JP2002194474A - Tungsten carbide matrix super hard composite sintered body - Google Patents

Tungsten carbide matrix super hard composite sintered body

Info

Publication number
JP2002194474A
JP2002194474A JP2000391572A JP2000391572A JP2002194474A JP 2002194474 A JP2002194474 A JP 2002194474A JP 2000391572 A JP2000391572 A JP 2000391572A JP 2000391572 A JP2000391572 A JP 2000391572A JP 2002194474 A JP2002194474 A JP 2002194474A
Authority
JP
Japan
Prior art keywords
sintered body
hard
resistance
volume
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000391572A
Other languages
Japanese (ja)
Other versions
JP5079940B2 (en
Inventor
Takamichi Ogawa
貴道 小川
Kazuhiro Urashima
和浩 浦島
Satoshi Iio
聡 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2000391572A priority Critical patent/JP5079940B2/en
Publication of JP2002194474A publication Critical patent/JP2002194474A/en
Application granted granted Critical
Publication of JP5079940B2 publication Critical patent/JP5079940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a WC matrix super hard composite sintered body which has excellent oxidation resistance, corrosion resistance, impact resistance, chipping resistance and wear resistance in particular. SOLUTION: The WC matrix super hard composite sintered body contains a hard phase essentially consisting of WC by 10 to 76 vol.% and a metallic bonding phase consisting of an alloy of one or more kinds selected from iron group metals, and dispersedly contains ceramic hard dispersion particles by 4 to 70 vol.% and one or more kinds selected from the group 4a to 6a elements other than W by >=0.1 vol.% expressed in terms of carbides. At least a part of the group 4a to 6a elements is dispersed into the above ceramics hard dispersion particles. An intermetallic compound is present in the sintered body. Also, the porosity of the sintered body is A02 or lower by the ASTM standard.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化タングステン
系(以下、「WC系」という。)超硬基複合材料焼結体
に関し、更に詳しくは、耐酸化性、耐食性、耐衝撃性、
耐欠損性、特には耐摩耗性に優れたWC系超硬基複合材
料焼結体に関する。本発明の超硬基複合材料焼結体は、
高速切削、高送り切削、重切削等に用いる切削工具や、
熱間圧延ロール、ガイドロール、線引きロール、ダイ
ス、パンチ等の熱間、温間、冷間における塑性加工及び
延性加工に用いる治工具や、軸受け、ベアリングボー
ル、すべり軸受け、すべりガイド等の高い耐摩耗性を必
要とされる部材に用いる材料として好適に用いることが
できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tungsten carbide-based (hereinafter referred to as "WC-based") cemented carbide composite sintered body, and more particularly, to oxidation resistance, corrosion resistance, impact resistance, and the like.
The present invention relates to a WC-based cemented carbide composite sintered body having excellent fracture resistance, particularly excellent wear resistance. The cemented carbide composite material of the present invention,
Cutting tools used for high speed cutting, high feed cutting, heavy cutting, etc.,
Jigs and tools used for hot, warm, and cold plastic working and ductile working such as hot rolling rolls, guide rolls, drawing rolls, dies, and punches, and high resistance to bearings, bearing balls, sliding bearings, and sliding guides It can be suitably used as a material for a member requiring abrasion.

【0002】[0002]

【従来の技術】WC系超硬複合材料焼結体は、靭性、機
械的強度に優れており、従来より、切削工具等の用途に
用いられている。一方、WC系超硬複合材料焼結体は、
上記のように靭性、機械的強度に優れる反面、耐酸化
性、化学的安定性、高温特性、耐摩耗性の面で十分な特
性が得難いという問題がある。そのため、これらの特性
が要求される部材、例えば、温度特性が重要な温間・熱
間鋳造用工具や、高い耐摩耗性を必要とする軸受け、ベ
アリングボール、すべり軸受け、すべりガイド等の部材
等としての利用上問題がある。
2. Description of the Related Art Sintered WC super-hard composite materials have excellent toughness and mechanical strength, and have been conventionally used for applications such as cutting tools. On the other hand, a WC-based super-hard composite material sintered body
Although excellent in toughness and mechanical strength as described above, there is a problem that it is difficult to obtain sufficient characteristics in terms of oxidation resistance, chemical stability, high-temperature characteristics, and abrasion resistance. Therefore, members requiring these characteristics, such as tools for warm / hot casting where temperature characteristics are important, bearings, bearing balls, slide bearings, and slide guides that require high wear resistance, etc. There is a problem in use as.

【0003】かかる問題を解決するため、従来より一般
に、超硬合金の表面にアルミナ等からなる硬質層を被覆
形成することが行われている。例えば、特開昭63−5
16942号公報には、WCからなる硬質相と、Ni、
Coからなる結合金属相とを主体とする焼結体の表面
に、CVD、PVD等を用いてアルミナ等の硬質相を被
覆形成した超硬工具が記載されている。また、特開平2
−221373号公報には、WCと鉄族金属結合相から
なる超硬合金に予め遊離炭素を含有させ、特定の熱処理
を施して遊離炭素を消失させた後にアルミナ等を被覆す
る方法が記載されている。
[0003] In order to solve such a problem, a hard layer made of alumina or the like is generally formed on the surface of a cemented carbide. For example, JP-A-63-5
No. 16942 discloses a hard phase composed of WC, Ni,
A cemented carbide tool in which a hard phase such as alumina is coated on a surface of a sintered body mainly composed of a bonding metal phase made of Co using CVD, PVD or the like is described. In addition, Japanese Unexamined Patent Publication
Japanese Patent No. 221373 describes a method in which free carbon is previously contained in a cemented carbide comprising WC and an iron group metal binding phase, and a specific heat treatment is applied to eliminate free carbon, followed by coating with alumina or the like. I have.

【0004】しかし、硬質相を焼結体の表面に被覆する
方法では、製造コストが増加することに加え、被覆硬質
相が摩耗・剥離した場合に再研磨による再生が利かない
といった問題がある。
[0004] However, the method of coating the surface of the sintered body with the hard phase has a problem that, in addition to an increase in manufacturing cost, when the coated hard phase is worn or peeled off, regeneration by repolishing is not effective.

【0005】そのため、製造コストや再研磨による再生
を加味した上でWC系超硬複合材料焼結体の特性を改善
するため、高温安定なアルミナ等を硬質粒子として添加
・分散させる方法が従来より行われている。例えば、特
開昭61−235533公報や特開昭62−14623
7号公報には、WCからなる硬質相と、鉄族等からなる
結合金属相とを主体とする焼結体に、アルミナ等の硬質
分散粒子や硬質ウィスカーを均一微細に分散した高耐熱
性超硬合金が記載されている。また、特表平4−502
347号公報には、WC等からなる硬質相と、鉄族等か
らなる結合金属相とを主体とする焼結体に、アルミナ等
の単結晶補強材料を分散させる方法が記載されている。
その他、特開平9−316589号公報には、アルミナ
にナノサイズの微細なCo粉末とWCを添加したAl2
3−WC−Co系複合材料が記載されている。
[0005] Therefore, in order to improve the characteristics of a WC-based super-hard composite material sintered body in consideration of the production cost and regeneration by repolishing, a method of adding and dispersing high-temperature stable alumina or the like as hard particles has been conventionally used. Is being done. For example, JP-A-61-235533 and JP-A-62-14623.
No. 7 discloses a highly heat-resistant superconductor in which hard dispersed particles such as alumina and hard whiskers are uniformly and finely dispersed in a sintered body mainly composed of a hard phase composed of WC and a bonded metal phase composed of iron group or the like. Hard alloys are described. In addition, Tokuhyo Hei 4-502
No. 347 describes a method in which a single crystal reinforcing material such as alumina is dispersed in a sintered body mainly composed of a hard phase composed of WC or the like and a binding metal phase composed of iron or the like.
In addition, Japanese Patent Application Laid-Open No. 9-316589 discloses an Al 2 powder obtained by adding nano-sized fine Co powder and WC to alumina.
O 3 -WC-Co-based composite material is described.

【0006】しかし、アルミナ等の硬質粒子は金属との
濡れが非常に悪いため、ただ単に超硬合金に分散させて
焼成しただけでは十分緻密化せず、強度・硬度等の機械
的特性も超硬合金と比較して著しく低下するという問題
がある。また、少量しか添加できず、しかも、微細、微
小粉末等の特殊形態の高価な粉末材料が必要になること
から、超硬合金焼結体の耐摩耗性を効果的に向上させる
ことが困難であるという問題がある。
However, since hard particles such as alumina have very poor wettability with metals, they are not sufficiently densified simply by being dispersed in a cemented carbide and fired, and the mechanical properties such as strength and hardness are also extremely high. There is a problem that it is significantly reduced as compared with a hard alloy. In addition, since only a small amount can be added and expensive powder materials of special forms such as fine and fine powders are required, it is difficult to effectively improve the wear resistance of the cemented carbide sintered body. There is a problem that there is.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記実情に鑑
みてなされたものであり、耐酸化性、耐食性、耐衝撃
性、耐欠損性、特には耐摩耗性に優れたWC系超硬基複
合材料焼結体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been developed in consideration of the above-mentioned circumstances. The present invention relates to a WC-based carbide substrate excellent in oxidation resistance, corrosion resistance, impact resistance, fracture resistance, and particularly excellent wear resistance. It is an object to provide a composite material sintered body.

【0008】[0008]

【課題を解決するための手段】本発明者等は、WC系超
硬複合材料焼結体の各種成分と特性との関係について検
討した結果、WCを主体とする硬質相と鉄族金属結合相
とからなる超硬合金焼結体中に、セラミックス硬質分散
粒子を分散させ、密度及び気孔率を所定範囲とすること
により、従来の超硬複合材料よりも軽量であると共に、
耐摩耗性、耐酸化性、耐食性、耐欠損性に優れた超硬基
複合材料焼結体が得られることを見出して先に出願をし
ている(特願2000−27831号)。
Means for Solving the Problems The present inventors have studied the relationship between various components and properties of a WC-based super-hard composite material sintered body, and as a result, have found that a hard phase mainly composed of WC and an iron group metal binding phase. By dispersing the ceramic hard dispersion particles in the cemented carbide sintered body consisting of and by setting the density and the porosity within a predetermined range, it is lighter than the conventional cemented carbide material,
The applicant has filed an application before finding that a cemented carbide-based composite material sintered body having excellent wear resistance, oxidation resistance, corrosion resistance, and fracture resistance can be obtained (Japanese Patent Application No. 2000-27831).

【0009】引き続き本発明者等は、WC系超硬複合材
料焼結体の各種成分と特性との関係について検討した結
果、WCを主体とする硬質相と鉄族金属結合相とからな
る超硬合金焼結体中にセラミックス硬質分散粒子を分散
させ、更にWを除く4a乃至6a族元素のうち1種又は
2種以上を分散含有させることにより、更に焼結性が改
善され、耐摩耗性、耐酸化性、耐食性、耐欠損性に優れ
たWC系超硬基複合材料焼結体が得られることを見出し
て本発明を完成するに至った。
Subsequently, the present inventors have examined the relationship between various components and properties of the WC-based super-hard composite material sintered body, and as a result, have found that a super-hard super-phase composed of a hard phase mainly composed of WC and an iron group metal binding phase. By dispersing the ceramic hard dispersion particles in the alloy sintered body and further containing one or more of the 4a to 6a group elements excluding W in a dispersed manner, the sinterability is further improved, and the abrasion resistance and The inventors have found that a WC-based cemented carbide composite sintered body having excellent oxidation resistance, corrosion resistance, and fracture resistance can be obtained, and completed the present invention.

【0010】本発明のWC系超硬基複合材料焼結体は、
焼結体中、炭化タングステン(WC)を主体とする硬質
相が10〜76体積%、鉄族金属のうち1種又は2種以
上の合金からなる金属結合相3〜20体積%、セラミッ
クス硬質分散粒子を4〜70体積%、及びWを除く4a
乃至6a族元素の1種又は2種以上を炭化物換算で0.
1体積%以上分散含有することを特徴とする。
The WC-based cemented carbide composite material of the present invention is
10 to 76% by volume of a hard phase mainly composed of tungsten carbide (WC), 3 to 20% by volume of a metal bonding phase composed of one or more alloys of iron group metals in the sintered body, and ceramic hard dispersion 4 to 70% by volume of particles and 4a excluding W
One or two or more of Group 6a to 6a elements are contained in an amount of 0.
It is characterized by containing 1% by volume or more dispersedly.

【0011】本発明のWC系超硬基複合材料焼結体にお
ける上記「炭化タングステン(WC)を主体とする硬質
相」(以下、「WC系硬質相」という。)の含有量は、
WC系超硬基複合材料焼結体100体積%に対し10〜
76体積%、好ましくは20〜70体積%、更に好まし
くは30〜65体積%である。上記WC系硬質相の含有
量が10体積%未満では、焼結体の靭性が著しく低下
し、必要な耐欠損性、耐衝撃性が得られないので好まし
くない。また、上記WC系硬質相の含有量が76体積%
を超えると、残部の鉄族金属のうち1種又は2種以上の
合金からなる金属結合相やアルミナ等のセラミックス硬
質分散粒子が少なくなるため、焼結性が低下し、その結
果、焼結体の耐摩耗性、耐酸化性、耐食性が不足するの
で好ましくない。尚、本明細書中で使用される体積%の
値の求め方としては、SEM写真から、全体面積に対す
る粒子の面積割合より求める方法があるが、原料粉末の
調合添加量から体積%を算出して体積%として代用する
こともできる。これは、WC系硬質相は焼結時に殆ど揮
発することがないので、調合組成と焼成後の組成のズレ
が極めて少ないからである。
The content of the above-mentioned “hard phase mainly composed of tungsten carbide (WC)” (hereinafter referred to as “WC-based hard phase”) in the WC-based cemented carbide composite material of the present invention is as follows.
10 to 10% by volume of WC-based cemented carbide composite material sintered body
It is 76% by volume, preferably 20 to 70% by volume, more preferably 30 to 65% by volume. If the content of the WC-based hard phase is less than 10% by volume, the toughness of the sintered body is remarkably reduced, and the required fracture resistance and impact resistance cannot be obtained. The content of the WC-based hard phase is 76% by volume.
Exceeds, the hardened particles of the ceramics such as alumina and the metal binder phase composed of one or more alloys among the remaining iron group metals are reduced, and the sinterability is reduced. Is not preferred because of insufficient wear resistance, oxidation resistance and corrosion resistance. In addition, as a method of calculating the value of volume% used in the present specification, there is a method of calculating from the SEM photograph based on the ratio of the area of the particles to the whole area, but the volume% is calculated from the blended addition amount of the raw material powder. % By volume. This is because the WC-based hard phase hardly volatilizes at the time of sintering, and the difference between the prepared composition and the composition after firing is extremely small.

【0012】本発明の金属結合相を構成する成分である
上記「鉄族金属のうち1種又は2種以上の合金からなる
金属結合相」(以下、「鉄族金属結合相」という。)と
しては、鉄族金属から選ばれるものであり、例えば、C
o、Ni、Fe等が挙げられる。この中で、特にCo、
Ni、Feのうちから選ばれる少なくとも1種を用いる
と、焼結性の点から好ましい。本発明の上記鉄族金属結
合相の含有量としては、WC系超硬基複合材料焼結体1
00体積%に対して3〜20体積%、好ましくは5〜1
7体積%、更に好ましくは8〜15体積%である。上記
鉄族金属結合相の含有量が3体積%未満では、焼結性と
靭性が低下し、焼結体として必要な耐欠損性が得られな
いので好ましくない。一方、20体積%を超えると、焼
結体の硬度が低下し、必要な耐摩耗性が得られないので
好ましくない。
The above-mentioned "metal bonding phase comprising one or more alloys of iron group metals" (hereinafter referred to as "iron group metal bonding phase") which is a component constituting the metal bonding phase of the present invention. Is selected from iron group metals, for example, C
o, Ni, Fe and the like. Among them, Co,
The use of at least one selected from Ni and Fe is preferred from the viewpoint of sinterability. The content of the iron group metal binding phase of the present invention may be selected from the following:
3 to 20% by volume, preferably 5-1 to 100% by volume
It is 7% by volume, more preferably 8 to 15% by volume. If the content of the iron group metal binding phase is less than 3% by volume, sinterability and toughness are reduced, and the fracture resistance required as a sintered body cannot be obtained, which is not preferable. On the other hand, if it exceeds 20% by volume, the hardness of the sintered body is reduced, and the required wear resistance cannot be obtained, which is not preferable.

【0013】本発明の上記「セラミックス硬質分散粒
子」としては、酸化物系硬質分散粒子(Al23、Zr
2、TiO2、SiO2、Y23等)、炭化物系硬質分
散粒子(ZrC、SiC、VC、TiC等)、窒化物系
硬質分散粒子(Si34、TiN、ZrN、VN等)及
びホウ素系硬質分散粒子(WB、MoB、TiB2、Z
rB2等)等を用いることができる。この中で、耐摩耗
性の向上と製造コストの低減を図る観点から、酸化物系
硬質分散粒子が好ましく、特にアルミナ(Al23)硬
質分散粒子が最も好ましい。尚、上記「セラミックス硬
質分散粒子」は1種でもよいが、2種以上併用してもよ
い。また、上記「セラミックス硬質分散粒子」の含有量
は、WC系超硬基複合材料焼結体100体積%に対し4
〜70体積%、好ましくは10〜60体積%、更に好ま
しくは35〜55体積%である。上記「セラミックス硬
質分散粒子」の含有量が4体積%未満では、セラミック
ス硬質分散粒子の量が少なすぎる結果、セラミックスの
化学的安定性に起因する耐酸化性、耐食性、耐摩耗性に
おいて所望の性能が得られないので好ましくない。一
方、70体積%を超えると、焼結性、靭性が低下する結
果、耐欠損性、耐衝撃性において所望の性能が得られな
いので好ましくない。
The "hard ceramic dispersed particles" of the present invention include oxide-based hard dispersed particles (Al 2 O 3 , Zr
O 2 , TiO 2 , SiO 2 , Y 2 O 3, etc.), carbide hard dispersed particles (ZrC, SiC, VC, TiC, etc.), nitride hard dispersed particles (Si 3 N 4 , TiN, ZrN, VN, etc.) ) And boron-based hard dispersed particles (WB, MoB, TiB 2 , Z
rB 2 etc.) can be used. Among these, oxide-based hard dispersed particles are preferred, and alumina (Al 2 O 3 ) hard dispersed particles are most preferred, from the viewpoint of improving wear resistance and reducing manufacturing cost. The “ceramic hard dispersed particles” may be used alone or in combination of two or more. The content of the “ceramic hard dispersed particles” is 4% with respect to 100 vol%
The content is from 70 to 70% by volume, preferably from 10 to 60% by volume, and more preferably from 35 to 55% by volume. When the content of the “hard ceramic dispersed particles” is less than 4% by volume, the amount of the hard ceramic dispersed particles is too small, resulting in desired performance in oxidation resistance, corrosion resistance, and abrasion resistance due to the chemical stability of the ceramic. Is not preferred since On the other hand, if it exceeds 70% by volume, the sinterability and toughness are reduced, and the desired performance in fracture resistance and impact resistance cannot be obtained.

【0014】上記「セラミックス硬質分散粒子」は、W
C系超硬基複合材料焼結体中に存在していれば、その存
在状態には特に限定はないが、WC系超硬基複合材料焼
結体中に均質に存在するのが好ましい。ここで「均質」
とは、WC系超硬基複合材料焼結体の内外においてセラ
ミックス硬質分散粒子の分散状態が実質的に同じである
ことをいう。より具体的には、WC系超硬基複合材料焼
結体の断面積10000μm2あたりに存在するセラミ
ックス硬質分散粒子の個数を数えた場合、WC系超硬基
複合材料焼結体の内外での個数の比が0.1〜10の範
囲である場合をいう。
The “ceramic hard dispersed particles” are W
As long as it is present in the C-based cemented carbide composite material sintered body, its existence state is not particularly limited. However, it is preferable that it is homogeneously present in the WC-based cemented carbide composite material sintered body. Where "homogeneous"
"It means that the dispersion state of the ceramic hard dispersion particles is substantially the same inside and outside the WC-based super-hard composite material sintered body. More specifically, when the number of ceramic hard dispersed particles present per 10,000 μm 2 of the cross-sectional area of the WC-based cemented carbide composite material sintered body is counted, It refers to the case where the number ratio is in the range of 0.1 to 10.

【0015】また、上記「セラミックス硬質分散粒子」
の平均粒径についても特に限定はないが、好ましくは
0.05〜50μmである。かかる範囲とすることによ
り、セラミックス硬質分散粒子のWC系超硬基複合材料
焼結体への食い込み量が十分となると共に、分散状態も
均一となる結果、焼結体の耐摩耗性を向上させることが
できるので好ましい。ここで、上記「セラミックス硬質
分散粒子」の平均粒径は、WC系超硬基複合材料焼結体
の断面(いわゆる鏡面研磨面)の5000倍のSEM写
真から、30μm四方の範囲に観察される硬質分散粒子
の最も短い部分(いわゆる短径)の長さを測定し、これ
らの測定値を平均した値として求める。
Further, the above-mentioned “ceramic hard dispersed particles”
The average particle size of is also not particularly limited, but is preferably 0.05 to 50 μm. By setting the content in such a range, the amount of the hard ceramic dispersed particles penetrating into the WC-based cemented carbide composite sintered body becomes sufficient, and the dispersion state becomes uniform, thereby improving the wear resistance of the sintered body. It is preferable because it can be used. Here, the average particle diameter of the “ceramic hard dispersed particles” is observed in a range of 30 μm square from a 5000 times SEM photograph of a cross section (so-called mirror-polished surface) of the WC-based super-hard composite material sintered body. The length of the shortest part (so-called minor axis) of the hard dispersed particles is measured, and the measured value is determined as an average value.

【0016】本発明のWC系超硬基複合材料焼結体で
は、上記各成分に加え、更に「Wを除く4a乃至6a族
元素」を分散含有している。上記「Wを除く4a乃至6
a族元素」を含有することにより、上記金属結合相に固
溶し合金化し、WC系超硬基複合材料焼結体中の上記鉄
族金属結合相の耐摩耗性、耐酸化性、耐食性、強度や硬
度等を向上させると共に、セラミックス硬質分散粒子と
の濡れ性を改善するものと考えられる。また、本発明の
WC系超硬基複合材料焼結体において、上記「Wを除く
4a乃至6a族元素」の少なくとも一部を上記セラミッ
クス硬質分散粒子内に分散させることにより、粒内残留
応力が生じて高靭化がなされると共に、セラミックス硬
質分散粒子の粒成長を抑制して組織が微細化するため高
強度となる結果、焼結体の耐欠損性及び耐衝撃性を向上
させることができるので好ましい。
The WC-based cemented carbide composite material of the present invention contains, in addition to the above-described components, "elements of Groups 4a to 6a excluding W" in a dispersed manner. The above “4a to 6 excluding W”
By containing the “a-group element”, it forms a solid solution with the metal binding phase to form an alloy, and the wear resistance, oxidation resistance, corrosion resistance, and the like of the iron group metal binding phase in the WC-based cemented carbide composite material sintered body It is considered that the strength and hardness are improved and the wettability with the ceramic hard dispersed particles is improved. Further, in the WC-based cemented carbide composite material sintered body of the present invention, by dispersing at least a part of the “group 4a to 6a element other than W” in the ceramic hard dispersion particles, the intragranular residual stress is reduced. As a result, the toughness is increased and the grain growth of the hard ceramic dispersed particles is suppressed, and the structure becomes finer, resulting in high strength. As a result, the fracture resistance and impact resistance of the sintered body can be improved. It is preferred.

【0017】本発明の上記「Wを除く4a乃至6a族元
素」としては、例えば、Ti、Zr、Hf、V、Nb、
Ta、Cr等が挙げられ、このうちの1種又は2種以上
を用いることができる。この中で、特に、Zr及びHf
はセラミックスを還元することが可能なため、セラミッ
クス硬質分散粒子表面をメタル化し、鉄族金属結合相と
の濡れを著しく改善することができるので好ましい。本
発明の上記「Wを除く4a乃至6a族元素」を焼結体中
に含有させるために用いられる出発原料については特に
限定はないが、好ましくは、炭化物、窒化物、炭窒化
物、2種以上の複合炭化物、複合窒化物、複合炭窒化
物、純金属、2種以上の合金、2種以上の金属間化合
物、Alとの金属間化合物、鉄族金属との金属間化合
物、酸化物が挙げられる。この中で、特に炭化物は、焼
結性を向上させて高硬度の焼結体とすることができるの
で好ましい。
The “elements of groups 4a to 6a excluding W” of the present invention include, for example, Ti, Zr, Hf, V, Nb,
Ta, Cr and the like can be mentioned, and one or more of them can be used. Among them, particularly, Zr and Hf
Is preferable because it can reduce the ceramics, metallizes the surface of the hard dispersed particles of the ceramics, and significantly improves the wetting with the iron group metal binding phase. There is no particular limitation on the starting material used to cause the sintered body to contain the “group 4a to 6a element excluding W” of the present invention, but preferably, carbides, nitrides, carbonitrides, The above composite carbide, composite nitride, composite carbonitride, pure metal, two or more alloys, two or more intermetallic compounds, intermetallic compound with Al, intermetallic compound with iron group metal, oxide No. Among them, carbides are particularly preferable because they can improve the sinterability and can be made into a sintered body having a high hardness.

【0018】本発明の上記「Wを除く4a乃至6a族元
素」の含有量は、超硬基複合材料100体積%に対して
炭化物換算で0.1体積%以上、好ましくは0.3体積
%以上、更に好ましくは0.5〜2.5体積%である。
上記Wを除く4a乃至6a族元素の含有量が0.1体積
%未満では、上記金属結合相への固溶量が不足する結
果、焼結体の強度と硬度の向上を図ることができないの
で好ましくない。一方、上記Wを除く4a乃至6a族元
素の含有量を2.5体積%以下とすることにより、焼結
性が低下を防止して、優れた耐欠損性、耐衝撃性を発揮
することができるので好ましい。
The content of the "elements of groups 4a to 6a excluding W" of the present invention is at least 0.1% by volume, preferably 0.3% by volume in terms of carbide, based on 100% by volume of the cemented carbide composite material. As described above, the content is more preferably 0.5 to 2.5% by volume.
If the content of the group 4a to 6a element other than W is less than 0.1% by volume, the amount of solid solution in the metal binder phase is insufficient, so that the strength and hardness of the sintered body cannot be improved. Not preferred. On the other hand, by setting the content of the group 4a to 6a element other than W to 2.5% by volume or less, it is possible to prevent a decrease in sinterability and exhibit excellent fracture resistance and impact resistance. It is preferable because it is possible.

【0019】本発明の超硬基複合材料焼結体中におい
て、焼結体中に金属間化合物が存在するものとすること
ができる。かかる金属間化合物が存在することにより、
本来、金属と濡れの悪いアルミナ等のセラミックス硬質
分散粒子と、焼結体中の鉄族金属結合相との濡れ性を改
善し、より緻密な焼結体を得ることができる。その結
果、極めて優れた高温強度及び高温硬さを有すると共
に、更に耐熱衝撃性、耐熱疲労性、耐酸化性及び耐食性
に優れた超硬基複合材料焼結体とすることができるので
好ましい。上記「金属間化合物」を焼結体中に存在させ
る方法としては特に限定はなく、例えば、金属間化合物
を原料として添加する他、焼成中に金属間化合物を反応
析出する方法が挙げられる。このうち、焼成中に金属間
化合物を反応析出する方法によれば、超硬基複合材料焼
結体中の上記金属結合相と上記セラミックス硬質分散粒
子との結合力をより高めることができるので好ましい。
In the cemented carbide composite material of the present invention, an intermetallic compound may be present in the sintered body. By the presence of such an intermetallic compound,
Originally, it is possible to improve the wettability between ceramic hard dispersed particles of alumina or the like having poor wettability with metal and the iron group metal binding phase in the sintered body, and to obtain a denser sintered body. As a result, it is possible to obtain a sintered cemented carbide composite material having extremely excellent high-temperature strength and high-temperature hardness, and further having excellent thermal shock resistance, thermal fatigue resistance, oxidation resistance and corrosion resistance. There is no particular limitation on the method of causing the above-mentioned "intermetallic compound" to be present in the sintered body, and examples thereof include a method of adding the intermetallic compound as a raw material and a method of reacting and depositing the intermetallic compound during firing. Among them, the method of reacting and precipitating an intermetallic compound during firing is preferable because the bonding strength between the metal binder phase and the ceramic hard dispersion particles in the cemented carbide composite material sintered body can be further increased. .

【0020】上記「金属間化合物」の例として、好まし
くは鉄族金属とAlとの金属間化合物、4a乃至6a族
元素とAlとの金属間化合物、4a乃至6a族元素と鉄
族金属との金属間化合物が挙げられ、特にNi3Al、
Ni3(Al,Ti)、NiAl、TiAl、Ti3
l、CoAlは、焼結体の高温特性の改善及び本発明の
超硬基複合材料焼結体中の上記セラミックス硬質分散粒
子との結合力向上という点から好ましい。本発明の超硬
基複合材料焼結体中に含まれている上記金属間化合物は
1種でもよいが、異なる記金属間化合物を2種以上含む
ものとすることもできる。
As an example of the above-mentioned "intermetallic compound", preferably, an intermetallic compound of an iron group metal and Al, an intermetallic compound of a group 4a to 6a element and Al, and an intermetallic compound of a group 4a to 6a element and an iron group metal Intermetallic compounds, particularly Ni 3 Al,
Ni 3 (Al, Ti), NiAl, TiAl, Ti 3 A
1, CoAl is preferred from the viewpoint of improving the high-temperature characteristics of the sintered body and improving the bonding strength with the ceramic hard dispersion particles in the cemented carbide composite material sintered body of the present invention. The above-mentioned intermetallic compound contained in the cemented carbide composite material sintered body of the present invention may be one kind, or may contain two or more kinds of different intermetallic compounds.

【0021】本発明の超硬基複合材料焼結体は、焼結性
に優れていることから、緻密で気孔が少ない焼結体とす
ることができる。具体的には、本発明の超硬基複合材料
焼結体において、有孔度をASTM(American
Society forTesting and M
aterials)規格でA02以下のレベルにするこ
とができる。有孔度をA02以下のレベルとすることに
より、更に緻密で気孔が少ない焼結体とすることがで
き、優れた強度と硬度を維持することができるので好ま
しい。
The sintered body of the cemented carbide-based composite material of the present invention is excellent in sinterability, so that it can be a dense sintered body having few pores. Specifically, the porosity of the cemented carbide composite material sintered body of the present invention is determined by ASTM (American).
Society for Testing and M
(Arials) standard and can be set to a level of A02 or less. By setting the porosity to a level of A02 or less, it is possible to obtain a sintered body having a higher density and fewer pores, and it is possible to maintain excellent strength and hardness, which is preferable.

【0022】本発明のWC系超硬基複合材料焼結体は、
上記構成を備えることにより、耐酸化性、耐食性、耐衝
撃性、耐欠損性、特には耐摩耗性を向上させることがで
きる。具体的には、強度をJIS R1601に準拠し
た3点曲げ試験において1300MPa以上(好ましく
は1400MPa以上、更に好ましくは1500MPa
以上、最も好ましくは1600MPa以上)とすること
ができる。また、破壊靭性をJIS R1607に準拠
した方法において、10.0MPa・m0.5以上(好ま
しくは11.0MPa・m0.5以上、更に好ましくは1
1.5MPa・m0.5以上、最も好ましくは12.0M
Pa・m0.5以上)とすることができる。更に、硬度を
JIS R1610に準拠した方法において1500H
v以上(好ましくは1600Hv以上、更に好ましくは
1650Hv以上)とすることができる。また、比摩耗
量を実施例のに記載した方法で5.0×10-162
N以下(好ましくは4.5×10-162/N以下、更に
好ましくは4.0×10-162/N以下)とすることが
できる。更に、実施例に記載の方法による酸化増量を9
00g/m2以下(好ましくは800g/m2以下、更に
好ましくは700g/m2以下、最も好ましくは600
g/m2以下)とすることができる。
The WC-based cemented carbide composite material of the present invention comprises:
With the above configuration, it is possible to improve oxidation resistance, corrosion resistance, impact resistance, fracture resistance, and particularly, wear resistance. Specifically, the strength is determined to be 1300 MPa or more (preferably 1400 MPa or more, more preferably 1500 MPa) in a three-point bending test based on JIS R1601.
As described above, most preferably 1600 MPa or more. Further, the fracture toughness is determined by a method based on JIS R1607 in a manner of 10.0 MPa · m 0.5 or more (preferably 11.0 MPa · m 0.5 or more, more preferably 1 MPa / m 0.5 or more).
1.5 MPa · m 0.5 or more, most preferably 12.0 M
Pa · m 0.5 or more). Further, the hardness is determined to be 1500H in a method based on JIS R1610.
v or more (preferably 1600 Hv or more, more preferably 1650 Hv or more). Further, the specific wear amount was determined to be 5.0 × 10 −16 m 2 / by the method described in Example.
N or less (preferably 4.5 × 10 −16 m 2 / N or less, more preferably 4.0 × 10 −16 m 2 / N or less). Furthermore, the oxidation increase by the method described in the Examples was 9%.
200 g / m 2 or less (preferably 800 g / m 2 or less, more preferably 700 g / m 2 or less, most preferably 600
g / m 2 or less).

【0023】[0023]

【発明の実施の形態】以下、本発明について、実施例及
び比較例を挙げて具体的に説明する。 <実験例1> (1)WC系超硬基複合材料焼結体の調製 原料としてWC、TiC、ZrC、HfC、VC、Nb
C、Cr32、Mo2C、Ni、Co及びFe(平均粒
子径0.5〜3μm)と、Al23(平均粒子径0.2
μm)を用い、これを以下の表1に示した組成で配合し
て原料粉末混合物を調製した。そして、該原料粉末混合
物を、アトライターを用いて湿式で粉砕した後、溶媒を
脱気、乾燥し、所定の形状にプレス成形した。得られた
プレス成形体を炉内に入れ、70Paのアルゴンガスを
導入した状態で1500℃まで昇温した後、更にアルゴ
ンガスを導入して130KPaで90分間保持して、目
的とするWC系超硬基複合材料焼結体No.1〜23を
得た。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. <Experimental Example 1> (1) Preparation of WC-based super-hard composite material sintered body WC, TiC, ZrC, HfC, VC, Nb as raw materials
C, Cr 3 C 2 , Mo 2 C, Ni, Co and Fe (average particle size 0.5 to 3 μm) and Al 2 O 3 (average particle size 0.2
μm) and blended it with the composition shown in Table 1 below to prepare a raw material powder mixture. Then, the raw material powder mixture was wet-pulverized using an attritor, the solvent was degassed, dried, and press-molded into a predetermined shape. The obtained press-formed body was placed in a furnace, heated to 1500 ° C. with 70 Pa of argon gas introduced, and further introduced with argon gas and kept at 130 KPa for 90 minutes to obtain the desired WC super Hard base composite material sintered body No. 1 to 23 were obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】(2)性能評価 上記WC系超硬基複合材料焼結体No.1〜23につい
て、以下の方法により性能評価を行った。その結果を以
下の表2に示す。尚、表2において、試料No.の前に
「*」を付したものは、本発明の範囲外の比較例であ
る。 焼結体密度(g/cm3) アルキメデス法を用いて測定した。 理論密度比(%) 上記で得られた焼結体密度の値を組成の混合則で算出
される理論密度の値で除し、この値を百分率で表示する
ことにより求めた。 有孔度 焼結体の研磨面の200倍の光学顕微鏡写真を用いて、
ASTM B276−79に照らして評価した。 焼結体中のNi3Al相の同定 焼結体中のNi3Al相の有無を、Cu−Kα線源によ
るX線回折法によって得られたピークを同定して評価し
た。 焼結体中のアルミナ粒内の観察 焼結体中のアルミナ粒内をSTEM(走査式透過型電子
顕微鏡)によって観察し、EDS(エネルギー分散形X
線分光器)測定により,アルミナ粒内の4a乃至6a族
元素の有無を確認した。 強度(MPa) JIS R 1601に準拠した3点曲げ試験により求
めた。 破壊靭性(MPa・m0.5) JIS R 1607に準拠した方法で測定した。 硬度(Hv) JIS R 1610に準拠した方法で測定した。 比摩耗量(×10-162/N) リングオンプレート法で測定した。即ち、上記No.1
〜23の各超硬基複合材料焼結体を用いてプレート(3
0mm角、厚み5mm)を作製し、その上に炭素鋼製の
リング(外径φ20mm、内径15mm)を500〜2
000Nの荷重を負荷した状態で300〜600rpm
の回転数にて回転させながら、水を潤滑剤として2〜5
時間摺動する。その後、プレートの摩耗量を重量変化か
ら求め、その値を摺動距離と荷重で除して求めた。
(2) Evaluation of Performance For 1 to 23, performance evaluation was performed by the following method. The results are shown in Table 2 below. In Table 2, the sample No. Those marked with “*” before are comparative examples outside the scope of the present invention. Sintered body density (g / cm 3 ) Measured using Archimedes' method. Theoretical density ratio (%) The value of the sintered body density obtained above was divided by the value of the theoretical density calculated by the composition mixing rule, and this value was obtained by expressing the value in percentage. Porosity Using a 200 × optical microscope photograph of the polished surface of the sintered body,
Evaluation was performed in light of ASTM B276-79. The presence of Ni 3 Al phase identification in the sintered body of Ni 3 Al phase in the sintered body were evaluated to identify the peaks obtained by X-ray diffraction method using Cu-K [alpha radiation source. Observation of Alumina Particles in Sintered Body The inside of alumina particles in the sintered body was observed by STEM (scanning transmission electron microscope), and EDS (energy dispersive X
(A line spectroscopy) measurement confirmed the presence or absence of group 4a to 6a group elements in the alumina grains. Strength (MPa) Determined by a three-point bending test in accordance with JIS R 1601. Fracture toughness (MPa · m 0.5 ) Measured in accordance with JIS R 1607. Hardness (Hv) Measured by a method based on JIS R 1610. Specific wear (× 10 −16 m 2 / N) Measured by a ring-on-plate method. That is, the above No. 1
To 23 using each of the cemented carbide composites
(0 mm square, 5 mm thick), and a carbon steel ring (outer diameter φ20 mm, inner diameter 15 mm) is placed on top of the ring.
300-600 rpm under a load of 000N
While rotating at a rotation speed of 2 to 5 using water as a lubricant.
Sliding for time. Thereafter, the amount of wear of the plate was determined from the change in weight, and the value was divided by the sliding distance and the load.

【0026】[0026]

【表2】 [Table 2]

【0027】<実験例2>上記実験例1と同じ原料を用
い、これを以下の表3に示した組成で配合して原料粉末
混合物を調製した。そして、上記実験例1と同じ製造方
法によって、目的とするWC系超硬基複合材料焼結体N
o.24〜27を得た。そして、得られたWC系超硬基
複合材料焼結体No.24〜27について、以下に示す
方法により、WC系超硬基複合材料焼結体の大気中高温
における酸化増量(g/m2)を測定した。即ち、上記
WC系超硬基複合材料焼結体No.24〜27の小片
(2.5×2.5mm角、厚み1.2mm)を白金製の
容器に入れ、大気中において室温から1000℃まで1
0℃毎分で昇温し、小片の重量を熱天秤で測定する。そ
して、1000℃までの総重量変化を試料の比表面積で
除することにより酸化増量を求めた。この方法におい
て、基準物質にはα−アルミナを使用した。この結果を
以下の表3に示す。尚、表3において、試料No.の前
に「*」を付したものは、本発明の範囲外の比較例であ
る。
<Experimental Example 2> The same raw material as in Experimental Example 1 was used, and was blended with the composition shown in Table 3 below to prepare a raw material powder mixture. Then, the target WC-based cemented carbide composite N
o. 24-27 were obtained. Then, the obtained WC-based cemented carbide composite material No. With respect to 24 to 27, the oxidation increase (g / m 2 ) of the WC-based cemented carbide composite sintered body at a high temperature in the atmosphere was measured by the method described below. That is, the WC-based super-hard composite material sintered body No. A small piece of 24 to 27 (2.5 × 2.5 mm square, thickness 1.2 mm) is placed in a platinum container, and is heated from room temperature to 1000 ° C. in the atmosphere.
The temperature is raised at 0 ° C. per minute, and the weight of the small piece is measured with a thermobalance. Then, an increase in oxidation was determined by dividing the change in total weight up to 1000 ° C. by the specific surface area of the sample. In this method, α-alumina was used as a reference material. The results are shown in Table 3 below. In Table 3, the sample No. Those marked with “*” before are comparative examples outside the scope of the present invention.

【0028】[0028]

【表3】 [Table 3]

【0029】(3)実験例の効果 表2に示すように、本発明の範囲内であるNo.1〜1
4の各WC系超硬基複合材料焼結体では、理論密度比が
97.1〜99.9%で有孔度のレベルもA02以下で
あることから、緻密で焼結性に優れていることが判る。
また、強度が1340〜2120MPa、破壊靭性が1
0.1〜15.2MPa・m0.5、硬度が1520〜1
990Hvと高く、比摩耗量が1.6〜4.5×10
-162/Nと低いことから、高強度、高硬度でありなが
ら十分な靭性を兼ね備え、しかも優れた耐摩耗性を示す
ことが判る。また、金属間化合物が存在するNo.1〜
9と、存在しないNo.10〜14とを対比すると、N
o.10〜14では、平均で強度が1422MPa、硬
度が1610Hv、比摩耗量が3.9×10-162/N
であるのに対し、No.1〜9では、平均で強度が16
72MPa、硬度が1749Hvと高く、比摩耗量が
3.1×10-162/Nと低いことから、金属間化合物
が存在することにより、更に高強度、高硬度で耐摩耗性
に優れたWC系超硬基複合材料焼結体とすることができ
ることが判る。
(3) Effect of Experimental Example As shown in Table 2, No. 1 within the scope of the present invention. 1 to 1
In each of the WC-based cemented carbide composite sintered bodies of No. 4, since the theoretical density ratio is 97.1 to 99.9% and the porosity level is A02 or less, it is dense and excellent in sinterability. You can see that.
Further, the strength is 1340 to 2120 MPa and the fracture toughness is 1
0.1-15.2 MPa · m 0.5 , hardness 1520-1
990Hv, high, specific wear is 1.6 to 4.5 × 10
Since it is as low as -16 m 2 / N, it can be seen that it has sufficient toughness while having high strength and high hardness, and also shows excellent wear resistance. In addition, No. 1 in which an intermetallic compound exists. 1 to
No. 9 which does not exist. When 10 to 14 are compared, N
o. In the case of 10 to 14, the average strength was 1422 MPa, the hardness was 1610 Hv, and the specific wear amount was 3.9 × 10 −16 m 2 / N.
, Whereas No. In the case of 1 to 9, the average strength is 16
72 MPa, high hardness of 1749 Hv, and low specific wear of 3.1 × 10 −16 m 2 / N, the presence of the intermetallic compound further enhanced the strength, hardness and wear resistance. It can be seen that a WC-based super-hard composite material sintered body can be obtained.

【0030】これに対し、No.15のWC系超硬基複
合材料焼結体では、WC含有量が80体積%と多いこと
から、鉄族金属含有量が少なくなる結果、理論密度比が
93.2%と低く焼結性に劣り、しかも、有孔度がA0
4であることから、残留気孔のため強度が1210MP
a、硬度が1380Hvと低く、強度及び硬度に劣るこ
とが判る。更に、アルミナ硬質分散粒子も少なくなる結
果、比摩耗量が6.1×10-162/Nと高く、耐摩耗
性が低下していることが判る。一方、No.16のWC
系超硬基複合材料焼結体では、WC含有量が7.5体積
%と少ないことから、耐摩耗性及び硬度がNo.15よ
り若干改善されている反面、強度が1220MPaと低
く、しかも、破壊靭性が8.9MPa・m0.5と低いこ
とから、焼結体の靭性が低下してしまうことが判る。
On the other hand, no. In the WC-based cemented carbide composite material of No. 15, the WC content was as high as 80% by volume, so that the iron group metal content was reduced. Inferior and porosity is A0
4, the strength is 1210MP due to residual pores
a, The hardness is as low as 1380 Hv, indicating that the strength and hardness are inferior. Furthermore, as a result of the reduced amount of alumina hard dispersed particles, it can be seen that the specific wear amount is as high as 6.1 × 10 −16 m 2 / N, and the wear resistance is reduced. On the other hand, No. 16 WCs
Since the WC content is as small as 7.5% by volume, the abrasion resistance and the hardness of the sintered body of the cemented carbide-based composite material are no. On the other hand, although the strength is slightly improved from 15, the strength is as low as 1220 MPa and the fracture toughness is as low as 8.9 MPa · m 0.5 , indicating that the toughness of the sintered body is reduced.

【0031】また、No.17のWC系超硬基複合材料
焼結体では、アルミナ硬質分散粒子が3体積%と少ない
ため、強度、靭性及び硬度に優れる反面、比摩耗量が
8.2×10-162/Nと高く、耐摩耗性が著しく低い
ことが判る。一方、No.18及びNo.21のWC系
超硬基複合材料焼結体では、アルミナ硬質分散粒子が8
0体積%と多いため、理論密度比が92.2%及び9
4.2%と低く焼結性に劣り、強度が1220MPa及
び1310MPa、硬度が1320Hv及び1500H
vと低く、強度と硬度にも劣っている。しかも、比摩耗
量が6.6及び9.0×10-162/Nと高く、耐摩耗
性にも劣ることが判る。更に、No.21のWC系超硬
基複合材料焼結体では、TiCが5.0体積%と多いた
め、焼結性が低下し、また低靭性となることが判る。
Further, No. The WC-based cemented carbide composite material of No. 17 is excellent in strength, toughness, and hardness because the alumina hard dispersed particles are as small as 3% by volume, but the specific wear amount is 8.2 × 10 −16 m 2 / N. It can be seen that the wear resistance is extremely low. On the other hand, No. 18 and no. In the WC-based super-hard composite material sintered compact of No. 21, the alumina hard dispersed particles contained 8
0% by volume, the theoretical density ratio is 92.2% and 9%.
4.2% and low sinterability, strength 1220MPa and 1310MPa, hardness 1320Hv and 1500H
v and low strength and hardness. In addition, it can be seen that the specific wear amount is as high as 6.6 and 9.0 × 10 −16 m 2 / N, and the wear resistance is poor. In addition, No. In the WC-based super hard matrix composite sintered body No. 21, the sinterability is reduced and the toughness is reduced because TiC is as large as 5.0% by volume.

【0032】更に、No.19のWC系超硬基複合材料
焼結体では、鉄族金属結合相が1.5体積%と少ないこ
とから、理論密度比が93.8%と低く焼結性に劣り、
しかも、強度は1100MPa、破壊靭性が7.7MP
a・m0.5と低く、強度及び靭性に劣るものであること
が判る。一方、No.20WC系超硬基複合材料焼結体
では、鉄族金属結合相が28体積%と多いことから、理
論密度比が99.8%と高く、破壊靭性は16.7MP
a・m0.5と改善されている反面、硬度が1210H
v、比摩耗量が7.9×10-162/Nと高く、硬度及
び耐摩耗性に劣るものであることが判る。
Further, No. In the sintered compact of the WC-based cemented carbide composite material of No. 19, since the iron group metal binding phase was as small as 1.5% by volume, the theoretical density ratio was as low as 93.8% and the sinterability was poor.
Moreover, the strength is 1100MPa and the fracture toughness is 7.7MPa.
low as a · m 0.5, it can be seen that it is inferior in strength and toughness. On the other hand, No. In the sintered body of the 20WC super hard matrix composite material, the theoretical density ratio is as high as 99.8% and the fracture toughness is 16.7MP since the iron group metal binding phase is as large as 28% by volume.
Although it has been improved to 0.5 am, the hardness is 1210H
v, the specific wear amount is as high as 7.9 × 10 −16 m 2 / N, which indicates that the hardness and the wear resistance are inferior.

【0033】また、No.23のWC系超硬基複合材料
焼結体では、4a乃至6a族元素を含んでいないため、
理論密度比が94.3%と低く焼結性に劣り、しかも、
強度は1220MPa、硬度は1580Hvと低く、比
摩耗量が4.5×10-162/Nと高いことから、強
度、硬度及び耐摩耗性に劣るものであることが判る。ま
た、No.22は、WC系超硬基複合材料焼結体では、
4a乃至6a族元素であるZrを含んでいるが、その量
が0.05体積%と少ないため、No.23と同様に、
理論密度比が89.9%と低く焼結性に劣り、しかも、
強度は1280MPa、硬度は1320Hvと低く、比
摩耗量が6.6×10-162/Nと高いことから、強
度、硬度及び耐摩耗性に劣るものであることが判る。
In addition, No. Since the WC-based cemented carbide based composite material No. 23 does not contain Group 4a to 6a elements,
The theoretical density ratio is as low as 94.3% and is inferior in sinterability.
Since the strength is as low as 1220 MPa, the hardness is as low as 1580 Hv, and the specific wear amount is as high as 4.5 × 10 −16 m 2 / N, it can be seen that the strength, hardness and wear resistance are inferior. In addition, No. 22 is a WC-based cemented carbide composite sintered body,
Although Zr, which is an element of Group 4a to 6a, is contained, its amount is as small as 0.05% by volume. Like 23,
The theoretical density ratio is as low as 89.9% and is inferior in sinterability.
Since the strength is as low as 1280 MPa and the hardness is as low as 1320 Hv, and the specific wear amount is as high as 6.6 × 10 −16 m 2 / N, it can be seen that the strength, hardness and wear resistance are inferior.

【0034】表3より、本発明の範囲に含まれるNo.
24及び25のWC系超硬基複合材料焼結体では、いず
れも1000℃という高温での酸化増量が600g/m
2以下と少なく、優れた耐酸化性を示していることが判
る。これに対し、No.26のWC系超硬基複合材料焼
結体ではNiが2体積%と鉄族金属結合相が少ないた
め、800℃を超す高温になると急速に酸化するWCを
十分に被覆する事ができず、1000℃における酸化増
量が952.5g/m2と大きく、耐酸化性に劣ること
が判る。また、No.27のWC系超硬基複合材料焼結
体は、Al23を含まないため、焼結体中の酸素の拡散
が速く、酸化が急速に進む上、しかもCr 32の量が少
ないため、十分な酸化抵抗を示さないことから、100
0℃における酸化増量が1148.0g/m2と大き
く、耐酸化性に劣ることが判る。
From Table 3, it can be seen that Nos. Included in the scope of the present invention.
In the WC-based cemented carbide composites 24 and 25,
Both have an oxidation weight increase of 600 g / m at a high temperature of 1000 ° C.
TwoIt is clear that it shows excellent oxidation resistance.
You. On the other hand, no. 26 WC-based carbide-based composite material firing
In the sintered body, Ni was 2% by volume and the iron group metal binding phase was small.
WC that oxidizes rapidly at high temperatures exceeding 800 ° C
Insufficient coating, increased oxidation at 1000 ° C
952.5g / mTwoLarge and inferior in oxidation resistance
I understand. In addition, No. 27 WC super hard composite material sintering
The body is AlTwoOThreeOxygen diffusion in the sintered body
Is fast, oxidation proceeds rapidly, and Cr ThreeCTwoThe amount of
As it does not show sufficient oxidation resistance,
The oxidation weight gain at 0 ° C. is 1148.0 g / mTwoAnd large
It can be seen that the oxidation resistance is poor.

【0035】尚、本発明においては、前記具体的実施例
に示すものに限られず、目的、用途に応じて種々変更し
た実施例とすることができる。
It should be noted that the present invention is not limited to the specific embodiments described above, but may be variously modified according to the purpose and application.

【0036】[0036]

【発明の効果】本発明の超硬基複合材料焼結体は、WC
を主体とする硬質相と、鉄族金属結合相とからなる超硬
合金焼結体中に、化学的に安定で高温特性にも優れたセ
ラミックス硬質分散粒子が分散し、更にWを除く4a乃
至6a族元素のうち1種又は2種以上を含有させること
により、強度、硬度が向上し、耐摩耗性、耐酸化性、耐
食性、耐欠損性に優れた超硬基複合材料焼結体とするこ
とができる。本発明の超硬基複合材料焼結体は、上記特
性を有することから、耐摩耗性、耐酸化性、耐食性、耐
欠損性が要求される各種工具(高速切削、高送り切削、
重切削等に用いる切削工具や、熱間圧延ロール、ガイド
ロール、線引きロール、ダイス、パンチ等の熱間、温
間、冷間における塑性加工及び延性加工に用いる治工具
等)、耐摩耗性部材(軸受け、ベアリングボール、すべ
り軸受け、すべりガイド等)等に好適に用いることがで
きる。
The sintered body of the cemented carbide composite material of the present invention has a
In a cemented carbide consisting of a hard phase mainly composed of: and a binder group of iron group metal, ceramic hard dispersed particles which are chemically stable and have excellent high-temperature characteristics are dispersed, and 4a to 4a excluding W By containing one or more of the Group 6a elements, the strength and hardness are improved, and a cemented carbide-based composite material having excellent wear resistance, oxidation resistance, corrosion resistance, and fracture resistance is obtained. be able to. Since the cemented carbide composite material of the present invention has the above characteristics, various tools (high-speed cutting, high-feed cutting,
Cutting tools used for heavy-duty cutting, hot rolling rolls, guide rolls, drawing rolls, dies, punches, etc., jigs and tools used for hot, warm, and cold plastic working and ductile working), wear-resistant members (Bearings, bearing balls, slide bearings, slide guides, etc.).

フロントページの続き (72)発明者 飯尾 聡 名古屋市瑞穂区高辻町14番18号 日本特殊 陶業株式会社内 Fターム(参考) 3C046 FF32 FF37 FF43 FF46 FF52 3J011 DA01 SA04 SB14 SB19 3J101 AA02 BA10 EA02 EA42 EA43 EA75 FA08 FA15 FA31 GA60Continuation of the front page (72) Inventor Satoshi Iio 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi F-term (reference) in Japan Special Ceramics Co., Ltd. FA08 FA15 FA31 GA60

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 焼結体中、炭化タングステン(WC)を
主体とする硬質相が10〜76体積%、鉄族金属のうち
1種又は2種以上の合金からなる金属結合相3〜20体
積%、セラミックス硬質分散粒子を4〜70体積%、及
びWを除く4a乃至6a族元素の1種又は2種以上を炭
化物換算で0.1体積%以上分散含有することを特徴と
する炭化タングステン系超硬基複合材料焼結体。
1. The sintered body contains 10 to 76% by volume of a hard phase mainly composed of tungsten carbide (WC) and 3 to 20% by volume of a metal bonding phase composed of one or more alloys of iron group metals. %, 4 to 70% by volume of ceramic hard dispersion particles, and 0.1% by volume or more of carbides in an amount of one or more of elements of Groups 4a to 6a excluding W. Carbide matrix composite sintered body.
【請求項2】 上記4a乃至6a族元素の少なくとも一
部が上記セラミックス硬質分散粒子内に分散している請
求項1記載の炭化タングステン系超硬基複合材料焼結
体。
2. The tungsten carbide-based super-hard composite material sintered body according to claim 1, wherein at least a part of the group 4a to 6a group element is dispersed in the ceramic hard dispersion particles.
【請求項3】 上記セラミックス硬質分散粒子がアルミ
ナ硬質分散粒子である請求項1又は2記載の炭化タング
ステン系超硬基複合材料焼結体。
3. The tungsten carbide-based ultra-hard composite material sintered body according to claim 1, wherein said hard ceramic dispersed particles are hard alumina dispersed particles.
【請求項4】 焼結体中に金属間化合物が存在する請求
項1乃至3のいずれかに記載の炭化タングステン系超硬
基複合材料焼結体。
4. The tungsten carbide based cemented carbide composite according to claim 1, wherein an intermetallic compound is present in the sintered body.
【請求項5】 焼結体の有孔度がASTM規格でA02
以下である請求項1乃至4のいずれかに記載の炭化タン
グステン系超硬基複合材料焼結体。
5. The sintered body has a porosity of A02 according to ASTM standard.
The tungsten carbide-based cemented carbide composite sintered body according to claim 1, wherein:
JP2000391572A 2000-12-22 2000-12-22 Tungsten carbide cemented carbide composite material sintered body Expired - Fee Related JP5079940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000391572A JP5079940B2 (en) 2000-12-22 2000-12-22 Tungsten carbide cemented carbide composite material sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000391572A JP5079940B2 (en) 2000-12-22 2000-12-22 Tungsten carbide cemented carbide composite material sintered body

Publications (2)

Publication Number Publication Date
JP2002194474A true JP2002194474A (en) 2002-07-10
JP5079940B2 JP5079940B2 (en) 2012-11-21

Family

ID=18857686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000391572A Expired - Fee Related JP5079940B2 (en) 2000-12-22 2000-12-22 Tungsten carbide cemented carbide composite material sintered body

Country Status (1)

Country Link
JP (1) JP5079940B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002743A1 (en) * 2012-06-28 2014-01-03 日本特殊陶業株式会社 Sintered ceramic body
JP2015112621A (en) * 2013-12-11 2015-06-22 トヨタ自動車株式会社 Friction stir welding tool
WO2019078109A1 (en) * 2017-10-19 2019-04-25 株式会社リード Hard sintered body and rotary tool using same
JP2019116914A (en) * 2017-12-26 2019-07-18 株式会社クボタ Slide member and use thereof
JP2019163194A (en) * 2018-03-20 2019-09-26 京セラ株式会社 Ceramic member and tool using the same, cutting tool
WO2021192554A1 (en) * 2020-03-27 2021-09-30 三菱重工業株式会社 Oxidation-resistant alloy, and method for producing oxidation-resistant alloy

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310044A (en) * 1989-06-07 1991-01-17 Mitsubishi Heavy Ind Ltd Ceramic hard alloy for tool and its manufacture
JPH0413843A (en) * 1990-05-02 1992-01-17 Satoshi Watanabe Oxide sintered hard alloy
JPH05195136A (en) * 1992-01-24 1993-08-03 Toyota Motor Corp High toughness precipitation hardening cermet
JPH05209248A (en) * 1990-10-09 1993-08-20 Dow Chem Co:The High hardness and wear-resistant material
JPH09207524A (en) * 1996-02-07 1997-08-12 New Techno:Kk Snow spike pin
JPH09316589A (en) * 1996-05-30 1997-12-09 Agency Of Ind Science & Technol Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
JPH108171A (en) * 1996-06-24 1998-01-13 Kubota Corp Production of wear resistant composite cobalt alloy powder and sintered composite cobalt alloy
JPH1112025A (en) * 1997-06-24 1999-01-19 Mitsubishi Materials Corp Cutting tool made of aluminum oxide-sintered material excellent in hardwearing property
JP2002167639A (en) * 2000-11-24 2002-06-11 Aisin Seiki Co Ltd Cermet based sintered material for tool and its production method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310044A (en) * 1989-06-07 1991-01-17 Mitsubishi Heavy Ind Ltd Ceramic hard alloy for tool and its manufacture
JPH0413843A (en) * 1990-05-02 1992-01-17 Satoshi Watanabe Oxide sintered hard alloy
JPH05209248A (en) * 1990-10-09 1993-08-20 Dow Chem Co:The High hardness and wear-resistant material
JPH05195136A (en) * 1992-01-24 1993-08-03 Toyota Motor Corp High toughness precipitation hardening cermet
JPH09207524A (en) * 1996-02-07 1997-08-12 New Techno:Kk Snow spike pin
JPH09316589A (en) * 1996-05-30 1997-12-09 Agency Of Ind Science & Technol Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
JPH108171A (en) * 1996-06-24 1998-01-13 Kubota Corp Production of wear resistant composite cobalt alloy powder and sintered composite cobalt alloy
JPH1112025A (en) * 1997-06-24 1999-01-19 Mitsubishi Materials Corp Cutting tool made of aluminum oxide-sintered material excellent in hardwearing property
JP2002167639A (en) * 2000-11-24 2002-06-11 Aisin Seiki Co Ltd Cermet based sintered material for tool and its production method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002743A1 (en) * 2012-06-28 2014-01-03 日本特殊陶業株式会社 Sintered ceramic body
JP5519875B1 (en) * 2012-06-28 2014-06-11 日本特殊陶業株式会社 Ceramic sintered body and bonded body
US8927447B2 (en) 2012-06-28 2015-01-06 Ngk Spark Plug Co., Ltd. Ceramic sintered body
KR101522147B1 (en) * 2012-06-28 2015-05-20 니혼도꾸슈도교 가부시키가이샤 Sintered ceramic body and joined body
JP2015112621A (en) * 2013-12-11 2015-06-22 トヨタ自動車株式会社 Friction stir welding tool
WO2019078109A1 (en) * 2017-10-19 2019-04-25 株式会社リード Hard sintered body and rotary tool using same
JP2019116914A (en) * 2017-12-26 2019-07-18 株式会社クボタ Slide member and use thereof
JP2019163194A (en) * 2018-03-20 2019-09-26 京セラ株式会社 Ceramic member and tool using the same, cutting tool
WO2021192554A1 (en) * 2020-03-27 2021-09-30 三菱重工業株式会社 Oxidation-resistant alloy, and method for producing oxidation-resistant alloy
JP2021155807A (en) * 2020-03-27 2021-10-07 三菱重工業株式会社 Antioxidation alloy, and production method of antioxidation alloy
JP7438812B2 (en) 2020-03-27 2024-02-27 三菱重工業株式会社 Oxidation-resistant alloy and method for producing oxidation-resistant alloy
US11951546B2 (en) 2020-03-27 2024-04-09 Mitsubishi Heavy Industries, Ltd. Oxidation resistant alloy and manufacturing method of oxidation resistant alloy

Also Published As

Publication number Publication date
JP5079940B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
US20070235701A1 (en) Nanostructured titanium monoboride monolithic material and associated methods
WO2011002008A1 (en) Cermet and coated cermet
JP2010517792A (en) Ti-based cermet
JP2016113320A (en) Ceramic member and cutting tool
WO2010104094A1 (en) Cermet and coated cermet
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JPH0782031A (en) Cubic boron nitride-containing sintered compact and its production
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
JP5273987B2 (en) Cermet manufacturing method
WO2018074275A1 (en) Composite sintered material
JP5079940B2 (en) Tungsten carbide cemented carbide composite material sintered body
JPH0816028B2 (en) Highly tough ceramic sintered body, ceramic tool and method for manufacturing sintered body
JP4069749B2 (en) Cutting tool for roughing
JP2001181776A (en) Cemented carbide sintered alloy and producing method therefor
JP4336120B2 (en) Cutting tool and manufacturing method thereof
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP2001049378A (en) Wear resistant cemented carbide sintered compact and its manufacture
JP2001179507A (en) Cutting tool
JP3611184B2 (en) Ceramic sintered body cutting tool for cast iron machining and coated ceramic sintered body cutting tool for cast iron machining
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
JP2009006413A (en) Ti based cermet
JP2003113438A (en) Die made from sintered hard metal alloy
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees