JP4126451B2 - Cemented carbide - Google Patents

Cemented carbide Download PDF

Info

Publication number
JP4126451B2
JP4126451B2 JP2002081865A JP2002081865A JP4126451B2 JP 4126451 B2 JP4126451 B2 JP 4126451B2 JP 2002081865 A JP2002081865 A JP 2002081865A JP 2002081865 A JP2002081865 A JP 2002081865A JP 4126451 B2 JP4126451 B2 JP 4126451B2
Authority
JP
Japan
Prior art keywords
carbide
solid solution
solution phase
phase
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002081865A
Other languages
Japanese (ja)
Other versions
JP2003277873A (en
Inventor
恵司 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002081865A priority Critical patent/JP4126451B2/en
Publication of JP2003277873A publication Critical patent/JP2003277873A/en
Application granted granted Critical
Publication of JP4126451B2 publication Critical patent/JP4126451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は切削工具等に使用される超硬合金に関し、特に高硬度かつ高靭性で優れた耐酸化性を有し、炭素鋼、合金鋼などの鋼や鋳鉄のみならず、ステンレス鋼をはじめとする難削材の切削に適する超硬合金に関する。
【0002】
【従来の技術】
従来より、超硬合金は、WC(炭化タングステン)を主体とする硬質相と、コバルト等の鉄族金属の結合相からなるWC−Co系合金、もしくはこれに周期律表第4a、5a、6a族金属の炭化物、窒化物、炭窒化物等のいわゆるB−1型固溶体相を分散せしめた系が知られており、金属の切削加工や耐摩耗材等に広く用いられ、中でも切削工具としては炭素鋼・合金鋼などの鋼や鋳鉄の切削に主に利用されているが、最近ではステンレス鋼等の難削材の切削も進められている。
【0003】
また、例えば、特許第2943895号によれば、Zrを主体とする硬質相とTiを主体とする硬質相を共存させることにより、合金の強度維持と硬度不足の解消を両立できることが記載されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の超硬合金では、特に高温強度が低下することにより、過酷な条件での切削中に切刃にチッピングが生じたり、変形したりする恐れがあり、強度のさらなる向上が要求されているのが現状である。
【0005】
本発明は上記課題を解決するためになされたもので、その目的は、特に高温にて高い硬度と靭性を有し、切削時に切刃部が部分的に高温に曝されるような過酷な環境下においても高い耐欠損性と耐摩耗性をともに維持できる超硬合金を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、上記課題に対し超硬合金母材の構成について検討した結果、ZrC(炭化ジルコニウム)を0.05〜1.5重量%、NbC(炭化ニオブ)を0〜3.5重量%、TiC(炭化チタン)を1〜2.5重量%、TaC(炭化タンタル)を0〜1重量%、Co(コバルト)を5〜10重量%の比率で含有し、残部がWC(炭化タングステン)および不可避不純物からなる超硬合金のWC粒子とともに含有される固溶体相を、ZrC(炭化ジルコニウム)、NbC(炭化ニオブ)、TiC(炭化チタン)、TaC(炭化タンタル)およびWC(炭化タングステン)の群から選ばれる少なくとも1種以上の金属元素の炭化物からなり、原子比で0.7≦Ti/(Ti+Zr)≦0.9の第1固溶体相と、0.4≦Ti/(Ti+Zr)≦0.6の第2固溶体相の2種とし、かつ前記第1固溶体相と前記結合材マトリックスとの間に前記第2固溶体相が介在するように隣接して共存することにより、超硬合金の特に高温における強度および靭性を高めることができ、切削時に切刃部が部分的に高温に曝されるような過酷な環境下においても高い耐欠損性と耐摩耗性をともに向上できることを知見した。
【0007】
すなわち、本発明の超硬合金は、ZrC(炭化ジルコニウム)を0.05〜1.5重量%、NbC(炭化ニオブ)を0〜3.5重量%、TiC(炭化チタン)を1〜2.5重量%、TaC(炭化タンタル)を0〜1重量%、Co(コバルト)を5〜10重量%の比率で含有し、残部がWC(炭化タングステン)および不可避不純物からなり、Co(コバルト)の結合材マトリックス中に、WC粒子と、ZrC(炭化ジルコニウム)、NbC(炭化ニオブ)、TiC(炭化チタン)、TaC(炭化タンタル)およびWC(炭化タングステン)の群から選ばれる少なくとも1種以上の金属元素の炭化物からなる固溶体相を分散せしめてなる超硬合金において、前記固溶体相が原子比で0.7≦Ti/(Ti+Zr)≦0.9の第1固溶体相と、0.4≦Ti/(Ti+Zr)≦0.6の第2固溶体相の2種からなるとともに、前記第1固溶体と前記結合材マトリックスとの間に前記第2固溶体相が介在するように隣接して共存することを特徴とするものである。
【0008】
ここで、前記固溶体相中に、原子比で0.2≦Nb/(Ti+Nb+Zr)≦0.7のNbを含有すること、前記超硬合金の耐酸化性が0.01mg/mm2以下であることが望ましい。
【0009】
また、前記第1固溶体相の平均粒径が0.5〜4μmで、かつ前記第2固溶体相の平均粒径が50〜1000nmであることが望ましい。
【0010】
【発明の実施の形態】
本発明の超硬合金は、ZrC(炭化ジルコニウム)を0.05〜1.5重量%、NbC(炭化ニオブ)を0〜3.5重量%、TiC(炭化チタン)を1〜2.5重量%、TaC(炭化タンタル)を0〜1重量%、Co(コバルト)を5〜10重量%の比率で含有し、残部がWC(炭化タングステン)および不可避不純物からなり、Co(コバルト)の結合材マトリックス中に、WC粒子と、ZrC(炭化ジルコニウム)、NbC(炭化ニオブ)、TiC(炭化チタン)、TaC(炭化タンタル)およびWC(炭化タングステン)の群から選ばれる少なくとも1種以上の金属元素の炭化物からなる固溶体相を分散せしめてなるものである。
【0011】
本発明によれば、その一例についての透過電子顕微鏡写真(TEM像)である図1に示すように、前記固溶体相が原子比で0.7≦Ti/(Ti+Zr)≦0.9の第1固溶体相B、Eと、0.4≦Ti/(Ti+Zr)≦0.6の第2固溶体相Cの2種からなるとともに、前記第1固溶体Bと前記結合材マトリックスDとの間に前記第2固溶体相Cが介在するように隣接して共存することが大きな特徴である。
【0012】
これによって、超硬合金の高温強度を高めて過酷な条件の切削に対しても耐欠損性および耐摩耗性を向上させることができることから、炭素鋼・合金鋼などの鋼や鋳鉄のみならず、ステンレス鋼等難削材の切削等のように高温環境下で作動させるような場合においても優れた耐欠損性と耐摩耗性を有し、特に切削加工用の切削工具として最適な超硬合金が得られる。
【0013】
すなわち、本発明によれば、Tiの含有量が多い第1固溶体相Bと結合相Dとの間にZrの含有量の多い第2固溶体相Cが介在することにより、主体となる第1固溶体相Bが高温に晒されても変質しないように安定化を図りつつ、第1固溶体相Bと結合相との中間の熱膨張係数を有する第2固溶体相Dを間に介在させることにより、第1固溶体相Bと結合相Dとの結合力を高めて超硬合金の高温強度を高めることができる。
【0014】
なお、第2固溶体相Cは第1固溶体相Bと結合相Dとの間すべてに存在してもよいが、本発明によれば必ずしもすべての数および長さ領域にわたって存在する必要はなく、例えば、図1に示すように第1固溶体相Bと結合相Dとの一部のみの数および長さ領域に存在しても十分に高温強度を高める働きをなす。
【0015】
ここで、第1固溶体相において、Ti/(Ti+Zr)が0.7より小さいと、焼結性が低下するために部分的に硬度が著しく低下して耐摩耗性および耐塑性変形性が低下する。逆に、0.9より大きいと、耐塑性変形性が低下し、特に高温域で連続的に使用すると母材の表面が変質してチッピングが発生しやすくなる。
【0016】
また、第2固溶体相において、Ti/(Ti+Zr)が0.4より小さいと、第1固溶体相と第2固溶体相との結合力が低下し、逆に、Ti/(Ti+Zr)が0.6より大きいと、第2固溶体相と結合相との結合力が低下して、いずれの場合でも第1固溶体相と結合相との間の結合力を向上できず高温強度が低下して耐塑性変形性が低下し、特に高温域で連続的に使用すると切刃における塑性変形が生じやすく耐摩耗性の低下を招く。
【0017】
なお、本発明における各相(WC粒子、固溶体相、結合相)中の金属元素の含有比率は、合金の任意位置における透過型電子顕微鏡写真(TEM像)から、エネルギー分散型X線分光分析(EDS)によって求めることができる。
【0018】
さらに、本発明によれば、耐酸化性を高めて高温切削時に超硬合金が変質して塑性変形を生じることを防止できる点で、0.2≦Nb/(Ti+Nb+Zr)≦0.7、特に、第1固溶体相および第2固溶体相はともにNbの含有量が最も多く、かつ0.4≦Nb/(Ti+Nb+Zr)≦0.7を満足することが望ましい。
【0019】
また、前記第2固溶体相の結合相の含有量は第1固溶体相と比べて多いことが望ましく、具体的な組成としては、第1固溶体相が20原子%≦Ti≦60原子%、10原子%≦Nb≦60原子%、5原子%≦Zr≦10原子%、10原子%≦W≦40原子%、0原子%≦Co≦1.5原子%からなり、前記第2固溶体相が10原子%≦Ti≦20原子%、40原子%≦Nb≦60原子%、12原子%≦Zr≦40原子%、0原子%≦W≦20原子%、2原子%≦Co≦5原子%であることが、切削工具としての耐欠損性、耐摩耗性、高温での耐塑性変形性を高める上で望ましい。
【0020】
なお、第1固溶体相−第2固溶体相−結合相マトリックス間の結合力を高める上では、前記第1固溶体相の平均粒径が0.5〜4μmであり、かつ第2固溶体相の平均粒径は50〜1000nmが望ましく、特に300〜700nmが望ましい。
【0021】
また、本発明によれば、WC相と第1固溶体相との結合力を維持するという点で、前記WC粒子中に、0原子%≦Ti<1原子%、0原子%≦Nb<10原子%、0原子%≦Zr<10原子%、0原子%≦Co<10原子%の金属元素を含有することが望ましい。
【0022】
さらに、結合相と第1固溶体相または第2固溶体相との結合力を維持するという点では、前記結合相マトリックスの組成としては、鉄族金属(Co,Ni,Fe)中に、0原子%≦Ti<10原子%、0原子%≦Nb<10原子%、0原子%≦Zr<10原子%、0原子%≦W<10原子%の金属元素を含有することが望ましい。
【0023】
そして、上記構成からなる本発明の超硬合金は、耐酸化性が0.01mg/mm2以下の優れた特性を有するものであり、ステンレス等の難削材を切削する際などのように、高温域で安定に作動させて耐摩耗性および耐欠損性を維持することができる。
【0024】
なお、本発明における耐酸化性とは、硬質被覆層を被着形成した超硬合金を大気中の800℃×30分の条件で保持する酸化試験を行った場合の試験前後における酸化増量割合を示す。
【0025】
また、本発明によれば、上記超硬合金の表面に、周期律表第4a、5a、6a族金属またはAlの炭化物、窒化物、酸化物、炭窒化物、炭酸化物、窒酸化物、炭酸窒化物およびダイヤモンドの群から選ばれる少なくとも1種の単層または複数層からなる被覆層を形成することもできる。
【0026】
さらにまた、超硬合金(母材)の具体的な組成は、ZrC(炭化ジルコニウム)を0.05〜1.5重量%、NbC(炭化ニオブ)を0〜3.5重量%、TiC(炭化チタン)を1〜2.5重量%、TaC(炭化タンタル)を0〜1重量%、Co(コバルト)を5〜10重量%の比率で含有し、残部がWC(炭化タングステン)および不可避不純物からなり、耐酸化性、耐摩耗性と耐塑性変形性および耐欠損性を両立するために、ZrC(炭化ジルコニウム)を0.05〜1.5重量%、特に0.05〜0.8重量%、さらに0.05〜0.3重量%、NbC(炭化ニオブ)を0.5〜3.5重量%、TiC(炭化チタン)を1〜2.5重量%、TaC(炭化タンタル)を0〜1重量%、Co(コバルト)を5〜10重量%の比率で含有し、残部がWC(炭化タングステン)および不可避不純物からなることが望ましい。
【0027】
なお、上記成分のうち、コストの低減のためには高価なTaCの含有量を0.5重量%以下、特に0.1重量%以下、さらには実質的に含有させないことが望ましい。
【0028】
さらにまた、上記組成範囲の中でも、耐摩耗性を重視して旋削用切削工具として用いる上では、TiCを1.5〜2.0重量%、NbCを2.0〜3.5重量%、ZrCを0.05〜0.3重量%、Coを5.0〜7.5重量%含有し、残部がWCからなることが望ましい。
【0029】
(製造方法)
上述した超硬合金を製造するには、まず、例えば平均粒径0.5〜10μmの炭化タングステン粉末を80〜90重量%、平均粒径0.1〜2μmのZrの炭化物、窒化物、炭窒化物粉末またはその固溶体粉末を総量で0.05〜1.5重量%、平均粒径0.5〜5μmのNbの炭化物、窒化物、炭窒化物粉末またはその固溶体粉末を総量で〜10重量%、平均粒径0.5〜5μmの炭化チタン粉末を0.8〜2.5重量%、Taの炭化物、窒化物、炭窒化物粉末またはその固溶体粉末を0〜1重量%、平均粒径0.5〜10μmのCoを5〜15重量%の割合で混合する。
【0030】
本発明によれば、上記原料中の炭化チタン粉末についてはTixyとしたときy/x=0.6〜0.9となる比率に調製した粉末を用いることが重要であり、かかる炭素含有比率が低い原料を用いることによって異なる金属成分の配合比率からなる第1固溶体相および第2固溶体相の2種の固溶体相を隣接して析出せしめることができる。
【0031】
さらに、本発明によれば、上記金属化合物粉末に加えて、炭素(C)粉末を0.01〜0.11重量%、特に0.04〜0.1重量%の割合で混合することが重要であり、かかる炭素量の調整により各金属成分が各相中に最適な割合で固溶して最適な組成および組織からなる超硬合金を作製することができる。
【0032】
次に、上記混合粉末を用いて、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定形状に成形した後、0.1〜15Paの真空中、1000℃以上における昇温速度を0.3〜4℃/分で昇温し、真空度10-3〜0.05Paの真空中、1350〜1500℃で0.2〜5時間、特に0.5〜2時間焼成した後、1250℃までの温度域を0.3〜2℃/分、特に0.5〜2℃/分で降温することによって超硬合金(母材)を作製することができる。
【0033】
そして、所望により、上記超硬合金(母材)表面にCVD法やPVD法等の公知の薄膜形成法で硬質被覆層を0.1〜20μm被着形成することも可能である。
【0034】
なお、上述した本発明の超硬合金は、高硬度、高靭性、高強度の優れた機械的特性および高い耐酸化性を有することから、金型、耐摩耗部材、高温構造材料等に適応可能であり、中でも炭素鋼、合金鋼などの鋼や鋳鉄の加工用切削工具、さらにはステンレス鋼等の難削材加工用の切削工具として好適に使用可能である。
【0035】
【実施例】
(実施例1)
平均粒径1.5μmの炭化タングステン(WC)粉末、平均粒径1.2μmの金属コバルト(Co)粉末および平均粒径2.0μmの表1に示す金属元素M化合物粉末および炭素粉末を表1に示す比率で添加、混合して、プレス成形で切削工具形状(CNMG120408)に成形した後、脱バインダ処理を施し、さらに、1000℃以上を3℃/分の速度で昇温して、0.01Paの真空中、1450℃で1時間焼成した後、1250℃までを表1に示す降温速度で降温し、さらに1250℃以下を5℃/分で降温して超硬合金を作製した。
【0036】
得られた超硬合金の表面にCVD法でTiNを1μm、TiCNを7μm、Al23を3μm、TiNを1μmの順に硬質被覆層を成膜することによって超硬合金を作製した。
【0037】
得られた超硬合金に対して、任意位置にて透過型電子顕微鏡(TEM)観察を行い、また、透過型電子顕微鏡写真(TEM像)の各相における金属元素の組成をエネルギー分散型X線分光分析(EDS)によって測定した。なお、図1に表1の試料No.3についてのTEM像の一例を示すが、組成分析に関しては、A〜Fの各相をそれぞれ任意の5点づつについて測定し、その平均値を算出した。結果は表2に示した。
【0038】
また、800℃の大気圧雰囲気で30分間酸化処理し、酸化前後における重量増加量を測定して耐酸化性とした。結果は表1に示した。
【0039】
【表1】

Figure 0004126451
【0040】
【表2】
Figure 0004126451
【0041】
さらに、表1の切削工具を用いて下記の条件で合金鋼の切削を25分間行い、切削工具のフランク摩耗量および先端摩耗量を測定した。なお、切削試験中にフランク摩耗量あるいは先端摩耗量が0.2mmに達した場合にはその切削時間を測定した。さらに、溝付き鋼材で断続試験を行い、欠損したときの衝撃回数を比較した。その結果を表3に示す。
【0042】
(摩耗試験)
被削材 :合金鋼(SCM435)
工具形状:CNMG120408
切削速度:250m/分
送り速度:0.3mm/rev
切り込み:2mm
その他 :水溶性切削液使用
(断続試験)
被削材 :合金鋼(SCM440)
工具形状:CNMG120408
切削速度:200m/分
送り速度:0.4mm/rev
切り込み:1.5mm
その他 :水溶性切削液使用
【0043】
【表3】
Figure 0004126451
【0044】
表1および表3の結果より、炭化チタン(Tixy)原料としてy/x=1.0の原料を用い、いずれも第1固溶体相(第1β相)中および/または第2固溶体相(第2β相)中のTi/(Ti+Zr)が所定の範囲より外れ、かつこれらが独立して存在した試料No.1、2では、高温強度が低くなり切削性能が低下した。
【0045】
また、焼成温度から1250℃までの温度域における降温速度が2℃/分より速く、第1および第2固溶体相中のTi/(Ti+Zr)が所定の範囲より外れ、かつこれらが独立して存在した試料No.7でも、高温強度が低くなり切削性能が低下した。
【0046】
これに対して、第1および/または第2固溶体相中のTi/(Ti+Zr)が所定の範囲からなり、かつこれらが隣接して存在する試料No.3〜6、8では、いずれも耐酸化性に優れるとともに、硬度、靭性とも高く、優れた切削性能を有するものであった。
【0047】
【発明の効果】
以上詳述したとおり、本発明の超硬合金によれば、ZrC(炭化ジルコニウム)を0.05〜1.5重量%、NbC(炭化ニオブ)を0〜3.5重量%、TiC(炭化チタン)を1〜2.5重量%、TaC(炭化タンタル)を0〜1重量%、Co(コバルト)を5〜10重量%の比率で含有し、残部がWC(炭化タングステン)および不可避不純物からなる超硬合金のWC粒子とともに含有される固溶体相を、ZrC(炭化ジルコニウム)、NbC(炭化ニオブ)、TiC(炭化チタン)、TaC(炭化タンタル)およびWC(炭化タングステン)の群から選ばれる少なくとも1種以上の金属元素の炭化物からなり、原子比で0.7≦Ti/(Ti+Zr)≦0.9の第1固溶体相と、0.4≦Ti/(Ti+Zr)≦0.6の第2固溶体相の2種とし、かつ上記第1固溶体とCo(コバルト)の結合材マトリックスとの間に上記第2固溶体相が介在するように隣接して共存することにより、超硬合金の特に高温における強度および靭性を高めることができ、切削時に切刃部が部分的に高温に曝されるような過酷な環境化においても高い耐欠損性と耐摩耗性をともに向上できる。
【図面の簡単な説明】
【図1】本発明の超硬合金の任意位置におけるTEM(透過型電子顕微鏡)像である。
【符号の簡単な説明】
A:WC粒子、B:第1固溶体相、C:第2固溶体相、D:結合剤マトリックス、E:第1固溶体相、F:WC粒子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cemented carbide used for cutting tools and the like, and particularly has high hardness and high toughness and excellent oxidation resistance, including not only steel and cast iron such as carbon steel and alloy steel, but also stainless steel. The present invention relates to a cemented carbide suitable for cutting difficult-to-cut materials.
[0002]
[Prior art]
Conventionally, a cemented carbide is a WC-Co alloy composed of a hard phase mainly composed of WC (tungsten carbide) and a binding phase of an iron group metal such as cobalt, or periodic tables 4a, 5a, 6a. A system in which a so-called B-1 type solid solution phase such as a carbide, nitride, carbonitride, etc. of a group metal is dispersed is known, and is widely used for metal cutting and wear-resistant materials. Although it is mainly used for cutting steel and cast iron, such as steel and alloy steel, recently, cutting of difficult-to-cut materials such as stainless steel has also been promoted.
[0003]
Further, for example, according to Japanese Patent No. 2943895, it is described that the coexistence of the hard phase mainly composed of Zr and the hard phase mainly composed of Ti can achieve both maintenance of the strength of the alloy and elimination of insufficient hardness. .
[0004]
[Problems to be solved by the invention]
However, in the above conventional cemented carbides, especially the high temperature strength is lowered, there is a possibility that the cutting edge may be chipped or deformed during cutting under severe conditions, and further improvement in strength is required. This is the current situation.
[0005]
The present invention has been made to solve the above-mentioned problems, and its purpose is to have a high hardness and toughness especially at high temperatures, and a severe environment in which the cutting edge portion is partially exposed to high temperatures during cutting. An object of the present invention is to provide a cemented carbide capable of maintaining both high fracture resistance and wear resistance.
[0006]
[Means for Solving the Problems]
As a result of examining the structure of the cemented carbide base material with respect to the above problems, the present inventor has found that ZrC (zirconium carbide) is 0.05 to 1.5% by weight, and NbC (niobium carbide) is 0 to 3.5% by weight. TiC (titanium carbide) 1 to 2.5% by weight, TaC (tantalum carbide) 0 to 1% by weight, Co (cobalt) 5 to 10% by weight, the balance WC (tungsten carbide) And a solid solution phase contained together with WC particles of cemented carbide composed of inevitable impurities , ZrC (zirconium carbide), NbC (niobium carbide), TiC (titanium carbide), TaC (tantalum carbide) and WC (tungsten carbide) at least one consists of a carbide of the above metal element, 0.7 ≦ Ti / (Ti + Zr) ≦ 0.9 first solid solution phase in atomic ratio selected from, 0.4 ≦ Ti / (Ti + Zr) By making two kinds of the second solid solution phase of 0.6 and coexisting adjacent to each other so that the second solid solution phase is interposed between the first solid solution phase and the binder matrix, In particular, it has been found that the strength and toughness at high temperatures can be increased, and that both high fracture resistance and wear resistance can be improved even in harsh environments where the cutting edge is partially exposed to high temperatures during cutting.
[0007]
That is, the cemented carbide of the present invention has 0.05 to 1.5% by weight of ZrC (zirconium carbide), 0 to 3.5% by weight of NbC (niobium carbide), and 1 to 2% of TiC (titanium carbide). 5% by weight, 0 to 1% by weight of TaC (tantalum carbide) and 5 to 10% by weight of Co (cobalt), with the balance being WC (tungsten carbide) and inevitable impurities , In the binder matrix, at least one metal selected from the group consisting of WC particles, ZrC (zirconium carbide), NbC (niobium carbide), TiC (titanium carbide), TaC (tantalum carbide) and WC (tungsten carbide). in cemented carbide comprising dispersed carbide material or Ranaru solid solution phase of the elements, and 0.7 ≦ Ti / (Ti + Zr ) ≦ 0.9 first solid solution phase of the solid solution phase in an atomic ratio, 4 ≦ Ti / (Ti + Zr) ≦ 0.6, and the second solid solution phase is adjacent so that the second solid solution phase is interposed between the first solid solution and the binder matrix. It is characterized by coexistence.
[0008]
Here, the solid solution phase contains Nb of 0.2 ≦ Nb / (Ti + Nb + Zr) ≦ 0.7 in atomic ratio, and the oxidation resistance of the cemented carbide is 0.01 mg / mm 2 or less. It is desirable.
[0009]
In addition, it is desirable that the average particle diameter of the first solid solution phase is 0.5 to 4 μm and the average particle diameter of the second solid solution phase is 50 to 1000 nm.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The cemented carbide according to the present invention comprises 0.05 to 1.5% by weight of ZrC (zirconium carbide), 0 to 3.5% by weight of NbC (niobium carbide), and 1 to 2.5% by weight of TiC (titanium carbide). %, TaC (tantalum carbide) 0 to 1% by weight, Co (cobalt) 5 to 10% by weight, the balance being WC (tungsten carbide) and inevitable impurities, Co (cobalt) binder In the matrix, WC particles and at least one metal element selected from the group consisting of ZrC (zirconium carbide), NbC (niobium carbide), TiC (titanium carbide), TaC (tantalum carbide) and WC (tungsten carbide) . the carbides or Ranaru solid solution phase are those formed by dispersed.
[0011]
According to the present invention, as shown in FIG. 1 which is a transmission electron micrograph (TEM image) of one example, the solid solution phase is a first in which the atomic ratio is 0.7 ≦ Ti / (Ti + Zr) ≦ 0.9. The solid solution phases B and E, and the second solid solution phase C of 0.4 ≦ Ti / (Ti + Zr) ≦ 0.6, and the first between the first solid solution B and the binder matrix D It is a great feature that two solid solution phases C coexist so as to intervene.
[0012]
As a result, the high-temperature strength of the cemented carbide can be increased to improve the fracture resistance and wear resistance even for severe conditions of cutting, so not only steel and cast iron such as carbon steel and alloy steel, It has excellent fracture resistance and wear resistance even when it is operated in a high temperature environment such as cutting difficult-to-cut materials such as stainless steel. Especially, it is the best cemented carbide as a cutting tool for cutting. can get.
[0013]
That is, according to the present invention, the second solid solution phase C having a high content of Zr is interposed between the first solid solution phase B having a high content of Ti and the binder phase D. By interposing a second solid solution phase D having an intermediate coefficient of thermal expansion between the first solid solution phase B and the binder phase while stabilizing so that the phase B does not change even when exposed to high temperatures, The high-temperature strength of the cemented carbide can be increased by increasing the binding force between the single solid solution phase B and the binder phase D.
[0014]
The second solid solution phase C may be present between the first solid solution phase B and the binder phase D, but according to the present invention, the second solid solution phase C is not necessarily present over all the numbers and length regions. As shown in FIG. 1, even if the first solid solution phase B and the binder phase D are present only in a part of the number and length, they serve to sufficiently increase the high temperature strength.
[0015]
Here, in the first solid solution phase, when Ti / (Ti + Zr) is smaller than 0.7, the sinterability is lowered, so that the hardness is partially lowered and the wear resistance and plastic deformation resistance are lowered. . On the other hand, when it is larger than 0.9, the plastic deformation resistance is lowered, and particularly when used continuously in a high temperature range, the surface of the base material is altered and chipping is likely to occur.
[0016]
Further, in the second solid solution phase, when Ti / (Ti + Zr) is smaller than 0.4, the binding force between the first solid solution phase and the second solid solution phase is lowered, and conversely, Ti / (Ti + Zr) is 0.6. If it is larger, the bonding force between the second solid solution phase and the bonding phase is lowered, and in any case, the bonding force between the first solid solution phase and the bonding phase cannot be improved, and the high-temperature strength is lowered and the plastic deformation is reduced. In particular, when used continuously in a high temperature range, plastic deformation is likely to occur in the cutting edge, resulting in a decrease in wear resistance.
[0017]
In addition, the content ratio of the metal element in each phase (WC particle, solid solution phase, bonded phase) in the present invention is determined by energy dispersive X-ray spectroscopy (TEM image) from a transmission electron micrograph (TEM image) at an arbitrary position of the alloy. EDS).
[0018]
Furthermore, according to the present invention, 0.2 ≦ Nb / (Ti + Nb + Zr) ≦ 0.7, in particular, in that the oxidation resistance can be improved and the cemented carbide can be prevented from being deteriorated during high temperature cutting to cause plastic deformation. It is desirable that both the first solid solution phase and the second solid solution phase have the highest Nb content and satisfy 0.4 ≦ Nb / (Ti + Nb + Zr) ≦ 0.7.
[0019]
Further, the content of the binder phase of the second solid solution phase is preferably larger than that of the first solid solution phase. As a specific composition, the first solid solution phase is 20 atomic% ≦ Ti ≦ 60 atomic%, 10 atoms. % ≦ Nb ≦ 60 atomic%, 5 atomic% ≦ Zr ≦ 10 atomic%, 10 atomic% ≦ W ≦ 40 atomic%, 0 atomic% ≦ Co ≦ 1.5 atomic%, and the second solid solution phase is 10 atoms. % ≦ Ti ≦ 20 atomic%, 40 atomic% ≦ Nb ≦ 60 atomic%, 12 atomic% ≦ Zr ≦ 40 atomic%, 0 atomic% ≦ W ≦ 20 atomic%, 2 atomic% ≦ Co ≦ 5 atomic% However, it is desirable to improve the fracture resistance, wear resistance, and plastic deformation resistance at high temperatures as a cutting tool.
[0020]
In order to increase the bonding force between the first solid solution phase, the second solid solution phase, and the binder phase matrix, the average particle size of the first solid solution phase is 0.5 to 4 μm, and the average particle of the second solid solution phase The diameter is preferably 50 to 1000 nm, particularly preferably 300 to 700 nm.
[0021]
In addition, according to the present invention, 0 atomic% ≦ Ti <1 atomic%, 0 atomic% ≦ Nb <10 atoms in the WC particles in that the bonding force between the WC phase and the first solid solution phase is maintained. %, 0 atomic% ≦ Zr <10 atomic%, and 0 atomic% ≦ Co <10 atomic%.
[0022]
Furthermore, in terms of maintaining the binding force between the binder phase and the first solid solution phase or the second solid solution phase, the composition of the binder phase matrix is 0 atomic% in the iron group metal (Co, Ni, Fe). ≦ Ti <10 atomic%, 0 atomic% ≦ Nb <10 atomic%, 0 atomic% ≦ Zr <10 atomic%, 0 atomic% ≦ W <10 atomic% are desirably contained.
[0023]
And, the cemented carbide of the present invention having the above-mentioned configuration has excellent characteristics with an oxidation resistance of 0.01 mg / mm 2 or less, such as when cutting difficult-to-cut materials such as stainless steel, Abrasion resistance and fracture resistance can be maintained by operating stably in a high temperature range.
[0024]
The oxidation resistance in the present invention refers to the rate of increase in oxidation before and after the test in the case of performing an oxidation test in which the cemented carbide with the hard coating layer formed thereon is held at 800 ° C. for 30 minutes in the atmosphere. Show.
[0025]
Further, according to the present invention, a carbide, nitride, oxide, carbonitride, carbonate, nitride oxide, carbonic acid of Group 4a, 5a, 6a metal or Al of the periodic table is provided on the surface of the cemented carbide. It is also possible to form a coating layer comprising at least one single layer or a plurality of layers selected from the group consisting of nitride and diamond.
[0026]
Furthermore, the specific composition of the cemented carbide (base metal) is as follows: ZrC (zirconium carbide) 0.05 to 1.5 wt%, NbC (niobium carbide) 0 to 3.5 wt%, TiC (carbonized) 1 to 2.5 wt% of titanium), 0 to 1 wt% of TaC (tantalum carbide), and 5 to 10 wt% of Co (cobalt), with the balance from WC (tungsten carbide) and inevitable impurities becomes, oxidation resistance, in order to achieve both wear resistance and plastic deformation resistance and chipping resistance, ZrC (zirconium carbide) of 0.05 to 1.5 wt%, in particular 0.05 to 0.8 wt% Furthermore, 0.05 to 0.3 wt%, NbC (niobium carbide) 0.5 to 3.5 wt%, TiC (titanium carbide) 1 to 2.5 wt%, TaC (tantalum carbide) 0 to 1% by weight, containing Co (cobalt) in a ratio of 5 to 10% by weight, The balance is preferably made of WC (tungsten carbide) and inevitable impurities.
[0027]
Of the above components, in order to reduce costs, it is desirable that the content of expensive TaC is 0.5 wt% or less, particularly 0.1 wt% or less, and not substantially contained.
[0028]
Furthermore, among the above composition ranges, when using as a cutting tool for turning with an emphasis on wear resistance, TiC is 1.5 to 2.0% by weight, NbC is 2.0 to 3.5% by weight, ZrC. It is desirable to contain 0.05 to 0.3% by weight of Co, 5.0 to 7.5% by weight of Co, and the balance being WC.
[0029]
(Production method)
In order to manufacture the cemented carbide described above, first, for example, tungsten carbide powder having an average particle size of 0.5 to 10 μm is 80 to 90 wt%, Zr carbide, nitride and charcoal having an average particle size of 0.1 to 2 μm. Nb carbide, nitride, carbonitride powder or solid solution powder of Nb having a total amount of 0.05 to 1.5% by weight and an average particle size of 0.5 to 5 μm in a total amount of 0 to 10 0.8% to 2.5% by weight of titanium carbide powder having an average particle size of 0.5 to 5 μm, 0 to 1% by weight of Ta carbide, nitride, carbonitride powder or its solid solution powder, average particle the Co diameter 0.5~10μm mixed at a ratio of 5 to 15 wt%.
[0030]
According to the present invention, with respect to the titanium carbide powder in the raw material, it is important to use a powder prepared at a ratio of y / x = 0.6 to 0.9 when Ti x C y is used. By using a raw material with a low content ratio, the two solid solution phases of the first solid solution phase and the second solid solution phase having different blending ratios of metal components can be deposited adjacent to each other.
[0031]
Furthermore, according to the present invention, in addition to the metal compound powder, it is important to mix carbon (C) powder in a proportion of 0.01 to 0.11 wt%, particularly 0.04 to 0.1 wt%. Thus, by adjusting the carbon content, each metal component is dissolved in an optimum ratio in each phase, and a cemented carbide having an optimum composition and structure can be produced.
[0032]
Next, the mixture powder is molded into a predetermined shape by a known molding method such as press molding, cast molding, extrusion molding, cold isostatic pressing, and then in a vacuum of 0.1 to 15 Pa. The temperature rise rate is higher at 0.3 to 4 ° C./min at a temperature higher than or equal to 0 ° C., and in a vacuum of 10 −3 to 0.05 Pa at 1350 to 1500 ° C. for 0.2 to 5 hours, particularly 0.5 to After firing for 2 hours, a cemented carbide (base material) can be produced by lowering the temperature range up to 1250 ° C. at 0.3 to 2 ° C./min, particularly 0.5 to 2 ° C./min.
[0033]
If desired, a hard coating layer having a thickness of 0.1 to 20 μm can be formed on the surface of the cemented carbide (base material) by a known thin film forming method such as a CVD method or a PVD method.
[0034]
The above-mentioned cemented carbide of the present invention has high hardness, high toughness, excellent mechanical properties such as high strength and high oxidation resistance, so it can be applied to molds, wear-resistant members, high-temperature structural materials, etc. In particular, it can be suitably used as a cutting tool for machining steel and cast iron such as carbon steel and alloy steel, and a cutting tool for machining difficult-to-cut materials such as stainless steel.
[0035]
【Example】
(Example 1)
Table 1 shows tungsten carbide (WC) powder having an average particle diameter of 1.5 μm, metallic cobalt (Co) powder having an average particle diameter of 1.2 μm, metal element M compound powder and carbon powder shown in Table 1 having an average particle diameter of 2.0 μm. Are added and mixed at the ratio shown in FIG. 5 and formed into a cutting tool shape (CNMG120408) by press molding, then subjected to binder removal treatment, and further heated to 1000 ° C. or higher at a rate of 3 ° C./min. After firing at 1450 ° C. for 1 hour in a vacuum of 01 Pa, the temperature was lowered to 1250 ° C. at the rate of temperature reduction shown in Table 1, and the temperature was further lowered to 1250 ° C. or less at 5 ° C./min to prepare a cemented carbide.
[0036]
A cemented carbide was prepared by depositing a hard coating layer in the order of TiN 1 μm, TiCN 7 μm, Al 2 O 3 3 μm, TiN 1 μm on the surface of the obtained cemented carbide by CVD.
[0037]
The obtained cemented carbide is observed with a transmission electron microscope (TEM) at an arbitrary position, and the composition of the metal element in each phase of the transmission electron micrograph (TEM image) is expressed by an energy dispersive X-ray. Measured by spectroscopic analysis (EDS). In addition, in FIG. Although an example of the TEM image about 3 is shown, regarding the composition analysis, each phase of A to F was measured for each arbitrary 5 points, and the average value was calculated. The results are shown in Table 2.
[0038]
Moreover, it oxidized for 30 minutes in 800 degreeC atmospheric pressure atmosphere, the weight increase amount before and behind oxidation was measured, and it was set as oxidation resistance. The results are shown in Table 1.
[0039]
[Table 1]
Figure 0004126451
[0040]
[Table 2]
Figure 0004126451
[0041]
Further, the alloy steel was cut for 25 minutes under the following conditions using the cutting tool of Table 1, and the flank wear amount and the tip wear amount of the cutting tool were measured. When the flank wear amount or the tip wear amount reached 0.2 mm during the cutting test, the cutting time was measured. Furthermore, an intermittent test was conducted with a grooved steel material, and the number of impacts when chipped was compared. The results are shown in Table 3.
[0042]
(Abrasion test)
Work material: Alloy steel (SCM435)
Tool shape: CNMG120408
Cutting speed: 250 m / min Feeding speed: 0.3 mm / rev
Cutting depth: 2mm
Other: Use of water-soluble cutting fluid (intermittent test)
Work material: Alloy steel (SCM440)
Tool shape: CNMG120408
Cutting speed: 200 m / min Feed speed: 0.4 mm / rev
Cutting depth: 1.5mm
Other: Uses water-soluble cutting fluid [0043]
[Table 3]
Figure 0004126451
[0044]
From the results of Table 1 and Table 3, the raw material of y / x = 1.0 was used as the titanium carbide (Ti x C y ) raw material, both in the first solid solution phase (first β phase) and / or the second solid solution phase. Sample No. in which Ti / (Ti + Zr) in (second β phase) was out of the predetermined range and these were present independently. In 1 and 2, the high-temperature strength decreased and the cutting performance decreased.
[0045]
In addition, the temperature lowering rate in the temperature range from the firing temperature to 1250 ° C. is faster than 2 ° C./min, Ti / (Ti + Zr) in the first and second solid solution phases is out of the predetermined range, and these exist independently. Sample No. Even at 7, the high-temperature strength decreased and the cutting performance deteriorated.
[0046]
On the other hand, sample No. 1 in which Ti / (Ti + Zr) in the first and / or second solid solution phase is in a predetermined range and these are adjacent to each other. In 3-6 and 8, all were excellent in oxidation resistance, high in hardness and toughness, and had excellent cutting performance.
[0047]
【The invention's effect】
As described above in detail, according to the cemented carbide of the present invention, ZrC (zirconium carbide) is 0.05 to 1.5 wt%, NbC (niobium carbide) is 0 to 3.5 wt%, TiC (titanium carbide). ) 1 to 2.5% by weight, TaC (tantalum carbide) 0 to 1% by weight, Co (cobalt) 5 to 10% by weight, with the balance being WC (tungsten carbide) and inevitable impurities. The solid solution phase contained together with the WC particles of the cemented carbide is at least one selected from the group consisting of ZrC (zirconium carbide), NbC (niobium carbide), TiC (titanium carbide), TaC (tantalum carbide) and WC (tungsten carbide). consists carbide species or more metal elements, 0.7 ≦ Ti / in atomic ratio (Ti + Zr) a first solid solution phase of ≦ 0.9, 0.4 ≦ Ti / ( Ti + Zr) ≦ 0.6 second solid solution of By the two, and coexist adjacent to said second solid solution phase is interposed between the coupling member matrix of the first solid solution and Co (cobalt), the strength in particular at high temperature of the cemented carbide and Toughness can be increased, and both high fracture resistance and wear resistance can be improved even in harsh environments where the cutting edge is partially exposed to high temperatures during cutting.
[Brief description of the drawings]
FIG. 1 is a TEM (transmission electron microscope) image at an arbitrary position of a cemented carbide of the present invention.
[Brief description of symbols]
A: WC particles, B: first solid solution phase, C: second solid solution phase, D: binder matrix, E: first solid solution phase, F: WC particles

Claims (4)

ZrC(炭化ジルコニウム)を0.05〜1.5重量%、NbC(炭化ニオブ)を0〜3.5重量%、TiC(炭化チタン)を1〜2.5重量%、TaC(炭化タンタル)を0〜1重量%、Co(コバルト)を5〜10重量%の比率で含有し、残部がWC(炭化タングステン)および不可避不純物からなり、Co(コバルト)の結合材マトリックス中に、WC粒子と、ZrC(炭化ジルコニウム)、NbC(炭化ニオブ)、TiC(炭化チタン)、TaC(炭化タンタル)およびWC(炭化タングステン)の群から選ばれる少なくとも1種以上の金属元素の炭化物からなる固溶体相を分散せしめてなる超硬合金において、前記固溶体相が原子比で0.7≦Ti/(Ti+Zr)≦0.9の第1固溶体相と、0.4≦Ti/(Ti+Zr)≦0.6の第2固溶体相の2種からなるとともに、前記第1固溶体と前記結合材マトリックスとの間に前記第2固溶体相が介在するように隣接して共存することを特徴とする超硬合金。 ZrC (zirconium carbide) 0.05 to 1.5 wt%, NbC (niobium carbide) 0 to 3.5 wt%, TiC (titanium carbide) 1 to 2.5 wt%, TaC (tantalum carbide) 0 to 1% by weight, Co (cobalt) in a proportion of 5 to 10% by weight, the balance consisting of WC (tungsten carbide) and inevitable impurities, in a Co (cobalt) binder matrix, WC particles, ZrC (zirconium carbide), NbC (niobium carbide), TiC (titanium carbide), TaC (tantalum carbide) and WC carbide of at least one metal element selected from the group consisting of (tungsten carbide) or Ranaru solid solution phase In the cemented carbide which is dispersed, the solid solution phase is 0.7 ≦ Ti / (Ti + Zr) ≦ 0.9 in atomic ratio and 0.4 ≦ Ti / (Ti + Zr) ≦ 0. A cemented carbide comprising two kinds of .6 second solid solution phases and coexisting adjacently so that the second solid solution phase is interposed between the first solid solution and the binder matrix. . 前記固溶体相中に、原子比で0.2≦Nb/(Ti+Nb+Zr)≦0.7のNbを含有することを特徴とする請求項1記載の超硬合金。  The cemented carbide according to claim 1, wherein the solid solution phase contains Nb of 0.2 ≦ Nb / (Ti + Nb + Zr) ≦ 0.7 in atomic ratio. 前記超硬合金の耐酸化性が0.01mg/mm以下であることを特徴とする請求項1または2記載の超硬合金。The cemented carbide according to claim 1 or 2, wherein the cemented carbide has an oxidation resistance of 0.01 mg / mm 2 or less. 前記第1固溶体相の平均粒径が0.5〜4μmであり、かつ前記第2固溶体相の平均粒径が50〜1000nmであることを特徴とする請求項1乃至3のいずれか記載の超硬合金。  The average particle size of the first solid solution phase is 0.5 to 4 µm, and the average particle size of the second solid solution phase is 50 to 1000 nm. Hard alloy.
JP2002081865A 2002-03-22 2002-03-22 Cemented carbide Expired - Lifetime JP4126451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002081865A JP4126451B2 (en) 2002-03-22 2002-03-22 Cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002081865A JP4126451B2 (en) 2002-03-22 2002-03-22 Cemented carbide

Publications (2)

Publication Number Publication Date
JP2003277873A JP2003277873A (en) 2003-10-02
JP4126451B2 true JP4126451B2 (en) 2008-07-30

Family

ID=29230323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002081865A Expired - Lifetime JP4126451B2 (en) 2002-03-22 2002-03-22 Cemented carbide

Country Status (1)

Country Link
JP (1) JP4126451B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527679C2 (en) * 2004-01-26 2006-05-09 Sandvik Intellectual Property Carbide body, especially spiral drill, and its use for rotary metalworking tools
CN111918978B (en) * 2018-03-29 2022-11-25 京瓷株式会社 Cemented carbide, coated cutting tool and cutting tool
CN112004954B (en) * 2018-03-29 2022-06-28 京瓷株式会社 Hard alloy, and coated cutting tool and cutting tool using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115610A (en) * 1978-02-28 1979-09-08 Sumitomo Electric Ind Ltd Mo-containing sintered hard alloy and manufacture thereof
JP2503770B2 (en) * 1987-04-21 1996-06-05 三菱マテリアル株式会社 Tungsten carbide based cemented carbide for cutting tools
JPH0696751B2 (en) * 1990-04-06 1994-11-30 日立金属株式会社 Cemented carbide
JP3850085B2 (en) * 1996-12-11 2006-11-29 京セラ株式会社 Coated cermet for cutting tools

Also Published As

Publication number Publication date
JP2003277873A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
US6797369B2 (en) Cemented carbide and cutting tool
WO2011002008A1 (en) Cermet and coated cermet
JP3402146B2 (en) Surface-coated cemented carbide end mill with a hard coating layer with excellent adhesion
EP0819776B1 (en) Cutting blade made of titanium carbonitride-type cermet, and cutting blade made of coated cermet
WO2011136197A1 (en) Cermet and coated cermet
EP1904660A1 (en) Sintered cemented carbides using vanadium as gradient former
JP5559575B2 (en) Cermet and coated cermet
JP2571124B2 (en) Nitrogen-containing cermet, method for producing the same, and coated nitrogen-containing cermet
KR20090028444A (en) Coated cutting insert for milling applications
JP5273987B2 (en) Cermet manufacturing method
JP4126451B2 (en) Cemented carbide
JP4191663B2 (en) Composite high hardness material for tools
CN113564399B (en) Gradient-structure TiCN-based metal ceramic and method for improving coating binding force thereof
JP4069749B2 (en) Cutting tool for roughing
JP5381616B2 (en) Cermet and coated cermet
JP3850085B2 (en) Coated cermet for cutting tools
JP4172754B2 (en) TiCN-based cermet and method for producing the same
JP4776395B2 (en) Cutting tools
JPH10237650A (en) Wc base cemented carbide and its production
JP4005787B2 (en) Surface coated cemented carbide
JP4077739B2 (en) Surface-coated Ti-based cermet cutting tool and method for manufacturing the same
JP3451950B2 (en) Surface-coated cemented carbide end mill with high toughness of substrate
JP2003094207A (en) Cutting tool
JP2005111623A (en) Surface coated cermet
JP4867572B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4126451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

EXPY Cancellation because of completion of term