JP2017179474A - Hard metal used for tool for processing nonmetallic material - Google Patents

Hard metal used for tool for processing nonmetallic material Download PDF

Info

Publication number
JP2017179474A
JP2017179474A JP2016068289A JP2016068289A JP2017179474A JP 2017179474 A JP2017179474 A JP 2017179474A JP 2016068289 A JP2016068289 A JP 2016068289A JP 2016068289 A JP2016068289 A JP 2016068289A JP 2017179474 A JP2017179474 A JP 2017179474A
Authority
JP
Japan
Prior art keywords
cemented carbide
surface layer
mass
layer portion
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016068289A
Other languages
Japanese (ja)
Other versions
JP6695566B2 (en
Inventor
勇也 松谷
Yuya Matsutani
勇也 松谷
智雄 瀬戸
Tomoo Seto
智雄 瀬戸
洋 市川
Hiroshi Ichikawa
洋 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016068289A priority Critical patent/JP6695566B2/en
Publication of JP2017179474A publication Critical patent/JP2017179474A/en
Application granted granted Critical
Publication of JP6695566B2 publication Critical patent/JP6695566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard metal excellent in high toughness and high abrasion resistance because defect resistance can be obtained stably even under severe conditions such as strong intermittent cutting and used for a tool for processing a nonmetallic material.SOLUTION: In a WC-based hard alloy consisting of a hard phase and a bind phase and containing Co of 1 to 5 mass% as a binder phase component, or one or more kind of Cr and/or carbide, nitride, carbonitride of Cr and V and/or carbide, nitride, carbonitride of V of total 0.1 to 0.7 mass% and the balance WC with inevitable impurities, hardness and fracture toughness are HV2000 or more and 4.0 MPa mor more respectively, average particle diameter of WC is 0.1 to 0.5 μm and the hard alloy has a surface layer on a surface thereof and 10 to 30 MPa of residual compression stress is added to the WC of the surface layer.SELECTED DRAWING: Figure 1

Description

本発明は、非金属材料を加工するための工具に用いる超硬合金、特に、高硬度木材の切削用工具として用いた場合においても好適である、高硬度、高靱性であって、耐摩耗性に優れた超硬合金に関するものである。   The present invention is a cemented carbide used in a tool for processing a non-metallic material, and particularly suitable for use as a cutting tool for high-hardness wood. It has high hardness, high toughness, and wear resistance. It relates to a cemented carbide having excellent resistance.

従来、非金属系材料を加工するための工具、例えば、高硬度木材の切削工具に用いる超硬合金においては、Co含有量が5〜15mass%と高い材料では硬度が不足し、木材を加工する際に耐摩耗性が著しく低くなることが判明しており、これに対しCo含有量を低くして3〜5mass%程度としたところ、焼結性が悪化し、破壊靭性値が低下するという問題が生じていた。   Conventionally, in a cemented carbide used for a tool for processing a non-metallic material, for example, a cutting tool for high-hardness wood, a material having a high Co content of 5 to 15 mass% is insufficient in hardness and processes wood. In this case, it has been found that the wear resistance is remarkably reduced. On the other hand, when the Co content is reduced to about 3 to 5 mass%, the sinterability deteriorates and the fracture toughness value decreases. Has occurred.

そこで、例えば、特許文献1では、WC基超硬合金において、結合金属相としてのCoおよびNiの少なくとも一方を1wt%以上、CoおよびNiを合わせて3wt%以下の割合で含み、さらにCrおよびCr炭化物の少なくとも一方をCr量として0.5wt%以上、1.5wt%以下、必要に応じ、Ti、Ta、Nb、Mo、Vの炭化物、炭窒化物の少なくとも1種を含み、WCの平均粒径を0.2μm以上、0.5μm以下とし、粒径2μm以上のWC粒の含有量を合金の断面組織中の面積比で0.7%以下とし、硬度および抗折力がそれぞれHRA94.0以上および220kg/mm以上である、木質系硬質材料を加工するための工具に用いられるWC基超硬合金の提案がなされている。
そして、具体的な製造条件としては、焼結温度は、1350〜1450℃、好ましくは、1400〜1450℃程度とされ、焼結後または焼結と同時にHIP処理を行うことにより、一層の強度向上が実現できるとされている。
Therefore, for example, in Patent Document 1, in a WC-based cemented carbide, at least one of Co and Ni as a binding metal phase is included in a ratio of 1 wt% or more, and the combined amount of Co and Ni is 3 wt% or less, and Cr and Cr The average grain size of WC including at least one of carbides and carbonitrides of Ti, Ta, Nb, Mo, and V, if necessary, with at least one of carbides as Cr amount of 0.5 wt% or more and 1.5 wt% or less The diameter is 0.2 μm or more and 0.5 μm or less, the content of WC grains having a particle size of 2 μm or more is 0.7% or less in terms of the area ratio in the cross-sectional structure of the alloy, and the hardness and bending strength are HRA 94.0. The proposal of the WC base cemented carbide used for the tool for processing the above-mentioned and 220 kg / mm < 2 > or more of a wooden hard material is made | formed.
As specific production conditions, the sintering temperature is 1350 to 1450 ° C., preferably about 1400 to 1450 ° C., and the strength is further improved by performing HIP treatment after sintering or simultaneously with sintering. Can be realized.

また、特許文献2では、非金属系材料であるガラスの切断用工具に用いられる超硬合金
として、金属相としてのCoを0.5〜4wt%、粒成長抑制剤としてのVC、NbC、TaC、Cr、MoC、ZrC、HfCの一種以上を0.1〜3wt%含有し、残部をWC及び不可避不純物とし、WCの平均粒径が0.2〜1.5μmであって、Hvが2100Kg/mm以上である、強度(MOR)と耐摩耗性をともに向上したWC基超硬合金の提案がなされている。
そして、具体的な製造方法としては、原料粉末を湿式混合、粉砕、乾燥後、成形体とし、真空下(0.1torr)、1350℃にて1時間保持後、Ar雰囲気下(1000atm)1250℃にて1時間保持し、その後、HIP処理による焼結により得られるとされている。
Moreover, in patent document 2, as a cemented carbide used for the tool for cutting glass which is a nonmetallic material, Co as a metal phase is 0.5 to 4 wt%, VC, NbC, and TaC as grain growth inhibitors. , Cr 3 C 2 , Mo 2 C, ZrC, HfC is contained in an amount of 0.1 to 3 wt%, the balance is WC and inevitable impurities, and the average particle size of WC is 0.2 to 1.5 μm. A WC-based cemented carbide having an Hv of 2100 kg / mm 2 or more and improved both strength (MOR) and wear resistance has been proposed.
As a specific manufacturing method, the raw material powder is wet-mixed, pulverized and dried, and then formed into a molded body. After holding in vacuum (0.1 torr) at 1350 ° C. for 1 hour, in an Ar atmosphere (1000 atm) 1250 ° C. For 1 hour, and then obtained by sintering by HIP treatment.

また、特許文献3では、用途が非金属系材料用に限定されたものではないが、切削に用いられる高強度高靱性高耐摩耗性のWC基超硬合金として、Coを0.1〜10重量%、Cr化合物、V化合物等を含み、WCの平均粒径が100〜1000nmであって、高靱性及び高抗折強度を有し、鋼製の超硬チップ等を用途とする断続切削に優れたWC基超硬合金の提案がなされている。
そして、具体的な製造方法としては、原料粉末を湿式混合粉砕、乾燥後、プレス成形体とし、900℃〜1600℃の温度範囲にて、アルゴンガスを炉内に導入し、3〜200気圧の範囲で加圧焼結を行い、焼結の駆動力を増加させることで密度がほぼ100%の超硬合金を得るというものである。
Further, in Patent Document 3, the use is not limited to non-metallic materials, but Co is 0.1 to 10 as a WC-based cemented carbide of high strength, high toughness and wear resistance used for cutting. For interrupted cutting that uses steel carbide tips and the like, including wt%, Cr compound, V compound, etc., with an average particle size of WC of 100 to 1000 nm, high toughness and high bending strength An excellent WC-based cemented carbide has been proposed.
As a specific manufacturing method, the raw material powder is wet mixed and pulverized, dried, and then formed into a press-molded body, and argon gas is introduced into the furnace at a temperature range of 900 ° C. to 1600 ° C. By performing pressure sintering in the range and increasing the driving force of sintering, a cemented carbide having a density of almost 100% is obtained.

さらに、特許文献4では、熱伝導度の優れた高硬度、高靱性超硬合金の製造方法として、
粒子径が0.5μm以下のWC微粒子を用い、Co量を0.5〜3wt%に抑え、さらに、VC、Cr、TaC、HfC、ZrCから選ばれた粉末の少なくとも1種を0.2〜2.0wt%添加した超硬合金原料粉末を成形し、真空炉にて真空中(1×10〜1×10−5Torr)で1300〜1600℃、15〜90分保持し高温焼結を行い、引き続き同一炉にてそのまま温度を常温まで下げることなく、ArまたはNガスを圧力媒体として炉内ガス圧が、30〜500kg/cmとなるように導入し、15〜90分加圧保持した後、1200〜1600℃にて低圧HIP処理を行い、その後、常温にすることなく、再度真空中(1×10〜1×10−5Torr)で1300〜1600℃にて、再焼結を行うことが提案されている。
そして、かかる提案により、従来の高圧HIP処理では、Coがポア中に流出することに起因した靱性の低下を解消し、内部に存在するポアを消失させ、更にHIP後の再焼結により不均一組織を解消し抗折力、硬度の改善を図り、熱伝導度の優れた高硬度、高靱性超硬合金を得るというものである。
Furthermore, in patent document 4, as a manufacturing method of high hardness and high toughness cemented carbide with excellent thermal conductivity,
WC fine particles having a particle diameter of 0.5 μm or less are used, the amount of Co is suppressed to 0.5 to 3 wt%, and at least one powder selected from VC, Cr 3 C 2 , TaC, HfC, and ZrC is 0 Molding cemented carbide raw material powder with 2 to 2.0 wt% added and holding at 1300 to 1600 ° C. for 15 to 90 minutes in a vacuum oven (1 × 10 to 1 × 10 −5 Torr) In the same furnace, without reducing the temperature to room temperature, Ar or N 2 gas was introduced as a pressure medium so that the gas pressure in the furnace would be 30 to 500 kg / cm 2 and 15 to 90 minutes. After maintaining the pressure, low-pressure HIP treatment is performed at 1200 to 1600 ° C., and then again at 1300 to 1600 ° C. in vacuum (1 × 10 to 1 × 10 −5 Torr) again without changing to room temperature. Proposed to sinter It has been.
And by this proposal, in the conventional high-pressure HIP processing, the deterioration of toughness due to Co flowing out into the pores is eliminated, the pores existing inside disappear, and further, non-uniformity by re-sintering after HIP By eliminating the structure and improving the bending strength and hardness, a high hardness and high toughness cemented carbide with excellent thermal conductivity is obtained.

特許第3353522号公報Japanese Patent No. 3353522 特開平8−127836号公報JP-A-8-127836 特開平7−305136号公報JP-A-7-305136 特公平7−6011号公報Japanese Patent Publication No. 7-6011

特許文献1及び特許文献2に記載された非金属系材料を加工するための工具に用いる超硬合金においては、WC粒を細粒化しその平均粒径を規定し、CrやTi、Vなどの炭化物、炭窒化物を添加し、高硬度で抗折力に優れた、超硬合金を得ることにより、従来かかる超硬合金において課題となっていた、Co含有量によって生じる特性の劣化、特に、低Co材料においては抗折力が低下する点を解決した。
しかしながら、強断続切削などの厳しい条件下において用いられる超硬合金においては、更なる耐欠損性が求められるものの、特許文献1や特許文献2に記載された超硬合金では、
耐欠損性が安定して得られないという問題が生じていた。
また、特許文献3では、WC粒の細粒化と焼結時の駆動力を増加させることにより、高靱性、高抗折強度を有し、断続切削に優れた低Co含有のWC基超硬合金の提案がなされているが、例示されている用途は、鋼製の超硬チップ等の切削であり、木材を含む非金属系材料について適用した事例は記載されていない。
また、特許文献4では、WC粒の細粒化と低圧HIP処理に加え、その後の再焼結を行う事で、ポアの消滅と不均一組織の解消により、高靱性、高抗折強度を有する低Co含有のWC基超硬合金の提案がなされているものの、断続切削性や木材を含む非金属系材料についての適用については、何ら記載されていない。
そこで、本発明者らは強断続切削においてWCが粒内破壊を生じ、それが脱落する事で摩耗が促進されると考え、従来のように、10mass%以下の結合相成分の分散性および組織の均一化による靭性向上ではなく、成分の90mass%以上を占めるWC自体の靭性を向上することで耐欠損性及び耐摩耗性を飛躍的に向上できるという知見を得た。したがって、本発明は、上記した強断続切削などの厳しい条件下においても、高靭性、高耐摩耗性に優れ、非金属系材料を加工するための工具に用いる超硬合金を提供することを目的としてなされたものである。
In the cemented carbide used for the tool for processing the nonmetallic material described in Patent Document 1 and Patent Document 2, the WC grains are finely divided to define the average particle diameter, and Cr, Ti, V, etc. By adding carbide, carbonitride and obtaining a cemented carbide with high hardness and excellent bending strength, which has been a problem in conventional cemented carbide, deterioration of properties caused by Co content, in particular, Resolved the problem of low bending strength in low Co materials.
However, in the cemented carbide used under severe conditions such as hard interrupted cutting, further fracture resistance is required, but in the cemented carbide described in Patent Document 1 and Patent Document 2,
There has been a problem that the fracture resistance cannot be stably obtained.
Further, in Patent Document 3, by reducing the WC grain size and increasing the driving force during sintering, it has high toughness and high bending strength, and is a low Co-containing WC-based carbide excellent in intermittent cutting. Although the proposal of an alloy is made, the illustrated use is cutting of a carbide tip made of steel or the like, and an example of application to a nonmetallic material including wood is not described.
In Patent Document 4, in addition to WC grain refinement and low-pressure HIP treatment, subsequent re-sintering provides high toughness and high bending strength by eliminating pores and eliminating heterogeneous structures. Although a low Co-containing WC-based cemented carbide has been proposed, there is no description about intermittent machinability and application to non-metallic materials including wood.
Accordingly, the present inventors consider that WC causes intragranular fracture in strong interrupted cutting, and that the wear off is promoted, and as in the past, the dispersibility and structure of the binder phase component of 10 mass% or less. It was found that the fracture resistance and the wear resistance can be remarkably improved by improving the toughness of WC itself, which occupies 90 mass% or more of the components, instead of improving the toughness by homogenizing. Accordingly, an object of the present invention is to provide a cemented carbide that is excellent in high toughness and high wear resistance even under severe conditions such as the above-mentioned hard interrupted cutting, and that is used for a tool for processing a nonmetallic material. It was made as.


本発明は、Crおよび/またはCrの炭化物、窒化物、炭窒化物、並びに、Vおよび/またはVの炭化物、窒化物、炭窒化物の1種または2種以上を含み、結合金属相として、Coを含む、微粒WCを基とする、WC基超硬合金において、各成分組成範囲を適正に調整するとともに、微細化されたWC自体に適正な圧縮残留応力を付与することにより、高靭性、高耐摩耗性が備わり、高硬度木材の切削用工具として用いた場合において、長寿命化を達成し得ることを見出したものであり、特に断続切断を繰り返し行う丸鋸切削加工において有用なWC基合金を提供することにより、前記課題を解決したものである。
特に、残留圧縮応力の付与については、種々の製造条件を工夫し、特定の組織構造を見出すことにより達成したものである。

The present invention includes Cr and / or Cr carbide, nitride, carbonitride, and one or more of V and / or V carbide, nitride, carbonitride, In a WC-based cemented carbide based on fine-grained WC containing Co, by appropriately adjusting each component composition range and imparting appropriate compressive residual stress to the refined WC itself, high toughness, It has been found that a long life can be achieved when it is used as a tool for cutting hard wood with high wear resistance, and is particularly useful in a circular saw cutting process in which intermittent cutting is repeated. By providing an alloy, the above problems are solved.
In particular, the application of the residual compressive stress is achieved by devising various manufacturing conditions and finding a specific structure.

本発明は、上記の知見に基づいてなされたものであって、
「(1) 硬質相と結合相とからなり、結合相成分としてのCoを1〜5mass%含み、また、Crおよび/またはCrの炭化物、窒化物、炭窒化物、並びに、Vおよび/またはVの炭化物、窒化物、炭窒化物の1種または2種以上を合計で0.1〜0.7mass%含み、残部がWCと不可避不純物とからなるWC基超硬合金において、
硬度および破壊靭性値がそれぞれ、Hv2000以上および4.0MPa・m1/2以上であり、
WCの平均粒径は0.1〜0.5μmであり、
また、前記超硬合金は、その表面に表層部を有し、該表層部のWCには、10〜30MPaの残留圧縮応力が付与されていることを特徴とするWC基超硬合金。
(2) (1)に記載されたWC基超硬合金において、
前記表層部は、垂直断面方向に、最表面から0.1〜1.0μmまでの領域である第1表層部と、該第1表層部から垂直断面方向に更に10μmの領域である第2表層部とからなり、
第1表層部のCo量(質量%)は15mass%以上であることを特徴とするWC基超硬合金。
(3) (2)に記載されたWC基超硬合金において、第2表層部における垂直断面方向のCo量(質量%)の最小値に対する最大値の比が、1.5〜20であることを特徴とするWC基超硬合金。
(4) (2)または(3)のいずれかに記載されたWC基超硬合金において、第2表層部より内部のHv(50kgf)に対する、第1表層部と第2表層部の境界面から第2表層部側0.7μm以内の部位におけるHv(50kgf)の比が、0.9〜0.99であることを特徴とするWC基超硬合金。
(5) (1)〜(4)のいずれかに記載されたWC基超硬合金において、前記表層部の最表面におけるCoの面積率が40%以上であることを特徴とするWC基超硬合金。
(6) (1)〜(5)のいずれかに記載されたWC基超硬合金において、有孔度が超硬合金規格CIS006C−2007でA02〜A06、または、B02〜B06であることを特徴とするWC基超硬合金。
(7) (1)〜(6)のいずれかに記載されたWC基超硬合金において、結合相成分のNiをCoの含有量(質量%)の10mass%以下で含有することを特徴とするWC基超硬合金。
(8) (1)〜(7)のいずれかに記載されたWC基超硬合金において、Ti、Zr、Nb、Mo、Hf及びTaの炭化物、窒化物、炭窒化物の1種または2種以上を結合相成分の10mass%以下で含有させることを特徴とするWC基超硬合金。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) Consisting of a hard phase and a binder phase, containing 1 to 5 mass% of Co as a binder phase component, and Cr and / or Cr carbide, nitride, carbonitride, and V and / or V In a WC-based cemented carbide comprising 0.1 to 0.7 mass% in total of one or more of carbides, nitrides, and carbonitrides of the above, and the balance consisting of WC and inevitable impurities,
The hardness and fracture toughness values are Hv2000 or more and 4.0 MPa · m1 / 2 or more, respectively.
The average particle size of WC is 0.1 to 0.5 μm,
Further, the cemented carbide has a surface layer portion on the surface thereof, and a residual compressive stress of 10 to 30 MPa is applied to the WC of the surface layer portion.
(2) In the WC-based cemented carbide described in (1),
The surface layer portion is a first surface layer portion that is a region from 0.1 to 1.0 μm from the outermost surface in the vertical cross-sectional direction, and a second surface layer that is a region that is further 10 μm from the first surface layer portion in the vertical cross-sectional direction. And consists of
A WC-based cemented carbide characterized in that the Co amount (% by mass) of the first surface layer part is 15 mass% or more.
(3) In the WC-based cemented carbide described in (2), the ratio of the maximum value to the minimum value of the Co amount (% by mass) in the vertical cross-sectional direction in the second surface layer portion is 1.5 to 20. WC-based cemented carbide characterized by
(4) In the WC-based cemented carbide described in either (2) or (3), from the interface between the first surface layer portion and the second surface layer portion with respect to Hv (50 kgf) inside from the second surface layer portion. A WC-based cemented carbide characterized in that the ratio of Hv (50 kgf) at a site within 0.7 μm on the second surface layer side is 0.9 to 0.99.
(5) The WC-based cemented carbide according to any one of (1) to (4), wherein an area ratio of Co on the outermost surface of the surface layer portion is 40% or more. alloy.
(6) The WC-based cemented carbide according to any one of (1) to (5), wherein the porosity is A02 to A06 or B02 to B06 according to cemented carbide standard CIS006C-2007. WC base cemented carbide.
(7) The WC-based cemented carbide according to any one of (1) to (6), wherein Ni as a binder phase component is contained at 10 mass% or less of Co content (mass%). WC base cemented carbide.
(8) In the WC-based cemented carbide described in any one of (1) to (7), one or two of Ti, Zr, Nb, Mo, Hf, and Ta carbide, nitride, and carbonitride A WC-based cemented carbide comprising 10% by mass or less of the binder phase component. "
It has the characteristics.

まず、本発明に係るWC超硬合金について、その最表面部から内部組織に至る構造について概略説明する。
すなわち、本発明に係るWC超硬合金は、図1にも記載されているとおり、表層部と内部とからなり、該表層部は、Co量(質量%)が多く、最表面から垂直断面方向に0.1〜1.0μmの厚みを有する第1表層部と、第1表層部から垂直断面方向に更に10μmの厚みを有する第2表層部とからなっている。
以下では、本発明に係る超硬合金の成分組成やその濃度分布、及び、それらを規定する理由等について説明する。
First, the structure from the outermost surface portion to the internal structure of the WC cemented carbide according to the present invention will be schematically described.
That is, the WC cemented carbide according to the present invention is composed of a surface layer portion and an inside as shown in FIG. 1, and the surface layer portion has a large amount of Co (mass%), and is perpendicular to the vertical cross-sectional direction from the outermost surface. The first surface layer portion has a thickness of 0.1 to 1.0 μm, and the second surface layer portion further has a thickness of 10 μm in the vertical cross-sectional direction from the first surface layer portion.
Below, the component composition and concentration distribution of the cemented carbide according to the present invention, the reasons for defining them, and the like will be described.

Co:
Coは結合相を形成するものであり、その含有量が、1mass%未満では欠損が生じ易くなり、また、5mass%を超える場合には、耐摩耗性不足となり摩耗が進行することから、Coの含有量を1〜5mass%と規定した。(請求項1)
また、超硬合金の表面部には、最表面にCo量(質量%)の高い第1表層部が形成されており、垂直断面方向におけるCoの濃度分布と特性の関係についてみてみると、第2表層部において、Co量(質量%)の最も少ない部分に対する、Co量(質量%)の最も多い部分のCo量(質量%)の比が、1.5未満では、欠損を生じるおそれがあり、また、20を超えると初期摩耗が増大し、耐摩耗性が低下する可能性があるため、Co量(質量%)に組成勾配を設け、第2表層部における最大Co量(質量%)に対する最小Co量(質量%)の比を1.5〜20とすることが好ましく、1.5〜5の範囲とすることがより好ましく、1.5〜3の範囲とすることがさらにより好ましい。(請求項2、3)
ダイヤモンド砥石等による切刃部分の研削加工を行う場合、特に非金属加工用に使用される切刃は鋭利なエッジの形成が必要なため、切刃エッジ部にチッピングが発生し易いが、本発明の超硬合金では最表面部とその直下にCo量(質量%)の多い部分が存在するため、研削加工によるチッピングを抑制でき、切削加工時の切刃エッジ部の微小チッピングから生じる初期摩耗を抑制できる。前記Co量(質量%)は、15質量%以上であることが好ましい。(請求項2)
そして、これを、超硬合金の垂直断面方向における硬さ分布(Hv(50kgf))と特性の関係からみてみると、第2表層部より内部の硬さHv(50kgf)に対する、第1表層部と第2表層部の境界面から第2表層部側0.7μm以内の部位におけるHv(50kgf)の比が、0.99を超えると欠損が生じるおそれがあり、また、0.9未満では、初期摩耗が増大し、耐摩耗性が低下する可能性があるため、第2表層部より内部のHv(50kgf)に対する、第1表層部と第2表層部の境界面から第2表層部側0.7μm以内の部位におけるHv(50kgf)の比は、0.9〜0.99であることが好ましい。(請求項4)
また、台金とのろう付け性の観点から、表面のCo量が多くても面積率が低ければろう付け性は向上せず、表面部におけるCoの面積率が40%未満である場合には、ろう付け性が悪化し、強断続切削などの厳しい条件下において、チップが台金から外れるおそれがあるため、超硬合金の表面部におけるCoの面積率は40%以上とすることが望ましい。そして、そのような面積率を有するCo層の厚みは、0.1μm未満では台金とのろう付け性が悪化し、チップが台金から外れるおそれがある一方、1.0μmを超えると逆に、第1表層部と第2表層部の境界面部分からチップが外れるおそれがある。また、切刃の耐溶着性が悪化するとともに、初期摩耗が増大し、耐摩耗性が低下するおそれがあり、コーティングを施した場合には、コーティング層の剥離が生じ易くなるため、層厚は最表面から0.1〜1.0μmとすることが好ましい。(請求項2、5)
Co:
Co forms a binder phase, and if its content is less than 1 mass%, defects tend to occur, and if it exceeds 5 mass%, wear resistance becomes insufficient and wear proceeds. The content was defined as 1 to 5 mass%. (Claim 1)
In addition, a first surface layer portion having a high Co content (mass%) is formed on the outermost surface portion of the cemented carbide, and the relationship between the Co concentration distribution and the characteristics in the vertical cross-sectional direction is as follows. 2 If the ratio of the Co amount (mass%) of the portion with the largest amount of Co (mass%) to the portion with the smallest amount of Co (mass%) in the surface layer portion is less than 1.5, there is a risk of defects. In addition, if it exceeds 20, the initial wear may increase and the wear resistance may decrease, so a composition gradient is provided in the Co amount (% by mass), and the maximum Co amount (% by mass) in the second surface layer portion is set. The ratio of the minimum Co amount (% by mass) is preferably 1.5 to 20, more preferably 1.5 to 5, and even more preferably 1.5 to 3. (Claims 2 and 3)
When grinding the cutting edge part with a diamond grindstone or the like, especially the cutting edge used for non-metal processing needs to form a sharp edge. In the cemented carbide alloy, there is a part with a large amount of Co (mass%) immediately below the outermost surface part, so that chipping due to grinding can be suppressed, and initial wear resulting from minute chipping at the edge of the cutting edge during machining is reduced. Can be suppressed. The Co amount (% by mass) is preferably 15% by mass or more. (Claim 2)
When this is seen from the relationship between the hardness distribution (Hv (50 kgf)) in the vertical cross-sectional direction of the cemented carbide and the characteristics, the first surface layer portion with respect to the internal hardness Hv (50 kgf) from the second surface layer portion. If the ratio of Hv (50 kgf) in the portion within 0.7 μm from the boundary surface between the second surface layer portion and the second surface layer portion exceeds 0.99, there is a risk of defects, and if less than 0.9, Since the initial wear may increase and the wear resistance may decrease, the second surface layer side 0 from the boundary surface between the first surface layer portion and the second surface layer portion with respect to Hv (50 kgf) inside from the second surface layer portion 0 The ratio of Hv (50 kgf) at a site within 0.7 μm is preferably 0.9 to 0.99. (Claim 4)
Also, from the viewpoint of brazing with a base metal, if the area ratio is low even if the amount of Co on the surface is large, the brazing performance is not improved, and when the area ratio of Co on the surface is less than 40% Since the brazing property is deteriorated and the chip may be detached from the base metal under severe conditions such as hard interrupted cutting, the area ratio of Co in the surface portion of the cemented carbide is preferably 40% or more. When the thickness of the Co layer having such an area ratio is less than 0.1 μm, the brazing property with the base metal is deteriorated, and the chip may be detached from the base metal. There is a possibility that the chip is detached from the boundary surface portion between the first surface layer portion and the second surface layer portion. In addition, the welding resistance of the cutting edge deteriorates, the initial wear may increase, and the wear resistance may decrease.If coating is applied, the coating layer is likely to peel off, so the layer thickness is It is preferable to set it as 0.1-1.0 micrometer from the outermost surface. (Claims 2 and 5)

Ni:
NiはCoとともに結合相形成元素であり、耐食性が求められる場合には、結合相の強度を考慮し、Co量(質量%)に対し10mass%以下の範囲で添加することができる。(請求項7)
Ni:
Ni is a binder phase forming element together with Co. When corrosion resistance is required, Ni can be added in a range of 10 mass% or less with respect to the Co amount (% by mass) in consideration of the strength of the binder phase. (Claim 7)

Crおよび/またはCrの炭化物、窒化物、炭窒化物、並びに、Vおよび/またはVの炭化物、窒化物、炭窒化物:
これらの金属及び化合物は、粒成長抑制効果を有し、耐摩耗性を向上させるが、0.1mass%未満では、粒成長抑制効果が小さく、また、過剰析出が生じなければ、性能の悪化は認められないものの、その1種または2種以上を合計で0.7mass%を超えて含有する場合には、CrやVの炭化物等の第3相の過剰析出により強度が低下し、欠損が発生するおそれがあるため、合計で0.1〜0.7mass%と規定した。また、耐食性の効果を発揮するため、Crおよび/またはCrの炭化物等の添加量は結合相形成成分のCoおよび/またはNi量に対して、5mass%以上とするのが望ましい。(請求項1)
Cr and / or Cr carbides, nitrides, carbonitrides, and V and / or V carbides, nitrides, carbonitrides:
These metals and compounds have a grain growth inhibitory effect and improve wear resistance, but if less than 0.1 mass%, the grain growth inhibitory effect is small, and if excessive precipitation does not occur, the performance deterioration will be Although it is not recognized, when one or more of them are contained in total exceeding 0.7 mass%, the strength decreases due to excessive precipitation of the third phase such as carbides of Cr and V, and defects occur. Therefore, the total amount is defined as 0.1 to 0.7 mass%. Further, in order to exert the effect of corrosion resistance, it is desirable that the addition amount of Cr and / or Cr carbide or the like is 5 mass% or more with respect to the Co and / or Ni amount of the binder phase forming component. (Claim 1)

Ti、Zr、Nb、Mo、Hf及びTaの炭化物、窒化物、炭窒化物:
これらの金属化合物の1種または2種以上を耐熱性成分として、結合相量の10mass%以下で含有させることができる。(請求項8)
Ti, Zr, Nb, Mo, Hf and Ta carbides, nitrides, carbonitrides:
One or more of these metal compounds can be contained as a heat-resistant component at 10 mass% or less of the amount of the binder phase. (Claim 8)

WC:
WCは、硬質相の形成成分であり、結合相、及び、粒成長抑制剤として添加されるCr、V及びその炭化物、窒化物、炭窒化物、並びに、耐熱性成分として添加されるTi、Zr、Nb、Mo、Hf及びTaの炭化物、窒化物、炭窒化物以外の残部を構成するものである。
また、WC粒としては、平均粒径が0.5μmを超えるものは、硬度が低下し耐摩耗性が得られないため、平均粒径は0.5μm以下とし、他方、平均粒径が、0.1μm未満では、硬度は向上するものの、WC粒の脱落により摩耗が増大するため、WC粒の平均粒径は、0.1〜0.5μmと規定した。(請求項1)
WC:
WC is a component for forming a hard phase. Cr, V and its carbide, nitride, carbonitride added as a binder phase, and a grain growth inhibitor, and Ti, Zr added as a heat-resistant component , Nb, Mo, Hf and Ta carbide, nitride, and the remainder other than carbonitride.
In addition, as the WC grains, those having an average particle diameter exceeding 0.5 μm are reduced in hardness and wear resistance cannot be obtained. Therefore, the average particle diameter is 0.5 μm or less, while the average particle diameter is 0 When the thickness is less than 0.1 μm, the hardness is improved, but the wear increases due to the dropping of the WC grains. Therefore, the average grain size of the WC grains is defined as 0.1 to 0.5 μm. (Claim 1)

焼結組織:
本発明に係る焼結組織は、低温での焼結処理、及び 従来より低温でのHIP処理により得られるものであって、従来低Co合金は気孔が生成してしまうため高温で焼結する、もしくは低温で焼結した場合には、その後のHIP処理を高温高圧とし、強圧下により気孔を消滅させ、強度向上を図っていた。それに対し、本発明では、低温で焼結し、その後のHIP処理も低温での特殊なHIP処理とすることにより、表面部だけでなく内部のWC粒に対しても、圧縮残留応力を付与し、WC粒内の破壊の抑制を図ったため、組織内部にA02〜A06、かつ、B02〜B06レベル(超硬工具協会規格CIS006C−2007)の気孔が存在した状態であっても、耐欠損性と耐摩耗性の優れた焼結組織としたものである。(請求項6)
付与する残留応力は、10MPa未満であるときは、WC自体の靭性が低く耐欠損性と耐摩耗性の向上効果が少なく、他方、30MPaを超えると、圧縮応力であってもWC自体に過剰な応力が存在し、欠損を生じるため、WC粒の残留圧縮応力の範囲は、10〜30MPaと規定した。(請求項1)
なお、焼結組織において、CoとWの複合炭化物(η相)が析出した場合においても、過剰な析出がない限り、特性への影響を及ぼすものではない。
Sintered structure:
The sintered structure according to the present invention is obtained by a sintering process at a low temperature and a HIP process at a lower temperature than in the past, and a conventional low Co alloy is sintered at a high temperature because pores are generated. Alternatively, when sintered at a low temperature, the subsequent HIP treatment was performed at a high temperature and a high pressure, and the pores disappeared under a strong pressure to improve the strength. On the other hand, in the present invention, sintering is performed at a low temperature, and the subsequent HIP process is also performed as a special HIP process at a low temperature, thereby imparting compressive residual stress not only to the surface portion but also to the internal WC grains. Because of the suppression of breakage in the WC grains, even if there are pores at the A02 to A06 and B02 to B06 levels (Carbide Tool Association Standard CIS006C-2007) inside the structure, It has a sintered structure with excellent wear resistance. (Claim 6)
When the residual stress to be applied is less than 10 MPa, the toughness of the WC itself is low and the effect of improving the fracture resistance and wear resistance is small. On the other hand, when the residual stress exceeds 30 MPa, the compressive stress is excessive in the WC itself. Since the stress exists and a defect occurs, the range of the residual compressive stress of the WC grain is defined as 10 to 30 MPa. (Claim 1)
Even in the case where a composite carbide of Co and W (η phase) is precipitated in the sintered structure, it does not affect the properties unless excessive precipitation occurs.

表面被膜の形成:
本発明に係る超硬合金の表面には、表面被膜を形成することができる。
本発明に係る超硬合金の表面にも残留圧縮応力が付与されているため、例えば、皮膜に圧縮応力が付与されるPVD法では、一層の耐欠損性およびそれに起因する耐摩耗性の向上効果が発揮され、また、皮膜に引張応力が付与されるCVD法の中でも、コーティング温度の低いMT−CVD法では、耐欠損性およびそれに起因する耐摩耗性の向上がみられる。
Surface coating formation:
A surface film can be formed on the surface of the cemented carbide according to the present invention.
Since the residual compressive stress is also applied to the surface of the cemented carbide according to the present invention, for example, in the PVD method in which the compressive stress is applied to the film, the effect of further improving the fracture resistance and the resulting wear resistance is achieved. Among the CVD methods in which tensile stress is applied to the film, the MT-CVD method having a low coating temperature shows improved fracture resistance and wear resistance resulting therefrom.

WC基超硬合金の作製方法:
以下に、本発明に係るWC基超硬合金の製造方法の一例を示す。なお、本発明の製造方法は、以下の製造方法に限定されるものではない。
まず、所定粒径の粉末を所定の配合組成となるように配合し原料粉末を作製し、
(イ)これを、室温から1300〜1400℃まで真空雰囲気中にて0.5〜5℃/分の速度で昇温し、
(ロ)該温度範囲(1300〜1400℃)にて、真空雰囲気中で60〜180分保持し、室温までAr雰囲気で冷却する。
(ハ)ついで、室温から所定のHIP処理温度(1300〜1400℃)までを、2〜10℃/分の速度で昇温し、
(ニ)該HIP処理温度(1300〜1400℃)にて、0.5〜10MPaのAr雰囲気中で60〜240分保持し、
(ホ)ついで、上記HIP処理温度(1300〜1400℃)から1000℃までを1〜
3℃/minの冷却速度に制御して炉冷する。1000℃までの炉冷は、Co量(質量%)
の高い第1表層部およびCoの濃度勾配を有する第2表層部を形成するために必要であり、
以降の冷却は任意の冷却方法で構わない。
上記(イ)〜(ホ)の工程によって、本発明に係るWC基超硬合金を作製することができる。
そして、このようにして作製した本発明に係るWC基超硬合金は、硬質相は平均粒径が0.1〜0.5μmのWCであり、その残留応力が、10〜30MPaの圧縮応力を有することにより、高硬度(Hv2000以上)、高靭性(4.0MPa・m1/2以上)に優れた特性を有するものであって、長期間にわたる切断加工において優れた耐欠損性と耐摩耗性を発揮し、切削工具の長寿命化を図ることができる。
なお、残留圧縮応力を付与する手段は、HIP処理以外の手段でもよいが、メディア等が直接超硬合金に接触する場合、例えば、ブラスト処理によって圧縮残留応力が付与される場合には、処理された超硬素材のエッジ部に欠けが発生し、非金属切削に必要な鋭利な切刃を形成することはできず、また表面近傍しか効果が得られないため、目的とする耐欠損性と耐摩耗性向上の効果は達成できない。また、研削によっても圧縮残留応力は付与されるが、従来の低Co材種では、特に欠けが発生し、ブラスト処理と同様、その効果は表面近傍に留まり、目的とする耐欠損性と耐摩耗性向上の効果は達成できない。
したがって、チッピングが発生しない圧力や砥石の番手を調整し処理することとなるが、それでは目的とするWC自体の靭性向上による耐欠損性および耐摩耗性の向上効果は達成できない。
本発明に係る超硬合金では、WC自体の靭性の向上のみならず、従来の超硬合金に比べ、表面部に第1表層部を形成させているため、ブラスト処理を施した場合もろう付け強度は問題とはならず、更なる耐欠損性と耐摩耗性の向上が見込まれる。
Preparation method of WC base cemented carbide:
Below, an example of the manufacturing method of the WC base cemented carbide which concerns on this invention is shown. In addition, the manufacturing method of this invention is not limited to the following manufacturing methods.
First, a raw material powder is prepared by blending a powder having a predetermined particle size so as to have a predetermined composition.
(A) The temperature is raised from room temperature to 1300-1400 ° C. in a vacuum atmosphere at a rate of 0.5-5 ° C./min,
(B) Hold in the vacuum range for 60 to 180 minutes in the temperature range (1300 to 1400 ° C.) and cool to room temperature in an Ar atmosphere.
(C) Next, the temperature is raised from room temperature to a predetermined HIP processing temperature (1300 to 1400 ° C.) at a rate of 2 to 10 ° C./min.
(D) At the HIP treatment temperature (1300 to 1400 ° C.), hold in an Ar atmosphere of 0.5 to 10 MPa for 60 to 240 minutes,
(E) Next, from the HIP processing temperature (1300 to 1400 ° C.) to 1000 ° C., 1 to
The furnace is cooled by controlling the cooling rate to 3 ° C./min. The furnace cooling up to 1000 ° C is the amount of Co (mass%)
Is necessary to form a high first surface layer portion and a second surface layer portion having a Co concentration gradient,
Subsequent cooling may be any cooling method.
The WC-based cemented carbide according to the present invention can be produced by the steps (a) to (e).
In the WC-based cemented carbide according to the present invention thus produced, the hard phase is WC having an average particle size of 0.1 to 0.5 μm, and the residual stress is a compressive stress of 10 to 30 MPa. It has excellent properties in high hardness (Hv2000 or higher) and high toughness (4.0 MPa · m1 / 2 or higher), and has excellent fracture resistance and wear resistance in long-term cutting. This makes it possible to extend the life of the cutting tool.
The means for applying the residual compressive stress may be a means other than the HIP process. However, when the medium or the like is in direct contact with the cemented carbide, for example, when the compressive residual stress is applied by the blast process, it is processed. In addition, chipping occurs at the edge of the hard metal material, and it is impossible to form a sharp cutting edge necessary for non-metal cutting. The effect of improving wearability cannot be achieved. Grinding also gives compressive residual stress, but the conventional low Co grades are particularly chipped, and, as with blasting, the effect remains near the surface and the desired fracture resistance and wear resistance. The effect of improving the performance cannot be achieved.
Therefore, the pressure at which no chipping occurs and the count of the grindstone are adjusted and processed. However, the effect of improving the fracture resistance and the wear resistance by improving the toughness of the target WC itself cannot be achieved.
In the cemented carbide according to the present invention, not only the toughness of the WC itself is improved, but also the first surface layer portion is formed on the surface portion compared to the conventional cemented carbide, so even when blasting is performed, brazing Strength is not a problem, and further improvement in fracture resistance and wear resistance is expected.

本発明は、Crおよび/またはCrの炭化物、窒化物、炭窒化物、並びに、Vおよび/またはVの炭化物、窒化物、炭窒化物の1種または2種以上を含み、結合金属相として、Coを含む、微粒WCを基とする、WC基超硬合金において、各成分組成範囲を調整するとともに、焼結条件及びHIP処理条件を調整し、微細化されたWC自体に適正な圧縮残留応力を付与し、高靭性、高耐摩耗性が備わった組織を得ることにより、長寿命化を達成したものであり、特に強断続切断を繰り返し行う非金属系材料の加工用工具において有用なWC基合金を提供するものである。 The present invention includes Cr and / or Cr carbide, nitride, carbonitride, and one or more of V and / or V carbide, nitride, carbonitride, In the WC-based cemented carbide based on fine-grained WC containing Co, the compositional range of each component is adjusted, the sintering conditions and the HIP processing conditions are adjusted, and the appropriate compressive residual stress is applied to the refined WC itself. To achieve a long life by obtaining a structure having high toughness and high wear resistance, and is particularly useful in non-metallic material processing tools that repeatedly perform severe interrupted cutting. An alloy is provided.

本発明のWC基超硬合金の断面についての位置関係を示す模式図を示す。The schematic diagram which shows the positional relationship about the cross section of the WC base cemented carbide of this invention is shown. 本発明例5のWC基超硬合金を丸鋸に用いた際のすくい面の表面組織を観察した走査型電子顕微鏡像(倍率200倍)を示す。The scanning electron microscope image (200-times multiplication factor) which observed the surface structure of the rake face at the time of using the WC base cemented carbide of the example 5 of this invention for a circular saw is shown.

つぎに、本発明のWC基超硬合金について、実施例を用いてより具体的に説明する。     Next, the WC-based cemented carbide of the present invention will be described more specifically using examples.

原料粉末として、所定の平均粒径を有する、細粒WC粉末、Co粉末、Ni粉末、Cr粉末、V粉末、及び、Cr、V、Ti、Zr、Nb、Mo、Hf、Taの化合物粉末(炭化物粉末、窒化物粉末、炭窒化物粉末)を用意し(表1の試料番号1〜12)、これらの原料粉末を所定組成に配合し、ボールミルにて湿式混合し、乾燥後、10kgf/mmの圧力にてプレス成形し圧粉体を製造した。この圧粉体に対し、表2に示される条件にて、焼結及びHIPを行うことによって、表4に示す本発明例超硬合金1〜12を製造した。 Fine powder WC powder, Co powder, Ni powder, Cr powder, V powder, and Cr, V, Ti, Zr, Nb, Mo, Hf, Ta compound powder having a predetermined average particle size as raw material powder ( Carbide powder, nitride powder, carbonitride powder) (Sample Nos. 1 to 12 in Table 1), these raw material powders are blended into a predetermined composition, wet-mixed in a ball mill, dried, and then 10 kgf / mm A green compact was produced by press molding at a pressure of 2 . By subjecting this green compact to sintering and HIP under the conditions shown in Table 2, the present invention cemented carbides 1 to 12 shown in Table 4 were produced.

また、比較の目的で、表1に示される本発明範囲を外れる配合組成の圧粉体(表1の試料番号13〜15)に対して、表2に示される条件にて、焼結及びHIPを行うことにより、表4に示す比較例超硬合金発明1〜3を製造した。   Further, for the purpose of comparison, sintering and HIP were performed under the conditions shown in Table 2 on the green compacts (sample numbers 13 to 15 in Table 1) having a composition outside the scope of the present invention shown in Table 1. The comparative example cemented carbide inventions 1-3 shown in Table 4 were manufactured.

また、同様に比較の目的で、表1に示される本発明範囲の配合組成の試料(表1の試料番号8、12)について、表3に示される条件(本発明範囲外の条件)にて、焼結及びHIPを行うことにより、表4に示す比較例超硬合金発明4〜5を製造した。   Similarly, for the purpose of comparison, samples having the composition of the present invention range shown in Table 1 (sample numbers 8 and 12 in Table 1) were subjected to the conditions shown in Table 3 (conditions outside the present invention range). Comparative Example Cemented Carbide Inventions 4 to 5 shown in Table 4 were produced by performing sintering and HIP.

次に、上記で得られた本発明例超硬合金1〜12、及び、比較例超硬合金発明1〜5について、表4に示される各特性値の測定、及び、工具として用いた際の摩耗量を測定したので、以下にて、各測定方法及び測定値の算出方法を示し、得られた結果については、表4に示す。   Next, with respect to the inventive example cemented carbides 1 to 12 and the comparative example cemented carbide inventions 1 to 5 obtained above, measurement of each characteristic value shown in Table 4 and when used as a tool Since the amount of wear was measured, each measurement method and the calculation method of the measured value are shown below, and the obtained results are shown in Table 4.

<WCの平均粒径、硬度、及び、破壊靱性値>
それぞれの試料の断面組織を走査型電子顕微鏡(倍率:10000倍)にて観察するとともに、硬質相を構成するWCの平均粒径については、リニアインターセプト法(Liner Intercept)の計算式により算出した。
また、WC基超硬合金の硬度は、その垂直断面において厚さ方向に均等に、3点にてマイクロビッカース硬度計(Hv(50kgf))を用いて硬度測定を行い、その平均値として算出した。
さらに、破壊靭性値については、JIS R1607の圧子圧入法により測定し、3か所の平均値として算出した。
<Average particle diameter, hardness, and fracture toughness value of WC>
While observing the cross-sectional structure of each sample with a scanning electron microscope (magnification: 10,000 times), the average particle diameter of WC constituting the hard phase was calculated by a calculation formula of a linear intercept method (Liner Intercept).
In addition, the hardness of the WC-based cemented carbide was calculated as an average value by performing hardness measurement using a micro Vickers hardness meter (Hv (50 kgf)) at three points evenly in the thickness direction in the vertical cross section. .
Furthermore, the fracture toughness value was measured by an indentation press method of JIS R1607 and calculated as an average value at three locations.

<残留応力値>
残留応力値は、X線回折法(XRD)を用い測定を行った。具体的には、Cu-Kα線を用いて2θ≧100°に観測されるピーク(WCは145°)をX線残留応力測定法(2θ−sin2ψ法)によりWCにかかる残留応力を算出した。尚、この計算にはヤング率:700GPa、ポアソン比:0.19を用いた。
<Residual stress value>
The residual stress value was measured using an X-ray diffraction method (XRD). Specifically, the residual stress applied to the WC is calculated by the X-ray residual stress measurement method (2θ-sin 2 ψ method) for the peak (WC is 145 °) observed at 2θ ≧ 100 ° using the Cu—Kα ray. did. In this calculation, Young's modulus: 700 GPa and Poisson's ratio: 0.19 were used.

<Co濃度比 (最大値)/(最小値)>
超硬合金の第2表層部における垂直断面でのCo濃度比、すなわち、Co量(質量%)の最小値に対する最大値の比は、第2表層部の全領域について、表面側から0.5μm毎にエネルギー分散型X線分析(SEM−EDS)を用いてCo量(mass%)を各2点測定し、その平均値を算出した後、各測定箇所の前記平均値の最小値に対する最大値の比より求めた。
<Co concentration ratio (maximum value) / (minimum value)>
The Co concentration ratio in the vertical cross section in the second surface layer portion of the cemented carbide, that is, the ratio of the maximum value to the minimum value of the Co amount (mass%) is 0.5 μm from the surface side in the entire region of the second surface layer portion. Each time, the amount of Co (mass%) was measured at two points using energy dispersive X-ray analysis (SEM-EDS), and the average value was calculated. Then, the maximum value with respect to the minimum value of the average value at each measurement point It was calculated from the ratio.

<硬度比 (表層部)/(内部)>
第2表層部より内部のHv(50kgf)に対する、第1表層部と第2表層部の境界面から第2表層部側0.7μm以内の部位におけるHv(50kgf)の硬度比については、それぞれの領域において、各3点にてマイクロビッカース硬度計(Hv(50kgf))を用いて硬度測定を行い、その平均値を算出し、内部の硬度の平均値に対する、第1表層部と第2表層部の境界面から第2表層部側0.7μm以内の部位における硬度の平均値の比により求めた。
<Hardness ratio (surface layer) / (inside)>
About the hardness ratio of Hv (50 kgf) at a portion within 0.7 μm from the boundary surface between the first surface layer portion and the second surface layer portion with respect to Hv (50 kgf) inside from the second surface layer portion, In the region, the hardness is measured using a micro Vickers hardness meter (Hv (50 kgf)) at each of three points, the average value is calculated, and the first surface layer portion and the second surface layer portion with respect to the average value of the internal hardness It was calculated | required by ratio of the average value of the hardness in the site | part within 0.7 micrometer from the 2nd surface layer part side from the boundary surface.

<最表面部(第1表層部)のCo面積率>
超硬合金最表面部を、走査型電子顕微鏡(倍率:200倍)にて撮影し、200倍視野に対し、Coが占める面積とその他の部分の面積を画像処理ソフト(WinROOF)により算出し、5視野の平均を取って最表面部Co面積率とした。(図2を参照。)
<最表面部(第1表層部)のCo量(質量%)>
前記走査型電子顕微鏡(倍率:200倍)による測定により、Coにて占められているとされた前記超硬合金の最表面部に対し、エネルギー分散型X線分析(SEM−EDS)を用いて3点の点分析を行い、その平均を取って最表面部のCo量(質量%)とした。
<Co area ratio of outermost surface portion (first surface layer portion)>
The outermost surface part of the cemented carbide is photographed with a scanning electron microscope (magnification: 200 times), and the area occupied by Co and the area of other parts are calculated by image processing software (WinROOF) with respect to the 200 times field of view, The average of 5 fields of view was taken as the Co area ratio of the outermost surface portion. (See Figure 2)
<Co amount (% by mass) of outermost surface portion (first surface layer portion)>
Using an energy dispersive X-ray analysis (SEM-EDS) on the outermost surface portion of the cemented carbide, which is supposed to be occupied by Co, as measured by the scanning electron microscope (magnification: 200 times). Three-point point analysis was performed, and the average was taken as the Co amount (% by mass) of the outermost surface portion.

<有孔度の測定>
超硬合金規格CIS006C−2007により測定を行った。
<Measurement of porosity>
Measurement was performed according to cemented carbide standard CIS006C-2007.

<摩耗量(mm)測定試験>
前記の方法により各性値を評価した超硬合金を、Φ300mmの台金にろう付けし、側面刃先を研磨した後、刃厚3mm、刃数85(表4、試料17種×各5刃)の丸鋸とした。厚さ20mmのパーチクルボードを被削材とし、回転数4000rpm、送り10m/minの条件で切断試験を行い、刃先逃げ面の摩耗量を計測した。
<Abrasion amount (mm) measurement test>
The cemented carbide whose properties were evaluated by the above method was brazed to a base metal of Φ300 mm, the side blade edge was polished, the blade thickness was 3 mm, and the number of blades was 85 (Table 4, 17 types of samples × 5 blades each) A circular saw. Using a particle board having a thickness of 20 mm as a work material, a cutting test was performed under the conditions of a rotational speed of 4000 rpm and a feed of 10 m / min, and the amount of wear on the flank face was measured.

表4に示すとおり、本発明例WC基超硬合金1〜12は、硬質相を構成するWCの平均粒径がいずれも0.1〜0.5μmと微細組織構造を有し、さらに、硬度及び破壊靭性値について測定を行ったところ、いずれもHv2000以上の高硬度、破壊靭性値4.0MPa・m1/2以上の高靭性を有するものであり、切断加工用工具として用いた際も摩耗量が少なく、優れた特性を有するものであった。
これに対し、本発明範囲の成分組成を満足しない、比較例WC基超硬合金1〜3は、硬度、破壊靱性値を満足することができず、そのため、欠けの発生が見られるものや、欠けが発生しなくとも摩耗量の増大が著しいものであった。
また、本発明範囲の成分組成は満足するものの、一定の製造条件を満たさない、例えば、焼結温度、或いは、HIP温度が1400℃を大きく超えるものについては、比較例WC基超硬合金4、5の結果にみられるように、残留応力値が低く、チッピングが生じたり、また、硬度が低く、摩耗量が多くなるなど、満足の得られるものではなかった。
As shown in Table 4, the present invention examples WC-based cemented carbides 1 to 12 have a fine structure with an average particle diameter of WC constituting the hard phase of 0.1 to 0.5 μm, and further, hardness And fracture toughness values were measured, both of which have a high hardness of Hv2000 or higher and a fracture toughness value of 4.0 MPa · m1 / 2 or higher, and wear when used as a cutting tool. The amount was small and had excellent characteristics.
On the other hand, Comparative Example WC-based cemented carbides 1 to 3 that do not satisfy the component composition of the present invention range cannot satisfy the hardness and fracture toughness values, and therefore, occurrence of chipping is observed, Even if no chipping occurred, the amount of wear was remarkably increased.
The composition of the present invention is satisfactory, but does not satisfy certain manufacturing conditions. For example, the sintering temperature or the HIP temperature greatly exceeds 1400 ° C., Comparative Example WC-based cemented carbide 4, As can be seen from the result of No. 5, the residual stress value was low, chipping occurred, the hardness was low, and the wear amount was not satisfactory.



本発明に係るWC基超硬合金は、強断続切削などの厳しい条件下においても、高靭性、高耐摩耗性に優れるため、非金属系材料の加工用工具を含む切断加工用工具として用いることができ、極めて有用である。
Since the WC-based cemented carbide according to the present invention is excellent in high toughness and high wear resistance even under severe conditions such as hard interrupted cutting, it should be used as a cutting tool including a tool for processing non-metallic materials. It is extremely useful.

Claims (8)

硬質相と結合相とからなり、結合相成分としてのCoを1〜5mass%含み、また、Crおよび/またはCrの炭化物、窒化物、炭窒化物、並びに、Vおよび/またはVの炭化物、窒化物、炭窒化物の1種または2種以上を合計で0.1〜0.7mass%含み、残部がWCと不可避不純物とからなるWC基超硬合金において、
硬度および破壊靭性値がそれぞれ、Hv2000以上および4.0MPa・m1/2以上であり、
WCの平均粒径は0.1〜0.5μmであり、
また、前記超硬合金は、その表面に表層部を有し、該表層部のWCには、10〜30MPaの残留圧縮応力が付与されていることを特徴とするWC基超硬合金。
It consists of a hard phase and a binder phase, contains 1 to 5 mass% of Co as a binder phase component, and also contains Cr and / or Cr carbide, nitride, carbonitride, and V and / or V carbide, nitride In a WC-based cemented carbide comprising one or two or more of carbonitrides and carbonitrides in a total of 0.1 to 0.7 mass%, and the balance consisting of WC and inevitable impurities,
The hardness and fracture toughness values are Hv2000 or more and 4.0 MPa · m1 / 2 or more, respectively.
The average particle size of WC is 0.1 to 0.5 μm,
Further, the cemented carbide has a surface layer portion on the surface thereof, and a residual compressive stress of 10 to 30 MPa is applied to the WC of the surface layer portion.
請求項1に記載されたWC基超硬合金において、
前記表層部は、垂直断面方向に、最表面から0.1〜1.0μmまでの領域である第1表層部と、該第1表層部から垂直断面方向に更に10μmの領域である第2表層部とからなり、
第1表層部のCo量(質量%)は15mass%以上であることを特徴とするWC基超硬合金。
In the WC base cemented carbide according to claim 1,
The surface layer portion is a first surface layer portion that is a region from 0.1 to 1.0 μm from the outermost surface in the vertical cross-sectional direction, and a second surface layer that is a region that is further 10 μm from the first surface layer portion in the vertical cross-sectional direction. And consists of
A WC-based cemented carbide characterized in that the Co amount (% by mass) of the first surface layer part is 15 mass% or more.
請求項2に記載されたWC基超硬合金において、
第2表層部における垂直断面方向のCo量(質量%)の最小値に対する最大値の比が、1.5〜20であることを特徴とするWC基超硬合金。
In the WC base cemented carbide according to claim 2,
A WC-based cemented carbide characterized in that the ratio of the maximum value to the minimum value of Co amount (% by mass) in the vertical cross-sectional direction in the second surface layer portion is 1.5 to 20.
請求項2または請求項3のいずれかに記載されたWC基超硬合金において、
第2表層部より内部のHv(50kgf)に対する、第1表層部と第2表層部の境界面から第2表層部側0.7μm以内の部位におけるHv(50kgf)の比が、0.9〜0.99であることを特徴とするWC基超硬合金。
In the WC base cemented carbide according to any one of claims 2 and 3,
The ratio of Hv (50 kgf) at a portion within 0.7 μm from the boundary surface between the first surface layer portion and the second surface layer portion to Hv (50 kgf) inside from the second surface layer portion is 0.9 to A WC-based cemented carbide characterized by being 0.99.
請求項1乃至請求項4のいずれか一項に記載されたWC基超硬合金において、
前記表層部の最表面におけるCoの面積率が40%以上であることを特徴とするWC基超硬合金。
In the WC base cemented carbide according to any one of claims 1 to 4,
WC-based cemented carbide characterized in that the area ratio of Co on the outermost surface of the surface layer portion is 40% or more.
請求項1乃至請求項5のいずれか一項に記載されたWC基超硬合金において、
有孔度が超硬合金規格CIS006C−2007でA02〜A06、または、B02〜B06であることを特徴とするWC基超硬合金。
In the WC-based cemented carbide according to any one of claims 1 to 5,
A WC-based cemented carbide having a porosity of A02 to A06 or B02 to B06 according to cemented carbide standard CIS006C-2007.
請求項1乃至請求項6のいずれか一項に記載されたWC基超硬合金において、
結合相成分のNiをCoの含有量(質量%)の10mass%以下で含有することを特徴とするWC基超硬合金。
In the WC base cemented carbide according to any one of claims 1 to 6,
A WC-based cemented carbide comprising Ni as a binder phase component at 10 mass% or less of the Co content (% by mass).
請求項1乃至請求項7のいずれか一項に記載されたWC基超硬合金において、
Ti、Zr、Nb、Mo、Hf及びTaの炭化物、窒化物、炭窒化物の1種または2種以上を結合相成分の10mass%以下で含有させることを特徴とするWC基超硬合金。
In the WC base cemented carbide according to any one of claims 1 to 7,
A WC-based cemented carbide comprising one or more of Ti, Zr, Nb, Mo, Hf and Ta carbides, nitrides, and carbonitrides in an amount of 10 mass% or less of the binder phase component.
JP2016068289A 2016-03-30 2016-03-30 Cemented carbide used as a tool for machining non-metallic materials Active JP6695566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016068289A JP6695566B2 (en) 2016-03-30 2016-03-30 Cemented carbide used as a tool for machining non-metallic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016068289A JP6695566B2 (en) 2016-03-30 2016-03-30 Cemented carbide used as a tool for machining non-metallic materials

Publications (2)

Publication Number Publication Date
JP2017179474A true JP2017179474A (en) 2017-10-05
JP6695566B2 JP6695566B2 (en) 2020-05-20

Family

ID=60005093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016068289A Active JP6695566B2 (en) 2016-03-30 2016-03-30 Cemented carbide used as a tool for machining non-metallic materials

Country Status (1)

Country Link
JP (1) JP6695566B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021107095A (en) * 2019-12-27 2021-07-29 株式会社Moldino Coated cutting tool
JP2023503854A (en) * 2019-11-22 2023-02-01 セラティチット ルクセンブルグ エス.アー.エール.エル Tungsten carbide hard metal material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179978A (en) * 1993-12-22 1995-07-18 Sumitomo Electric Ind Ltd Nitrogen-containing sintered hard alloy
JPH08218145A (en) * 1995-02-09 1996-08-27 Sumitomo Electric Ind Ltd Cemented carbide for tool for working woody hard material
JP2015145533A (en) * 2015-02-04 2015-08-13 住友電気工業株式会社 Cemented carbide and working tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179978A (en) * 1993-12-22 1995-07-18 Sumitomo Electric Ind Ltd Nitrogen-containing sintered hard alloy
JPH08218145A (en) * 1995-02-09 1996-08-27 Sumitomo Electric Ind Ltd Cemented carbide for tool for working woody hard material
JP2015145533A (en) * 2015-02-04 2015-08-13 住友電気工業株式会社 Cemented carbide and working tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023503854A (en) * 2019-11-22 2023-02-01 セラティチット ルクセンブルグ エス.アー.エール.エル Tungsten carbide hard metal material
JP7385751B2 (en) 2019-11-22 2023-11-22 セラティチット ルクセンブルグ エス.アー.エール.エル Tungsten carbide hard metal material
JP2021107095A (en) * 2019-12-27 2021-07-29 株式会社Moldino Coated cutting tool
JP7410383B2 (en) 2019-12-27 2024-01-10 株式会社Moldino coated cutting tools

Also Published As

Publication number Publication date
JP6695566B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP4690475B2 (en) Cermet and coated cermet tools
JP6439975B2 (en) Cermet manufacturing method
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
JP2013078840A (en) Cutting tool
WO2012053237A1 (en) Wc-based cemented carbide cutting tool having high defect resistance for heat-resistant alloy cutting, and surface-coated wc-based cemented carbide cutting tool
JP2004076049A (en) Hard metal of ultra-fine particles
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
JP4069749B2 (en) Cutting tool for roughing
JP2006037160A (en) Sintered compact
JP7385829B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
JP2006111947A (en) Ultra-fine particle of cermet
JP7031532B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JP2012041595A (en) Cermet
JP5233124B2 (en) Cemented carbide and coated cemented carbide
JP2009007615A (en) Cemented carbide, and cutting tool using the same
JP2009006413A (en) Ti based cermet
JP2020132972A (en) Cemented carbide and cutting tool
JP2005200668A (en) Cermet and coated cermet, and manufacturing methods for them
JP2020132971A (en) Cemented carbide and cutting tool
JP4284153B2 (en) Cutting method
JP7307394B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and chipping resistance
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JPWO2008146856A1 (en) cermet
JP2003094207A (en) Cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200405

R150 Certificate of patent or registration of utility model

Ref document number: 6695566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250