JP2003094207A - Cutting tool - Google Patents

Cutting tool

Info

Publication number
JP2003094207A
JP2003094207A JP2001293033A JP2001293033A JP2003094207A JP 2003094207 A JP2003094207 A JP 2003094207A JP 2001293033 A JP2001293033 A JP 2001293033A JP 2001293033 A JP2001293033 A JP 2001293033A JP 2003094207 A JP2003094207 A JP 2003094207A
Authority
JP
Japan
Prior art keywords
base material
cemented carbide
cutting tool
hardness
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001293033A
Other languages
Japanese (ja)
Inventor
Daisuke Shibata
大輔 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001293033A priority Critical patent/JP2003094207A/en
Priority to DE10244955.4A priority patent/DE10244955C5/en
Priority to US10/256,275 priority patent/US6797369B2/en
Publication of JP2003094207A publication Critical patent/JP2003094207A/en
Priority to US10/916,671 priority patent/US7018726B2/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool retaining high hardness and toughness having excellent wear resistance, plasticity and deformability resistance and fracture- ability resistance for high efficient cutting of a hard cutting material such as stainless steel or the like. SOLUTION: This cutting tool is characterizedly having a superficial region having a minimum hardness of 90-98% in comparison with the internal hardness of a parent material in the vicinity of the surface of the parent material of cemented carbide in the cutting tool having a clad layer on the surface of the cemented carbide comprising a rigid phase component greater than the first class of metallic carbide, nitride and/or carbo-nitride selected among group 4a, 5a, 6a metals in the periodic table including at least WC and a binder phase component at least one kind of the iron group metals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は切削工具に関し、特
にステンレス鋼をはじめとする難削材の切削に適する硬
度と靭性を備えた炭化タングステン基被覆超硬合金母材
などからなる切削工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tool, and more particularly to a cutting tool made of a tungsten carbide based coated cemented carbide base material having hardness and toughness suitable for cutting difficult-to-cut materials such as stainless steel.

【0002】[0002]

【従来の技術】従来から、金属の切削加工に広く用いら
れている超硬合金は、炭化タングステンを主体とする硬
質相と、コバルト等の鉄族金属の結合相からなるWC−
Co系合金、もしくは上記WC−Co系に周期律表第4
a、5a、6a族の金属の炭化物、窒化物、炭窒化物等
を添加した系が知られている。これらの超硬合金は、切
削工具として、主に鋳鉄や炭素鋼等の切削に適用されて
いるが、最近ではステンレス鋼に代表される難削材の切
削への適用も進められている。しかしながら、これら難
削材は加工硬化の発生、低熱伝導率、工具材料との親和
性が高い、という性質を持つために、切削加工の分野で
は問題が多いのが現状である。すなわち、ステンレス鋼
の加工には靭性と硬度を兼ね備えた超硬合金母材が必要
とされていた。
2. Description of the Related Art Conventionally, a cemented carbide that has been widely used for metal cutting is a WC-based alloy composed of a hard phase mainly composed of tungsten carbide and a binder phase of an iron group metal such as cobalt.
The Co-based alloy, or the above WC-Co system, has a periodic table
Systems in which carbides, nitrides, carbonitrides, and the like of a, 5a, and 6a group metals are added are known. These cemented carbides are mainly used as cutting tools for cutting cast iron, carbon steel, etc., but recently, they are also being applied for cutting difficult-to-cut materials represented by stainless steel. However, these difficult-to-cut materials have many problems in the field of cutting work because of their properties of occurrence of work hardening, low thermal conductivity and high affinity with tool materials. That is, a cemented carbide base material having both toughness and hardness was required for processing stainless steel.

【0003】[0003]

【発明が解決しようとする課題】従来のCo量の比較的
少ないWC−Co系超硬合金からなるK種超硬合金製切
削工具や単一組成のB1型固溶体を有するP種超硬合金
製切削工具でステンレス鋼等の難削材を切削加工する
と、切削工具の摩耗が急激に進行したり、溶着が原因と
考えられる欠損が発生して被削材の加工面状態が悪化
し、短時間のうちに工具寿命となり、良好な切削ができ
ないという問題があった。
[Problems to be Solved by the Invention] A conventional cutting tool made of K type cemented carbide made of WC-Co type cemented carbide having a relatively small amount of Co and made of P type cemented carbide having a B1 type solid solution of a single composition. When cutting difficult-to-cut materials such as stainless steel with a cutting tool, the wear of the cutting tool progresses rapidly and defects that are thought to be caused by welding occur and the work surface condition of the work material deteriorates There was a problem that the tool life was reached and good cutting could not be performed.

【0004】また、加工硬化した加工面から受ける切削
抵抗から一次境界部の損傷が激しく、早々に工具寿命に
到り、良好な切削特性を得るに至っていない。
Further, the cutting resistance received from the work-hardened working surface causes severe damage to the primary boundary portion, the tool life is quickly reached, and good cutting characteristics are not obtained.

【0005】本発明は上記のような問題点を解決し、特
にステンレス鋼に代表される難削材の高速・高能率切削
に適した切削工具に利用できる被覆超硬合金からなる切
削工具を提供することを目的とする。
The present invention solves the above problems and provides a cutting tool made of coated cemented carbide which can be used as a cutting tool suitable for high speed and high efficiency cutting of difficult-to-cut materials typified by stainless steel. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記問題点
について検討を重ねた結果、超硬合金母材の表面近傍に
母材内部における硬度と比較して90〜98%の最低硬
度の表面領域を有することにより、難削材加工時に十分
な硬度を有し、加工硬化を起こした表面を切削する際に
受ける衝撃に耐えうる靭性も兼ね備えた超硬合金母材が
得られるという知見を得て本発明に至った。
As a result of repeated studies on the above-mentioned problems, the present inventor found that the minimum hardness of 90 to 98% was found in the vicinity of the surface of the cemented carbide base material as compared with the hardness inside the base material. By having a surface region, it is possible to obtain a cemented carbide base material that has sufficient hardness when processing difficult-to-cut materials and also has toughness that can withstand the impact received when cutting the work-hardened surface. The present invention was obtained.

【0007】また、上記超硬合金母材において、母材内
部に2種以上のB1型固溶体相が存在し、このB1型固
溶体相のうちの少なくとも1種がそれ以外のB1型固溶
体相と比較してZrの含有量が多いB1型固溶体相であ
り、これらがこの超硬合金母材の表面近傍と母材内部に
おいて存在状態が異なることによっても上記効果が特徴
的に得られることが分かった。
In the cemented carbide base material, there are two or more kinds of B1 type solid solution phases inside the base material, and at least one of the B1 type solid solution phases is compared with other B1 type solid solution phases. It was found that the above effects are characteristically obtained by the B1 type solid solution phase containing a large amount of Zr, and the existence states of these being different near the surface of the cemented carbide base material and inside the base material. .

【0008】すなわち、本発明の切削工具は、少なくと
もWCを含む周期律表第4a、5a、6a族からなる群
より選ばれた金属の炭化物、窒化物および/または炭窒
化物の1種以上の硬質相成分と1種以上の鉄族金属の結
合相成分とからなる超硬合金母材の表面に被覆層を有す
る切削工具において、前記超硬合金母材の表面近傍に母
材内部の硬度と比較して90〜98%の最低硬度の領域
を有することを特徴とするものである。
That is, the cutting tool of the present invention comprises at least one kind of carbide, nitride and / or carbonitride of a metal selected from the group consisting of Groups 4a, 5a and 6a of the Periodic Table containing at least WC. In a cutting tool having a coating layer on the surface of a cemented carbide base material composed of a hard phase component and a binder phase component of one or more iron group metals, a hardness inside the base material near the surface of the cemented carbide base material By comparison, it is characterized by having a minimum hardness region of 90 to 98%.

【0009】上記切削工具は、前記周期律表第4a、5
a、6a族からなる群より選ばれた金属としてZrを含
有するとともに、前記周期律表第4a、5a、6a族か
らなる群より選ばれた金属に占める前記Zrの比率が前
記超硬合金母材の内部に比べて高い領域を前記超硬合金
母材の表面近傍に有することが望ましい。
The above cutting tool has the above-mentioned periodic table Nos. 4a and 5a.
The metal containing Zr as a metal selected from the group consisting of groups a and 6a, and the ratio of Zr in the metal selected from the group consisting of groups 4a, 5a and 6a of the periodic table is the cemented carbide matrix. It is desirable to have a region higher than the inside of the material near the surface of the cemented carbide base material.

【0010】また、上記切削工具では、前記Zrの比率
が前記超硬合金母材の内部に比べて高い領域の厚さが5
乃至100μmであることが望ましい。
Further, in the above cutting tool, the thickness of the region where the ratio of Zr is higher than that in the inside of the cemented carbide base material is 5
To 100 μm is desirable.

【0011】また、上記切削工具では、上記超硬合金母
材の内部に2種以上のB1型固溶体相が存在し、前記B
1型固溶体相のうちの1種がそれ以外のB1型固溶体相
と比較してZrの含有量が多いB1型固溶体相であるこ
とが望ましい。
Further, in the above cutting tool, two or more kinds of B1-type solid solution phases are present inside the cemented carbide base material,
It is desirable that one of the type 1 solid solution phases is a type B1 solid solution phase having a higher Zr content than the other type B1 type solid solution phases.

【0012】前記切削工具では、前記Zrの含有量が多
いB1型固溶体相の平均粒径が3μm以下であることが
望ましい。
In the above cutting tool, it is desirable that the average particle size of the B1 type solid solution phase containing a large amount of Zr is 3 μm or less.

【0013】上記切削工具では、前記周期律表第4a、
5a、6a族からなる群より選ばれた金属のうちのTa
の含有量が、TaC換算で全量中の1重量%以下であっ
ても優れた工具特性を有する超硬合金母材となる。
In the above cutting tool, the periodic table 4a,
Ta of metals selected from the group consisting of 5a and 6a groups
Even if the content of is less than 1% by weight based on TaC, the cemented carbide base material has excellent tool characteristics.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を詳述す
る。本発明の切削工具に用いられる超硬合金母材は、硬
質相と結合相で構成されており、硬質相はWCと、WC
の0〜15重量%を周期律表第4a、5a、6a族の金
属の炭化物、窒化物、炭窒化物で置換したものからな
り、WC以外の成分が配合される場合に形成されるB1
型固溶体相は、複合炭化物固溶体あるいは複合炭窒化物
固溶体からなる。また、結合相は、Co等の鉄族金属を
主成分とするもので、全量中に5〜15重量%の割合で
含有される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The cemented carbide base material used for the cutting tool of the present invention is composed of a hard phase and a binder phase, and the hard phase is WC and WC.
B1 formed when a component other than WC is blended, which is formed by substituting 0 to 15% by weight of the above with carbides, nitrides, and carbonitrides of metals of Groups 4a, 5a, and 6a of the Periodic Table.
The mold solid solution phase is composed of a composite carbide solid solution or a composite carbonitride solid solution. The binder phase is mainly composed of an iron group metal such as Co and is contained in a proportion of 5 to 15% by weight in the total amount.

【0015】本発明の切削工具に用いられる超硬合金母
材では、超硬合金母材の表面近傍に母材内部における硬
度と比較して90〜98%の最低硬度の表面領域を有す
ることを特徴とする。母材の表面近傍の硬度が母材内部
の硬度と比較して90%を下回ると、難削材加工時の切
削温度の上昇によって硬度が著しく低下し、刃先の組成
変形を引き起こす。また、98%を上回ると母材表面が
固すぎるため、加工硬化したステンレス鋼を切削する際
に衝撃に耐えきれずに欠損を生じる。そのため、表面近
傍の硬度を母材内部の硬度の90〜98%に設定しなけ
ればならない。
The cemented carbide base material used in the cutting tool of the present invention has a surface area near the surface of the cemented carbide base material having a minimum hardness of 90 to 98% as compared with the hardness inside the base material. Characterize. When the hardness in the vicinity of the surface of the base material is lower than 90% as compared with the hardness inside the base material, the hardness is remarkably lowered due to an increase in cutting temperature during processing of the difficult-to-cut material, causing compositional deformation of the cutting edge. On the other hand, if it exceeds 98%, the surface of the base material is too hard, so that when work-hardened stainless steel is cut, it cannot bear the impact and is broken. Therefore, the hardness near the surface must be set to 90 to 98% of the hardness inside the base material.

【0016】図1に本発明の切削工具に用いられる超硬
合金母材と従来の超硬合金母材の硬度勾配を示す。従
来、超硬合金母材の表面強靭化の手法として知られる窒
化物あるいは窒素添加による脱β層では強靭化した表面
層の最低硬度は母材内部における硬度と比較して約50
〜80%であり、難削材の切削においては切削温度が著
しく上昇するため、軟化して組成変形を生じていた。こ
れに対して本発明の切削工具に用いられる超硬合金母材
は窒素添加を行わずに表面の強靭化を行ったため、難削
材の切削における切削温度上昇領域において、切削に十
分な硬度を保持しつつ表面近傍の靭性化が図られてい
る。
FIG. 1 shows the hardness gradient of the cemented carbide base material used in the cutting tool of the present invention and the conventional cemented carbide base material. Conventionally, the minimum hardness of the toughened surface layer in the de-beta layer by addition of nitride or nitrogen, which is known as a method of surface toughening of the cemented carbide base material, is about 50 compared to the hardness inside the base material.
It is -80%, and the cutting temperature remarkably rises in the cutting of the difficult-to-cut material, so that the composition is softened and the composition is deformed. On the other hand, since the cemented carbide base material used in the cutting tool of the present invention has toughened the surface without adding nitrogen, in the cutting temperature rising region in the cutting of difficult-to-cut materials, sufficient hardness for cutting is obtained. The toughness in the vicinity of the surface is increased while maintaining the same.

【0017】また、本発明の切削工具に用いられる超硬
合金母材においては、図2の各金属元素の表面付近の分
布に示すように周期律表第4a、5a、6a族からなる
群より選ばれた金属に占めるZrの比率が超硬合金母材
の内部に比べて高い領域を超硬合金母材の表面近傍に有
することによって強靭化された表面領域はさらに高温に
おける強度を改善し、優れた耐欠損性を有することがで
きる。これはZrが高温での靱性及び耐塑性変形性に優
れることが主要因である。また、上記領域では、Zr以
外の周期律表第4a、5a、6a族の金属のうち多くが
減量することに対応して結合相が増量する。この結合相
の増量は上記靱性の強化に寄与するとともに、耐摩耗性
との関連において、増量する分の結合相は周期律表第4
a、5a、6a族の金属を若干量取り込んでいることに
より、耐塑性変形性に悪影響を与えない。したがって、
本発明の切削工具は、上記Zrの高温での優れた耐塑性
変形性によって耐摩耗性も向上する。
Further, in the cemented carbide base material used in the cutting tool of the present invention, as shown in the distribution of each metal element near the surface of FIG. 2, from the group consisting of groups 4a, 5a and 6a of the periodic table. The surface region toughened by having a region in which the ratio of Zr in the selected metal is higher in the vicinity of the surface of the cemented carbide base material than in the interior of the cemented carbide base material, further improves the strength at high temperatures, It can have excellent fracture resistance. The main reason for this is that Zr has excellent toughness and plastic deformation resistance at high temperatures. Further, in the above region, the amount of the binder phase is increased in correspondence with the decrease of most of the metals of groups 4a, 5a and 6a other than Zr in the periodic table. This increase in the amount of the binder phase contributes to the strengthening of the toughness, and, in relation to the wear resistance, the amount of the binder phase to be increased is 4th in the periodic table.
By incorporating a little amount of the metals of group a, 5a and 6a, the plastic deformation resistance is not adversely affected. Therefore,
The cutting tool of the present invention also has improved wear resistance due to the excellent plastic deformation resistance of Zr at high temperatures.

【0018】さらに、図2に示すように周期律表第4
a、5a、6a族からなる群より選ばれた金属に占める
Zrの比率が超硬合金母材の内部に比べて高い領域の厚
さが母材表面から内部に向かって5乃至100μmにわ
たって有することが好適である。この範囲が好適である
のはZrの比率が超硬合金母材の内部に比べて高い領域
が5μmであると強度が不充分であって工具の塑性変形
や損傷が激しくなり、100μmを超えると耐摩耗性が
低下して工具摩耗量の増加が著しくなることがあるため
である。
Further, as shown in FIG.
The thickness of the region where the ratio of Zr in the metal selected from the group consisting of a, 5a and 6a is higher than that of the inside of the cemented carbide base material is 5 to 100 μm from the surface of the base material toward the inside. Is preferred. This range is suitable because when the region where the Zr ratio is higher than the inside of the cemented carbide base material is 5 μm, the strength is insufficient and the plastic deformation and damage of the tool become severe, and when it exceeds 100 μm. This is because the wear resistance may decrease and the amount of tool wear may significantly increase.

【0019】なお、上記超硬合金母材において、母材内
部に2種以上のB1型固溶体相が存在し、B1型固溶体
相のうちの少なくとも1種がそれ以外のB1型固溶体相
と比較してZrの含有量が多いB1型固溶体相であるこ
とによっても高温での優れた耐塑性変形性が得られ耐摩
耗性が向上する。つまり、Zr含有量が多い固溶体相の
生成に伴いB1型固溶体相の組成が変化し、結合相との
濡れ性が向上するために合金全体が強化され、これらB
1型固溶体相を適度に存在させることにより、高温にお
ける機械的強度を保持することで難削材の高速・高能率
加工に対して優れた切削性能を有する。
In the cemented carbide base material, two or more kinds of B1 type solid solution phases exist inside the base material, and at least one of the B1 type solid solution phases is compared with other B1 type solid solution phases. The B1 type solid solution phase containing a large amount of Zr also provides excellent plastic deformation resistance at high temperatures and improves wear resistance. That is, the composition of the B1-type solid solution phase changes with the formation of the solid solution phase having a large Zr content, and the wettability with the binder phase is improved, so that the entire alloy is strengthened.
Proper presence of the type 1 solid solution phase maintains the mechanical strength at high temperatures, resulting in excellent cutting performance for high-speed and high-efficiency machining of difficult-to-cut materials.

【0020】この場合、上記Zrの含有量が多いB1型
固溶体相は、合金中に平均粒径が3μm以下の相として
存在することが望ましい。これは、平均粒径が3μmを
超えると、B1型固溶体相が結合相との濡れが悪いため
に、合金全体の強度が低下するためである。最適には平
均粒径1μm程度である。つまり、固溶体相自体は本来
脆性であるために、合金中に粗大な相として析出した場
合には機械的強度の低下が著しく、切削工具として用い
た場合に工具の損傷や塑性変形が激しくなる。よって、
Zr含有量が多いB1型固溶体相の平均粒径を上記範囲
で存在させることが必要となる。
In this case, the B1-type solid solution phase having a large Zr content is preferably present in the alloy as a phase having an average particle size of 3 μm or less. This is because when the average particle size exceeds 3 μm, the B1 type solid solution phase is poor in wetting with the binder phase, and the strength of the entire alloy decreases. Optimally, the average particle size is about 1 μm. That is, since the solid solution phase itself is inherently brittle, when precipitated as a coarse phase in the alloy, the mechanical strength is remarkably reduced, and when used as a cutting tool, the tool is severely damaged and plastically deformed. Therefore,
It is necessary that the average particle size of the B1 type solid solution phase having a large Zr content be within the above range.

【0021】さらに、本発明によれば、超硬合金母材の
全量中の周期律表第4a、5a、6a族の金属のうちの
Taの含有量が、TaC換算で1重量%以下、特に0.
2重量%以下、さらには不可避不純物として以外は実質
上含有しない場合においても、優れた耐摩耗性、耐塑性
変形性および耐欠損性を維持することができる。すなわ
ち、他の原料に比較して非常に高価なTa原料を用いる
ことなく、ビッカース硬度(Hv)が1400以上、破
壊靭性(K1c)12mPa/m1/2以上、3点曲げ強度
2500MPa以上、800℃における熱伝導率70W
/m・K以上の優れた熱的および機械的特性を有する超
硬合金母材となる。
Furthermore, according to the present invention, the content of Ta in the metals of Groups 4a, 5a and 6a of the Periodic Table in the total amount of the cemented carbide base material is 1% by weight or less in terms of TaC, especially 0.
Excellent wear resistance, plastic deformation resistance, and fracture resistance can be maintained even when the content is 2% by weight or less, and even when it is not substantially contained except as unavoidable impurities. That is, the Vickers hardness (Hv) is 1400 or more, the fracture toughness (K 1c ) is 12 mPa / m 1/2 or more, and the three-point bending strength is 2500 MPa or more, without using a Ta material that is extremely expensive compared to other materials. Thermal conductivity 70W at 800 ℃
/ M · K or more, which is a cemented carbide base material having excellent thermal and mechanical properties.

【0022】被覆される硬質層は、TiC、TiN、T
iCNをはじめとする周期律表第4a、5a、6a族の
金属の炭化物、窒化物、炭窒化物、およびTiAlN、
TiZrN、TiCrN、ZrO2、Al23等が挙げ
られ、これらはCVD法あるいはPVD法で0.1〜2
0μmの厚みに形成されることが望ましい。
The hard layer coated is TiC, TiN, T
Carbides, nitrides, carbonitrides, and TiAlNs of metals of groups 4a, 5a, and 6a of the Periodic Table including iCN,
TiZrN, TiCrN, or the like ZrO 2, Al 2 O 3 and the like, which by a CVD method or a PVD method 0.1-2
It is desirable to be formed to a thickness of 0 μm.

【0023】上述した超硬合金母材を製造するには、ま
ず例えば平均粒径0.5〜10μmの炭化タングステン
粉末を80〜90重量%、平均粒径0.5〜10μm周
期律表第4a、5a、6a族の金属の炭化物、窒化物お
よび炭窒化物粉末もしくはこれら金属のうちの2種以上
の固溶体粉末を総量で0.1〜10重量%、平均粒径
0.5〜10μmの鉄族金属を5〜15重量%、さらに
は所望によって金属タングステン(W)粉末あるいはカ
ーボンブラック(C)を混合する。
In order to manufacture the above cemented carbide base material, first, for example, 80 to 90% by weight of tungsten carbide powder having an average particle size of 0.5 to 10 μm and an average particle size of 0.5 to 10 μm are used in Periodic Table 4a. Iron having a total amount of 0.1 to 10% by weight of carbide, nitride and carbonitride powders of 5a and 6a group metals or solid solution powders of two or more of these metals, and an average particle size of 0.5 to 10 μm. The group metal is mixed in an amount of 5 to 15% by weight, and if desired, metal tungsten (W) powder or carbon black (C) is mixed.

【0024】次に、上記混合粉末を用いて、プレス成
形、鋳込成形、押出成形、冷間静水圧プレス成形等の公
知の成形方法によって所定形状に成形した後、0.1〜
15Paの真空中、1〜20℃/分で昇温し、1350
〜1500℃で0.2〜5時間、特に0.5〜2時間焼
成することによって上述した超硬合金母材を得ることが
できる。
Next, the powder mixture is molded into a predetermined shape by a known molding method such as press molding, cast molding, extrusion molding, cold isostatic pressing, etc.
In a vacuum of 15 Pa, the temperature is raised at 1 to 20 ° C./min, and 1350
The above-described cemented carbide base material can be obtained by firing at -1500 ° C for 0.2-5 hours, particularly 0.5-2 hours.

【0025】なお、本発明の特徴である、表面近傍に母
材内部における硬度と比較して90〜98%の最低硬度
の表面領域を有する超硬合金母材を得るには一次原料に
おいて窒化物および/または炭窒化物を添加することな
く、いわゆるB1型固溶体を構成する炭化物に対するC
o等の結合相金属量、および超硬合金母材における2相
健全域内のC量を調整し、さらに焼成条件のうちとくに
液相出現温度付近での昇温速度と焼成後の冷却速度をと
もに5℃/min程度制御することが必要である。ま
た、脱脂工程における水素フローや脱炭雰囲気焼成を行
うことによってより効率的に得ることができる。
In order to obtain a cemented carbide base material having a surface area having a minimum hardness of 90 to 98% in the vicinity of the surface as compared with the hardness inside the base material, which is a feature of the present invention, a nitride is used as a primary raw material. And / or C to the carbides forming the so-called B1-type solid solution without adding carbonitrides
The amount of the binder phase metal such as o and the amount of C in the two-phase sound region in the cemented carbide base material are adjusted, and both the heating rate especially near the liquid phase appearance temperature and the cooling rate after the firing are set in the firing conditions. It is necessary to control about 5 ° C./min. Further, it can be obtained more efficiently by performing hydrogen flow in the degreasing process or firing in a decarburizing atmosphere.

【0026】さらに、超硬合金母材の一次原料において
B1型固溶体を構成する周期律表第4a、5a、6a族
の金属の炭化物に対するZr化合物の添加比率を調整し
て上記方法で焼成することにより、さらに優れた強度と
高温での優れた耐塑性変形性によって耐摩耗性を保持す
る超硬合金母材を得ることができる。
Further, the primary raw material of the cemented carbide base material is adjusted by adjusting the addition ratio of the Zr compound to the carbides of the metals of the 4a, 5a and 6a groups of the periodic table constituting the B1 type solid solution and firing by the above method. As a result, it is possible to obtain a cemented carbide base material that retains wear resistance due to excellent strength and excellent plastic deformation resistance at high temperatures.

【0027】ここで、超硬合金母材の内部における硬度
と比較して90〜98%の最低硬度の表面領域の厚みに
ついては、焼成時の保持温度と時間を調整することで制
御が可能である。
Here, the thickness of the surface region having the minimum hardness of 90 to 98% as compared with the hardness inside the cemented carbide base material can be controlled by adjusting the holding temperature and time during firing. is there.

【0028】また、上述した本発明の切削工具に用いら
れる超硬合金母材は、高硬度、高強度、高熱伝導率の優
れた機械的特性と熱的特性を有することから、金型、耐
摩耗部材、高温構造材料等に適応可能であり、中でも切
削工具、さらにはステンレス鋼等の難削材用の切削工具
として好適に使用できる。
Further, the cemented carbide base material used for the cutting tool of the present invention described above has excellent mechanical properties and thermal properties such as high hardness, high strength and high thermal conductivity. It can be applied to wear members, high-temperature structural materials, and the like, and can be suitably used as a cutting tool, and further as a cutting tool for difficult-to-cut materials such as stainless steel.

【0029】また、本発明の切削工具は、上述した超硬
合金母材の表面に、周期律表第4a、5a、6a族の金
属の炭化物、窒化物、炭窒化物、TiAlN、TiZr
N、TiCrN、ダイヤモンドおよびAl23の群から
選ばれる少なくとも1種の被覆層を単層または複数層形
成したものであってもよい。
Further, the cutting tool of the present invention is characterized in that, on the surface of the above-mentioned cemented carbide base material, carbides, nitrides, carbonitrides, TiAlN, TiZr of metals of groups 4a, 5a and 6a of the periodic table are provided.
A single layer or a plurality of layers of at least one kind of coating layer selected from the group consisting of N, TiCrN, diamond and Al 2 O 3 may be formed.

【0030】なお、超硬合金母材に被覆層を形成するに
は、所望により、超硬合金母材の表面を研磨したり洗浄
した後、従来公知のPVD法やCVD法等の薄膜形成法
を用いればよい。また、被覆層の厚みは0.1〜20μ
mであることが望ましい。
In order to form a coating layer on the cemented carbide base material, after polishing or cleaning the surface of the cemented carbide base material, if desired, a conventionally known thin film forming method such as PVD method or CVD method. Can be used. The thickness of the coating layer is 0.1 to 20 μm.
It is desirable that it is m.

【0031】[0031]

【実施例】表1に示す平均粒径8.0μmの炭化タング
ステン(WC)粉末、平均粒径1.2μmの金属コバル
ト(Co)粉末と平均粒径2.0μmの表1に示す化合
物粉末を表1に示す比率で添加して混合し、プレス成形
で切削工具形状(SDK42、CNMG43)に成形し
た後、焼成温度より500℃以上低い温度から10℃/
分の速度で昇温して、1500℃で1時間焼成して超硬
合金母材を作製した。
EXAMPLE A tungsten carbide (WC) powder having an average particle size of 8.0 μm, a metal cobalt (Co) powder having an average particle size of 1.2 μm, and a compound powder shown in Table 1 having an average particle size of 2.0 μm are shown in Table 1. After adding at a ratio shown in Table 1 and mixing, and after molding into a cutting tool shape (SDK42, CNMG43) by press molding, from a temperature lower than the firing temperature by 500 ° C or more to 10 ° C /
The temperature was raised at a rate of minutes and the mixture was fired at 1500 ° C. for 1 hour to produce a cemented carbide base material.

【0032】任意表面を含む斜め断面方向にカットした
カット面において、表面から各深さに相当する部分に
て、表面より内部に向かってアカシ社製マイクロビッカ
ース装置(MVK−G3)により荷重200g保持時間
10sで硬度測定を行った。各深さにおいて少なくとも
3点以上で硬度を測定して平均値を取ることでその深さ
における硬度とした。また、少なくとも1000μmの
深さでの硬度を測定し、超硬合金母材の内部の硬度とし
て用いた。
On a cut surface cut in an oblique cross-sectional direction including an arbitrary surface, a load of 200 g is held inward from the surface by a micro-Vickers device (MVK-G3) manufactured by Akashi Co., at a portion corresponding to each depth from the surface. The hardness was measured for 10 seconds. The hardness was measured at at least three points at each depth and the average value was taken to determine the hardness at that depth. Further, the hardness at a depth of at least 1000 μm was measured and used as the internal hardness of the cemented carbide base material.

【0033】また、超硬合金母材の内部の固溶体相中の
各金属成分の含有比率をエネルギー分散型X線分析(E
DS)によって求め、これによって周期律表第4a、5
a、6a族からなる群より選ばれた金属に占めるZrの
比率が超硬合金母材の内部に比べて高い領域を特定し
た。
Further, the content ratio of each metal component in the solid solution phase inside the cemented carbide base material is analyzed by energy dispersive X-ray analysis (E
DS), which gives the periodic table 4a, 5
A region in which the ratio of Zr in the metal selected from the group consisting of a and 6a was higher than that in the inside of the cemented carbide base material was specified.

【0034】また、Zrの含有量が多いB1型固溶体相
については研削面を鏡面加工したサンプルをSEM電子
顕微鏡(反射電子像)観察における任意領域(20μm
×20μm)において確認できるB1型固溶体(灰色)
と色彩の異なる固溶体の析出が判別でき、Zrの含有量
が多いB1型固溶体相の平均粒径についてはルーゼック
ス画像解析法で測定した。これらの結果を表1に示す。
As for the B1 type solid solution phase containing a large amount of Zr, a sample whose ground surface was mirror-finished was observed in an arbitrary region (20 μm) in SEM electron microscope (backscattered electron image) observation.
× 20 μm) B1 type solid solution (gray)
The precipitation of solid solutions having different colors can be discriminated, and the average particle size of the B1 type solid solution phase having a large Zr content was measured by the Luzex image analysis method. The results are shown in Table 1.

【0035】表1中の「最低硬度比(%)」は超硬合金
母材の表面領域の最低硬度と内母材部の硬度との比(表
面領域の最低硬度/母材内部の硬度)を示す。また、表
1中の「Zr/β増加領域」は周期律表第4a、5a、
6a族からなる群より選ばれた金属に占めるZrの比率
が母材内部と比べて高い領域を意味し、○印はその領域
があることを示し、また×印はその領域がないことを示
す。「Zr/β増加領域」の「厚み(μm)」は周期律
表第4a、5a、6a族からなる群より選ばれた金属に
占めるZrの比率が母材内部と比べて高い領域の厚みで
ある。さらに、表1中の「Zr含有β相」はZrの含有
量の多いB1型固溶体相を意味し、○印はその領域があ
ることを示し、また×印はその領域がないことを示す。
「Zr含有β相」の「粒径(μm)」はZrの含有量の多
いB1型固溶体の粒径を示す。
The "minimum hardness ratio (%)" in Table 1 is the ratio of the minimum hardness of the surface area of the cemented carbide base material to the hardness of the inner base material part (minimum hardness of the surface area / hardness inside the base material). Indicates. In addition, “Zr / β increasing region” in Table 1 is the periodic table 4a, 5a,
A region in which the ratio of Zr in the metal selected from the group consisting of 6a group is higher than that in the inside of the base metal is indicated by a circle, which means that the region exists, and a mark by which the x symbol does not exist. . The “thickness (μm)” of the “Zr / β increasing region” is the thickness of the region where the ratio of Zr in the metal selected from the group consisting of groups 4a, 5a and 6a of the periodic table is higher than that in the base metal. is there. Further, "Zr-containing β phase" in Table 1 means a B1 type solid solution phase having a large Zr content, and a mark "○" indicates that the region exists and a mark "X" indicates that the region does not exist.
The "particle size (μm)" of the "Zr-containing β phase" indicates the particle size of the B1 type solid solution containing a large amount of Zr.

【0036】[0036]

【表1】 [Table 1]

【0037】また、得られた各超硬合金母材の表面に、
PVD法で膜厚2μmのTiN膜を成膜して切削工具を
作製した。
On the surface of each of the obtained cemented carbide base materials,
A TiN film having a film thickness of 2 μm was formed by a PVD method to manufacture a cutting tool.

【0038】そして、この切削工具を用いて下記の条件
で摩耗試験としてステンレス鋼の旋削加工を15分間行
なって切削工具のフランク摩耗量と境界損傷量を測定し
た。なお、切削試験中にフランク摩耗量が0.2mmあ
るいは境界損傷量が0.5mmに達した場合にはその切
削時間を測定した。さらに、靭性試験として溝付合金鋼
のミリング加工を行なって欠損を生じた時の送りを測定
した。これら結果を表2に示す。 摩耗試験 被削材 :ステンレス鋼(SUS304) 工具形状:CNMG432 切削速度:120m/分 送り速度:0.3mm/rev 切り込み:2mm その他 :水溶性切削液使用 靭性試験 被削材 :溝付合金鋼(SCM440H) 工具形状:SDK42 切削速度:80m/分 送り速度:可変 0.2〜0.8mm/刃 切り込み:2mm その他 :乾式切削
Using this cutting tool, a stainless steel turning process was carried out for 15 minutes as a wear test under the following conditions to measure the flank wear amount and boundary damage amount of the cutting tool. When the flank wear amount reached 0.2 mm or the boundary damage amount reached 0.5 mm during the cutting test, the cutting time was measured. Further, as a toughness test, milling of a grooved alloy steel was carried out to measure the feed when a defect occurred. The results are shown in Table 2. Wear test Work material: Stainless steel (SUS304) Tool shape: CNMG432 Cutting speed: 120 m / min Feed speed: 0.3 mm / rev Cutting depth: 2 mm Others: Water-soluble cutting fluid toughness test Work material: Grooved alloy steel ( SCM440H) Tool shape: SDK42 Cutting speed: 80 m / min Feed speed: Variable 0.2 to 0.8 mm / Blade cut: 2 mm Others: Dry cutting

【0039】[0039]

【表2】 [Table 2]

【0040】表1、表2の結果から、母材内部に対する
表面領域の最低硬度が低い試料No.8、9は、耐摩耗
性が悪いものであった。また、最低硬度88%の試料N
o.10では耐欠損性に問題があった。さらに、硬度1
10%と表面領域の硬度が母材内部より高くなっている
試料No.11は境界損傷に問題があって耐欠損性に劣
るものであった。
From the results shown in Tables 1 and 2, the sample No. 1 having a low minimum hardness in the surface region with respect to the inside of the base material was used. Nos. 8 and 9 had poor wear resistance. Also, sample N with a minimum hardness of 88%
o. No. 10 had a problem in fracture resistance. Furthermore, hardness 1
10%, the hardness of the surface area is higher than that of the inside of the base material. No. 11 had a problem of boundary damage and was inferior in fracture resistance.

【0041】これに対して、本発明に従って母材内部に
対する表面領域の最低硬度を90〜98%とした試料N
o.1〜7についてはいずれもフランク摩耗量0.2m
m以下で、境界損傷にも問題がなく、優れた耐摩耗性を
示すものであった。また、靭性試験において欠損を生じ
る送りも実用上十分な0.5mm/刃 以上と優れた耐
欠損性を有するものであった。
On the other hand, according to the present invention, the sample N in which the minimum hardness of the surface region relative to the inside of the base material is 90 to 98%
o. For each of 1 to 7, the flank wear amount is 0.2 m
When the thickness was m or less, there was no problem with boundary damage, and excellent abrasion resistance was exhibited. In addition, the feed that causes a fracture in the toughness test was 0.5 mm / flute or more, which was practically sufficient, and had excellent fracture resistance.

【0042】これらは周期律表第4a、5a、6a族か
らなる群より選ばれた金属に占めるZrの比率が母材内
部と比べて高い領域やZrの含有量が多いB1型固溶体
相を有することによっても効果的に得られている。
These have a region where the ratio of Zr in the metal selected from the group consisting of groups 4a, 5a and 6a of the periodic table is higher than that in the base metal and a B1 type solid solution phase having a high Zr content. It is also effectively obtained.

【0043】また、試料No.1、4、7にあるように
これまで超硬合金母材の高温特性を向上させるとして用
いられてきたTaCをほとんど添加しない場合でも、耐
摩耗性と耐欠損性のバランスが取れた優れた超硬合金母
材を得ることができた。
Sample No. As shown in Nos. 1, 4 and 7, even if TaC, which has been used to improve the high temperature characteristics of the cemented carbide base material, is hardly added, it is an excellent ultra-fine alloy having a good balance of wear resistance and fracture resistance. A hard alloy base material could be obtained.

【0044】[0044]

【発明の効果】以上詳述したとおり、本発明の切削工具
に用いられる超硬合金母材によれば、超硬合金母材の表
面近傍に母材内部の硬度と比較して90〜98%の最低
硬度を有する表面領域を有することから、超硬合金母材
の硬度と靭性を兼ね備えることができ、かつこれを切削
工具として用いることによって、ステンレス鋼等の難削
材の切削に対しても優れた耐摩耗性、耐塑性変形性と耐
欠損性を有し、かつ高能率切削が可能な切削工具を得る
ことができる。
As described in detail above, according to the cemented carbide base material used for the cutting tool of the present invention, the hardness of the cemented carbide base material in the vicinity of the surface of the cemented carbide base material is 90 to 98% as compared with the hardness inside the base material. Since it has a surface area with the minimum hardness of, it can combine the hardness and toughness of the cemented carbide base material, and by using this as a cutting tool, even for the cutting of difficult-to-cut materials such as stainless steel It is possible to obtain a cutting tool having excellent wear resistance, plastic deformation resistance, and fracture resistance, and capable of highly efficient cutting.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の切削工具に用いられる超硬合金母材と
従来の超硬合金母材の母材内部の硬度勾配を示す図であ
る。
FIG. 1 is a diagram showing a hardness gradient inside a base material of a cemented carbide base material used in a cutting tool of the present invention and a conventional cemented carbide base material.

【図2】本発明の切削工具に用いられる超硬合金母材内
部の元素分布を示す図である。
FIG. 2 is a diagram showing an element distribution inside a cemented carbide base material used in the cutting tool of the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくともWCを含む周期律表第4a、
5a、6a族からなる群より選ばれた金属の炭化物、窒
化物および/または炭窒化物の1種以上の硬質相成分と
1種以上の鉄族金属の結合相成分とからなる超硬合金母
材の表面に被覆層を有する切削工具において、前記超硬
合金母材の表面近傍に母材内部の硬度と比較して90〜
98%の最低硬度を有する表面領域を有することを特徴
とする切削工具。
1. A periodic table 4a containing at least WC,
A cemented carbide matrix comprising one or more hard phase components of carbides, nitrides and / or carbonitrides of metals selected from the group consisting of 5a and 6a and one or more binder phase components of iron group metals. In the cutting tool having a coating layer on the surface of the base material, the hardness of the base material near the surface of the cemented carbide base material is 90 to 90% as compared with the hardness inside the base material.
A cutting tool having a surface area having a minimum hardness of 98%.
【請求項2】 前記周期律表第4a、5a、6a族から
なる群より選ばれた金属としてZrを含有するととも
に、前記周期律表第4a、5a、6a族からなる群より
選ばれた金属に占める前記Zrの比率が前記超硬合金母
材の内部に比べて高い領域を前記超硬合金母材の表面近
傍に有することを特徴とする請求項1に記載の切削工
具。
2. A metal selected from the group consisting of groups 4a, 5a and 6a of the periodic table, containing Zr as a metal selected from the group consisting of groups 4a, 5a and 6a of the periodic table. The cutting tool according to claim 1, wherein a region in which the ratio of Zr in the base metal is higher than that in the inside of the cemented carbide base material is near the surface of the cemented carbide base material.
【請求項3】 前記Zrの比率が前記超硬合金母材の内
部に比べて高い領域の厚さが5乃至100μmであるこ
とを特徴とする請求項2に記載の切削工具。
3. The cutting tool according to claim 2, wherein the thickness of a region where the Zr ratio is higher than the inside of the cemented carbide base material is 5 to 100 μm.
【請求項4】 前記超硬合金母材の内部に2種以上のB
1型固溶体相が存在し、前記B1型固溶体相のうちの1
種がそれ以外のB1型固溶体相と比較してZrの含有量
が多いB1型固溶体相であることを特徴とする請求項2
または請求項3に記載の切削工具。
4. Two or more kinds of B are provided inside the cemented carbide base material.
There is a type 1 solid solution phase, and one of the B1 type solid solution phases is present.
The seed is a B1 type solid solution phase having a higher Zr content than the other B1 type solid solution phases.
Alternatively, the cutting tool according to claim 3.
【請求項5】 前記Zrの含有量が多いB1型固溶体相
の平均粒径が3μm以下であることを特徴とする請求項
4に記載の切削工具。
5. The cutting tool according to claim 4, wherein the B1 type solid solution phase containing a large amount of Zr has an average particle diameter of 3 μm or less.
【請求項6】 前記周期律表第4a、5a、6a族から
なる群より選ばれた金属のうちのTaの含有量が、Ta
C換算で全量中の1重量%以下であることを特徴とする
請求項1乃至請求項5のいずれかに記載の切削工具。
6. The content of Ta in the metal selected from the group consisting of groups 4a, 5a and 6a of the periodic table is Ta.
The cutting tool according to any one of claims 1 to 5, which is 1% by weight or less of the total amount in terms of C.
JP2001293033A 2001-09-26 2001-09-26 Cutting tool Pending JP2003094207A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001293033A JP2003094207A (en) 2001-09-26 2001-09-26 Cutting tool
DE10244955.4A DE10244955C5 (en) 2001-09-26 2002-09-26 Cemented carbide, use of a cemented carbide and method for making a cemented carbide
US10/256,275 US6797369B2 (en) 2001-09-26 2002-09-26 Cemented carbide and cutting tool
US10/916,671 US7018726B2 (en) 2001-09-26 2004-08-12 Cemented carbide and cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293033A JP2003094207A (en) 2001-09-26 2001-09-26 Cutting tool

Publications (1)

Publication Number Publication Date
JP2003094207A true JP2003094207A (en) 2003-04-03

Family

ID=19114899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293033A Pending JP2003094207A (en) 2001-09-26 2001-09-26 Cutting tool

Country Status (1)

Country Link
JP (1) JP2003094207A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513256A (en) * 2003-12-03 2007-05-24 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
WO2008026700A1 (en) * 2006-08-31 2008-03-06 Kyocera Corporation Cutting tool, process for producing the same, and method of cutting
US7736733B2 (en) 2004-03-12 2010-06-15 Sumitomo Electric Hardmetal Corp. Coated cutting tool
JP2011173212A (en) * 2010-02-24 2011-09-08 Kyocera Corp Surface-coated tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007513256A (en) * 2003-12-03 2007-05-24 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
JP2011202278A (en) * 2003-12-03 2011-10-13 Kennametal Inc Cemented carbide body containing zirconium and niobium and method of making the same
JP4796969B2 (en) * 2003-12-03 2011-10-19 ケンナメタル インコーポレイテッド Cemented carbide body containing zirconium and niobium and method for producing the same
US7736733B2 (en) 2004-03-12 2010-06-15 Sumitomo Electric Hardmetal Corp. Coated cutting tool
WO2008026700A1 (en) * 2006-08-31 2008-03-06 Kyocera Corporation Cutting tool, process for producing the same, and method of cutting
JP2011173212A (en) * 2010-02-24 2011-09-08 Kyocera Corp Surface-coated tool

Similar Documents

Publication Publication Date Title
US6797369B2 (en) Cemented carbide and cutting tool
JP5989930B1 (en) Cermet and cutting tools
JP2010517792A (en) Ti-based cermet
JP5213326B2 (en) cermet
JP2571124B2 (en) Nitrogen-containing cermet, method for producing the same, and coated nitrogen-containing cermet
JP2002356734A (en) Hard metal alloy, and cutting tool using it
JP5273987B2 (en) Cermet manufacturing method
JP2003094207A (en) Cutting tool
JP3089262B1 (en) AlTi-based alloy sputtering target, wear-resistant AlTi-based alloy hard coating, and method of forming the same
JP4069749B2 (en) Cutting tool for roughing
JP5063129B2 (en) cermet
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP7031532B2 (en) TiN-based sintered body and cutting tool made of TiN-based sintered body
JP4077739B2 (en) Surface-coated Ti-based cermet cutting tool and method for manufacturing the same
JP2009006413A (en) Ti based cermet
JP2001179507A (en) Cutting tool
JP4005787B2 (en) Surface coated cemented carbide
JP4126451B2 (en) Cemented carbide
WO2023188875A1 (en) Sintered body and cutting tool
JP5111259B2 (en) Surface covering member
JPWO2008146856A1 (en) cermet
JP3525359B2 (en) Surface coated cemented carbide cutting tool
JP3331916B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent heat plastic deformation
JPH0665671A (en) Cemented carbide for cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071109