高い値を示した。
【0029】
また、得られた試料No.1、7及び11の焼結体と、市販の高靱性酸化ジルコニウムセラミックスの機械的、電気的及び熱的特性を比較した。結果を表7に示す。
【0030】
【表7】
Figure 0003560629
【0031】
表7から明らかなように、本発明により得られた焼結体は、切削工具としての耐摩耗性に最も影響する硬度、靱性はもちろんのこと、酸化ジルコニウムセラミックスが切削工具たりえない大きな原因であった比抵抗、熱伝導度及び熱膨張率も大きく改善されていた。
【0032】
実施例2
表1〜表6に示す試料No.1、6、7、11、14、17、20及び22、並びに比較例5、11に示す組成の原料を混合し、直径20mm、厚さ2mmの予備成形体を得た。この成形体と、あらかじめ作製した直径20mm、厚さ2mmのWC−Co超硬合金予備成形体とを、ピストンシリンダー型超高圧装置に装入した。発熱体としては黒鉛ヒーターを使用し、固体圧力媒体としては、蝋石及び六方晶窒化硼素を用いた。焼結条件は表1〜表6に示すとおりであり、圧力10kb、温度1150℃で10分間保持して焼結した。
回収された焼結体は、ダイヤモンド又はcBNを含有する硬質層と超硬合金部分が強固に一体化したものであった。
このダイヤモンド及び/又はcBN/超硬合金同時焼結体を、放電加工によって切断、刃付け加工してSPGN321の切削工具形状にした。また、比較のため市販cBN焼結体、ダイヤモンド焼結体(比較例18、20)及び市販K10種超硬合金についても同様に行った。
【0033】
被削材としては、幅30mm、長さ300mm、高さ150mmのハイシリコンアルミニウム;AC9B(HB;60)の鋳物を使用し、立型マシニングセンターにて、被削材を長手方向にフライス切削した。切削条件は下記の通りであり、切削試験結果を表8に示した。
切削速度;500/分、
切り込み;0.25mm、
送り ;0.1mm/回転、
切削油 ;水溶性切削油使用
【0034】
【表8】
Figure 0003560629
【0035】
表8の結果から明らかなように、本発明により得られた焼結体を使用した工具の場合には、500パスでも逃げ面の摩耗幅は0.4〜0.9mmとさほど進行しておらず、定常摩耗であった。これに対し、市販K10種超硬合金工具は5パスにてかなり摩耗が進行しており、工具すくい面に被削材が多量溶着していた。また、市販cBN焼結体工具(比較例18)、及び市販ダイヤモンド焼結体工具(比較例20)では、100パス後工具刃先を観察したところ、逃げ面にチッピングが生じており、逃げ面の摩耗がかなり進行していた。
また、被削材の仕上げ面は、切削初期で本発明焼結材料を使用した工具の場合、最大面粗さが2μmであったのに対し、市販ダイヤモンド焼結体工具では、微量の刃先の溶着が災いして最大面粗さが2.5μm以上であった。
【0036】
【発明の効果】
本発明によれば、靱性、強度、硬度、耐摩耗性、耐食性、加工面精度及び加工性に優れ、特にアルミニウム、ハイシリコンアルミニウム合金等の切削工具材料などとして有用な焼結体を低圧力下で経済的に得ることができる。[0001]
[Industrial applications]
The present invention relates to a method for producing a sintered body having excellent toughness, strength, hardness, wear resistance and corrosion resistance, and particularly suitable as a cutting tool material such as aluminum and high silicon aluminum alloy.
[0002]
Problems to be solved by the prior art and the invention
Conventionally, as a sintered body used for cutting tool materials such as aluminum and high silicon aluminum alloy, cemented carbide has been widely used, but with the trend of high speed cutting and precision cutting in recent years, the main component has been Attention has been particularly focused on ultra-high pressure sintered materials made of diamond and solidified by a metal binding phase such as Co.
[0003]
Since this diamond sintered body has remarkably high hardness compared to cemented carbide, it exhibits excellent wear resistance especially at high speed cutting, but it does not have sufficient toughness and strength compared to cemented carbide. In particular, cutting of an aluminum alloy containing a large amount of hard silicon has a problem of causing chipping wear and breakage of a tool. Further, since a large amount of a binder phase such as Co is generally contained in a diamond sintered body, a component edge is likely to be formed on a cutting edge when cutting an aluminum alloy, and as a result, the surface accuracy of a work material is often increased. There was also a problem that it decreased. Furthermore, commercially available diamond sintered body tools are usually sintered under an ultra-high pressure of 50 kb or more, so that there is a problem that the price is several tens times or more as compared with a cemented carbide tool.
[0004]
Yoshida et al., When sintering an inorganic composite sintered body containing diamond or cubic boron nitride (hereinafter referred to as cBN), diamond or cBN is not stable (metastable) under pressure and temperature conditions. However, if the temperature is as low as 1200 ° C. or less, the phase transition rate of diamond or cBN can be significantly suppressed, and a pressure effective only to promote the densification of the inorganic material forming the bonding phase is applied. Reports that it is possible to densify the diamond or cBN-containing inorganic composite sintered body to some extent (Summary of the 29th High Pressure Symposium Lecture Meeting (1988), JP-A-2-302371). .
[0005]
However, even under the condition that the pressure is within 2000 MPa and the sintering is performed at a temperature not exceeding 1500 ° C., since the sintering conditions vary depending on the raw material, a sintered body having a high hardness is not necessarily obtained. In addition, hardness was not yet sufficient.
Therefore, a sintered body which is excellent in properties such as toughness, strength, hardness, wear resistance, corrosion resistance, and workability, can be obtained economically, and is suitable as a cutting tool material has been desired.
[0006]
[Means for Solving the Problems]
Under such circumstances, the present inventors have conducted intensive studies and as a result, have combined diamond powder and / or cBN powder with zirconium oxide powder, and carbides and nitrides of transition metals of Groups 4a, 5a and 6a of the periodic table. By sintering the raw material powder at 1100 to 1250 ° C. at a pressure of 5 to 20 kb under a remarkably low pressure as compared with a conventional diamond sintered body, a high toughness hard tool for a tool having the above-mentioned characteristics that has solved the above-mentioned problems. The inventors have found that a sintered body can be obtained, and have completed the present invention.
[0007]
That is, the present invention provides the following (A) to (C):
(A) diamond powder and / or cubic boron nitride powder 30 to 70% by volume,
(B) zirconium oxide powder 20 to 40% by volume,
(C) One or more selected from carbides and nitrides of transition metals of Groups 4a, 5a and 6a of the periodic table 15 to 30% by volume
And sintering the raw material powder containing at a temperature of 1100 to 1250 ° C. and a pressure of 5 to 20 kb.
[0008]
The (A) diamond powder and cBN powder used in the present invention are not particularly limited, but those having an average particle diameter of 10 μm or less are preferred. If the average particle diameter exceeds 10 μm, the edge strength tends to decrease, and the accuracy of the work surface tends to decrease during cutting.
Since these diamonds and cBN have remarkable hardness, they are useful for improving the hardness and wear resistance of the sintered body, and for strengthening the sintered body by dispersing in the binder phase.
[0009]
The diamond powder and the cBN powder can be used alone or in combination thereof, and are blended in the raw material powder in an amount of 30 to 70% by volume, preferably 45 to 65% by volume. If it is less than 30% by volume, a sintered body having sufficient hardness and abrasion resistance cannot be obtained. If it exceeds 70% by volume, the proportion of a binder phase forming a continuous network decreases, and its densification is hindered. However, a dense and high-hardness sintered body cannot be obtained.
[0010]
The diamond powder and the cBN powder are the same substances as those of any of the components (B) and (C) described below, which form a binder phase, namely, zirconium oxide and carbides and nitrides of transition metals of Groups 4a, 5a and 6a of the periodic table. It is preferable that the surface is coated with one or more components selected from products.
By coating in this manner, the wettability of a substance that forms a binder phase with the diamond powder and / or cBN powder is improved, a portion where diamond and / or cBN hardly undergoes plastic deformation is directly in contact with each other, and bonding is achieved. The voids between the diamond powder and / or cBN particles are filled and densified by the plastic deformation of the material which easily forms a phase and easily deformed, thereby enabling a sintered body having excellent mechanical properties. The pressure applied during sintering also has the effect of promoting this densification.
[0011]
The coating method is not particularly limited, and for example, a PVD method and a CVD method can be applied.
The coating amount is preferably 0.5 to 15% by volume, particularly 5 to 10% by volume, based on the diamond powder and / or cBN powder. If it is less than 0.5% by volume, a sufficient coating effect cannot be obtained, and if it exceeds 15% by volume, a free substance which is not coated on the diamond powder or the cBN powder is generated, which is not preferable.
[0012]
The zirconium oxide powder (B) is not particularly limited, but preferably contains 1 to 4 mol% of yttrium from the viewpoint of strength, toughness and the like.
The zirconium oxide powder is blended in the raw material powder in an amount of 20 to 40% by volume, preferably 25 to 35% by volume. If it is less than 20% by volume, the compounding ratio of (A) or (C), which is a hardly sinterable component, becomes large, and the phase transition rate of diamond or cBN, such as 1100 to 1250 ° C, which is the sintering temperature of the present invention. Does not perform densification at a very low temperature and has excellent strength, toughness, oxidation resistance, chemical stability and corrosion resistance, and low chemical affinity with aluminum alloy. Not done. On the other hand, if it exceeds 40% by volume, the compounding ratio of the component (A) or (C) in the raw material powder becomes small, so that the abrasion resistance, high-temperature characteristics, etc. are lowered, and a good sintered body cannot be obtained.
[0013]
Examples of (C) carbides and nitrides of transition metals of groups 4a, 5a and 6a of the periodic table used in the present invention include, for example, TiC, ZrC, WC, TaC, VC, MoC, TiN, ZrN, TaN and the like. Can be These can be used alone or in combination of two or more, and further, solid solution powders thereof can also be used.
These components (C) are blended in the raw material powder in an amount of 15 to 30% by volume, preferably 15 to 25% by volume. When the content is less than 15% by volume, when used as a cutting tool, these compounds have high-temperature characteristics (hardness, strength, thermal conductivity, and thermal expansion coefficient) and easy workability due to having electrical conductivity. On the other hand, if the content exceeds 30% by volume, the proportion of the hardly sinterable high melting point compound in the binder phase is increased, and the densification of the binder phase is undesirably hindered.
[0014]
In the present invention, first, raw materials powder is prepared by mixing the components including (A) to (C). This raw material powder, as it is or after processing such as embossing, for example, using a high-temperature high-pressure generator such as a piston cylinder type high-temperature high-pressure generator, 1100 ~ 1250 ℃, 5-20 kb thermodynamic diamond or cBN of 5-20 kb Sinter in a metastable region.
[0015]
If the sintering temperature is lower than 1100 ° C., the sintered body is not densified. If the sintering temperature is higher than 1250 ° C., remarkable phase transition of diamond and / or cBN occurs and a large amount of mechanically weak hexagonal boron nitride (hBN) is generated. And the hardness and wear resistance inherent to diamond and / or cBN are impaired. In particular, sintering at 1150 to 1200 ° C. is preferable.
[0016]
On the other hand, if the sintering pressure is less than 5 kb, the effect of the pressure contributing to the densification of the binder phase in the temperature range of 1100 to 1250 ° C. does not sufficiently act, so that a high-hardness, high-density sintered body cannot be obtained. When the sintering pressure exceeds 20 kb, surprisingly, the toughness and strength of the sintered body decrease.
The reason why the toughness and strength of the sintered body obtained at a sintering pressure exceeding 20 kb are lowered is not necessarily completely elucidated, but is presumed to be as follows. That is, when the sintering pressure is high, diamond and / or cBN and the binder phase particles constituting the sintered body undergo plastic deformation, and at the same time, a considerable amount of strain and intragranular fracture are introduced. It is considered that due to the presence of the strain and the intragranular fracture, the resistance to elongation of a crack, which determines the toughness of the sintered body, was remarkably reduced, and the toughness and strength were reduced. Therefore, the sintering pressure needs to be 5 to 20 kb, and it is particularly preferable to perform sintering at 5 to 15 kb.
[0017]
In the case of sintering, the raw material powders may be stacked and arranged on a cemented carbide raw material substrate, and these may be simultaneously sintered and joined.
WC-Co and the like are examples of the cemented carbide material used as the substrate, and they are excellent in toughness, rigidity, and thermal conductivity and are suitable for use as a cutting tool. In the present invention, since the sintering temperature is as low as 1100 to 1250 ° C., the liquid phase observed in the ordinary cemented carbide sintering process does not appear in the cemented carbide substrate, but is sintered under high pressure. Therefore, solid-phase sintering is sufficiently performed. In this way, since no liquid phase appears during sintering, the liquid phase such as Co may enter the raw material forming the diamond and / or cBN-containing hard layer laminated on the cemented carbide. Since there is no hard layer, there is no deterioration of the hard layer and no reduction in wear resistance due to remarkable acceleration of the phase transition of diamond and / or cBN due to penetration of a liquid phase such as Co.
The thickness of the sintered body forming the hard layer may be appropriately determined in consideration of the use, economy and tool strength, and is preferably 0.5 to 10 mm, more preferably 0.5 to 2 mm.
[0018]
In the sintered body obtained by the present invention, the components (B) and (C) form a binder phase, and the binder phase is continuously distributed between the diamond and / or cBN particles to form a strong network, That state significantly affects the toughness of the sintered body. And according to this invention, the sintered compact excellent in toughness, fracture resistance, strength, hardness, abrasion resistance, and workability is obtained.
[0019]
【Example】
Next, the present invention will be further described with reference to examples, but the present invention is not limited to these examples.
[0020]
Example 1
Raw materials having the compositions shown in Tables 1 to 6 were mixed to prepare raw material powders, which were fired at the pressures and temperatures shown in Tables 1 to 6.
The average particle size of the diamond powder and cBN powder used as the raw materials was about 2 μm, but the other particle sizes did not show much particle size dependence, and the physical properties were almost the same. As the various compound powders used for the binder phase, commercially available products having an average particle size of several μm or less were used.
The coating of the diamond powder and / or the cBN powder was performed by a CVD method.
When the surface state of the coated particles was observed with an electron microscope, it was confirmed that all the particles were uniformly coated.
[0021]
The obtained sintered body was measured for relative density, Vickers hardness, fracture toughness (K 1c ) and bending strength. The results are shown in Tables 1 to 6.
(Measuring method)
Relative density:
The measurement was carried out according to JIS C 2141 (test method for ceramic materials for electrical insulation).
Vickers hardness:
The indenter load was set to 500 g, and the measurement was performed according to JIS C 2141 (Vickers hardness test method).
Fracture toughness value (K 1c ):
The test was performed based on the IF method of JIS R 1607 (test method for fracture toughness of fine ceramics), and the sample was sufficiently polished.
Flexural strength:
The sintered body was cut to produce a square test piece of 1 mm × 1.3 mm × 12 mm (± 0.1 mm). The three-point bending strength of the prepared test piece was measured according to JIS R 1601 (Testing method for bending strength of fine ceramics). The span between the fulcrums was 10 mm.
[0022]
[Table 1]
Figure 0003560629
[0023]
[Table 2]
Figure 0003560629
[0024]
[Table 3]
Figure 0003560629
[0025]
[Table 4]
Figure 0003560629
[0026]
[Table 5]
Figure 0003560629
[0027]
[Table 6]
Figure 0003560629
[0028]
As is clear from the results of Tables 1 to 6, the sintered bodies obtained by the present invention showed high values in all of relative density, Vickers hardness, fracture toughness and bending strength.
[0029]
In addition, the obtained sample No. The mechanical, electrical and thermal properties of the sintered bodies of Nos. 1, 7 and 11 and a commercially available high toughness zirconium oxide ceramic were compared. Table 7 shows the results.
[0030]
[Table 7]
Figure 0003560629
[0031]
As is clear from Table 7, the sintered body obtained according to the present invention is not only one of the hardness and toughness that most affects the wear resistance as a cutting tool, but also a major cause that zirconium oxide ceramics cannot be used as a cutting tool. The specific resistance, thermal conductivity and coefficient of thermal expansion were also greatly improved.
[0032]
Example 2
Sample No. shown in Tables 1 to 6 Raw materials having the compositions shown in 1, 6, 7, 11, 14, 17, 20, and 22, and Comparative Examples 5 and 11 were mixed to obtain a preform having a diameter of 20 mm and a thickness of 2 mm. This compact and a preformed WC-Co cemented carbide preform having a diameter of 20 mm and a thickness of 2 mm prepared in advance were charged into a piston cylinder type ultra-high pressure device. A graphite heater was used as the heating element, and limestone and hexagonal boron nitride were used as the solid pressure medium. The sintering conditions are as shown in Tables 1 to 6, and sintering was carried out at a pressure of 10 kb and a temperature of 1150 ° C. for 10 minutes.
The recovered sintered body was one in which the hard layer containing diamond or cBN and the cemented carbide part were strongly integrated.
This diamond and / or cBN / hard alloy sintered body was cut and bladed by electric discharge machining to obtain a cutting tool shape of SPGN321. For comparison, a commercially available cBN sintered body, a diamond sintered body (Comparative Examples 18 and 20) and a commercially available K10 cemented carbide were similarly performed.
[0033]
As a work material, a cast of high silicon aluminum; AC9B (HB; 60) having a width of 30 mm, a length of 300 mm, and a height of 150 mm was used, and the work material was milled in the longitudinal direction at a vertical machining center. The cutting conditions were as follows, and the cutting test results are shown in Table 8.
Cutting speed; 500 / min,
Notch; 0.25 mm,
Feed; 0.1 mm / rotation,
Cutting oil; water-soluble cutting oil used [0034]
[Table 8]
Figure 0003560629
[0035]
As is clear from the results in Table 8, in the case of the tool using the sintered body obtained according to the present invention, even in 500 passes, the wear width of the flank has progressed as much as 0.4 to 0.9 mm. And steady wear. On the other hand, the wear of the commercially available K10 cemented carbide tool was considerably advanced in five passes, and a large amount of work material was welded to the tool rake face. In addition, in the commercially available cBN sintered body tool (Comparative Example 18) and the commercially available diamond sintered body tool (Comparative Example 20), when the tool edge was observed after 100 passes, chipping occurred on the flank, and Wear was considerably advanced.
In addition, the finished surface of the work material had a maximum surface roughness of 2 μm in the case of the tool using the sintered material of the present invention in the initial stage of cutting, whereas a commercially available diamond sintered tool had a small amount of cutting edge. The maximum surface roughness was 2.5 μm or more due to the damage of welding.
[0036]
【The invention's effect】
According to the present invention, a sintered body excellent in toughness, strength, hardness, wear resistance, corrosion resistance, surface precision and workability, and particularly useful as a cutting tool material such as aluminum, high silicon aluminum alloy, etc. under low pressure Can be obtained economically.

Claims (3)

次の(A)〜(C):
(A)ダイヤモンド粉末及び/又は立方晶窒化硼素粉末 30〜70容量%、
(B)酸化ジルコニウム粉末 20〜40容量%、
(C)周期律表第4a、5a、6a族の遷移金属の炭化物及び窒化物から選ばれ
る1種又は2種以上 15〜30容量%
を含有する原料粉末を、温度1100〜1250℃、圧力5〜20kbで焼結することを特徴とする工具用高靱性硬質焼結体の製造法。
The following (A) to (C):
(A) diamond powder and / or cubic boron nitride powder 30 to 70% by volume,
(B) zirconium oxide powder 20 to 40% by volume,
(C) One or more selected from carbides and nitrides of transition metals of Groups 4a, 5a and 6a of the periodic table 15 to 30% by volume
A method for producing a high-toughness hard sintered body for a tool, comprising sintering a raw material powder containing at a temperature of 1100 to 1250 ° C and a pressure of 5 to 20 kb.
(A)ダイヤモンド粉末及び/又は立方晶窒化硼素粉末が、酸化ジルコニウム並びに周期律表第4a、5a、6a族の遷移金属の炭化物及び窒化物から選ばれる1種以上でコーティングされたものである請求項1記載の工具用高靱性硬質焼結体の製造法。(A) The diamond powder and / or the cubic boron nitride powder are coated with zirconium oxide and at least one selected from carbides and nitrides of transition metals of Groups 4a, 5a and 6a of the periodic table. Item 7. A method for producing a high toughness hard sintered body for a tool according to Item 1. 原料粉末を超硬合金原料基板上に積層配置して焼結する請求項1又は2記載の工具用高靱性硬質焼結体の製造法。The method for producing a high toughness hard sintered body for a tool according to claim 1 or 2, wherein the raw material powder is laminated on a cemented carbide raw material substrate and sintered.
JP32428793A 1993-12-22 1993-12-22 Manufacturing method of high toughness hard sintered body for tools Expired - Lifetime JP3560629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32428793A JP3560629B2 (en) 1993-12-22 1993-12-22 Manufacturing method of high toughness hard sintered body for tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32428793A JP3560629B2 (en) 1993-12-22 1993-12-22 Manufacturing method of high toughness hard sintered body for tools

Publications (2)

Publication Number Publication Date
JPH07172918A JPH07172918A (en) 1995-07-11
JP3560629B2 true JP3560629B2 (en) 2004-09-02

Family

ID=18164127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32428793A Expired - Lifetime JP3560629B2 (en) 1993-12-22 1993-12-22 Manufacturing method of high toughness hard sintered body for tools

Country Status (1)

Country Link
JP (1) JP3560629B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200748B (en) * 2021-04-19 2023-05-12 郑州博特硬质材料有限公司 Boron nitride-diamond-zirconia hybrid composite material and preparation method thereof

Also Published As

Publication number Publication date
JPH07172918A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
KR100227879B1 (en) Group ivb boride based cutting tools
WO2006068220A1 (en) Sialon insert and cutting tool equipped therewith
JPH10182234A (en) Cubic boron nitride-base sintered material and its production
KR20170122103A (en) Sintered body and cutting tool
JP2628200B2 (en) TiCN-based cermet and method for producing the same
JPH10182233A (en) Titanium aluminum nitride-base sintered material and its production
JPS6225631B2 (en)
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
US6620756B2 (en) Ceramic matrix composite cutting tool material
JP2015044723A (en) Sintered body
JPS5860678A (en) High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JP3611184B2 (en) Ceramic sintered body cutting tool for cast iron machining and coated ceramic sintered body cutting tool for cast iron machining
JPH07172923A (en) Production of hard sintered material having high tenacity for tool
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JPH10310840A (en) Superhard composite member and its production
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JPS644989B2 (en)
JPS6246510B2 (en)
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body
JPS5861253A (en) High toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JPS6225632B2 (en)
JP2003113438A (en) Die made from sintered hard metal alloy
JPH10310839A (en) Super hard composite member with high toughness, and its production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120604

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 10

EXPY Cancellation because of completion of term