JP5381616B2 - Cermet and coated cermet - Google Patents

Cermet and coated cermet Download PDF

Info

Publication number
JP5381616B2
JP5381616B2 JP2009246193A JP2009246193A JP5381616B2 JP 5381616 B2 JP5381616 B2 JP 5381616B2 JP 2009246193 A JP2009246193 A JP 2009246193A JP 2009246193 A JP2009246193 A JP 2009246193A JP 5381616 B2 JP5381616 B2 JP 5381616B2
Authority
JP
Japan
Prior art keywords
hard phase
cermet
phase
atomic
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009246193A
Other languages
Japanese (ja)
Other versions
JP2011093006A (en
Inventor
大輔 竹澤
幸三 北村
圭太郎 田村
宏樹 原
泰朗 谷口
宏爾 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2009246193A priority Critical patent/JP5381616B2/en
Publication of JP2011093006A publication Critical patent/JP2011093006A/en
Application granted granted Critical
Publication of JP5381616B2 publication Critical patent/JP5381616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、切削工具など用いられるサーメットおよび被覆サーメットに関する。 The present invention relates to a cermet and a coated cermet used for a cutting tool or the like.

サーメットは優れた耐摩耗性を有し、サーメットを用いて切削加工すると平滑で美しい仕上げ面が得られることから、仕上げ切削などに広く用いられている。サーメットに関する従来技術としては、サーメットの炭窒化物相の分布を制御して靱性を向上させたサーメットがある(例えば、特許文献1参照。)。また、炭窒化物の構造を制御して性能を向上させたサーメットがある(例えば、特許文献2参照。)。 Cermet has excellent wear resistance, and when it is cut with cermet, a smooth and beautiful finished surface can be obtained. Therefore, cermet is widely used for finish cutting. As a conventional technique related to cermet, there is a cermet in which the toughness is improved by controlling the distribution of the carbonitride phase of cermet (see, for example, Patent Document 1). Further, there is a cermet whose performance is improved by controlling the structure of carbonitride (see, for example, Patent Document 2).

特許第3359481号Japanese Patent No. 3359481 特許第2697553号Japanese Patent No. 2697553

近年、切削加工では、さらなる高能率加工が求められている。例えば、切削工具の交換回数を減らすことで高能率加工が可能となるため、従来よりも長寿命の切削工具が求められている。従来のサーメットおよび被覆サーメットは耐摩耗性に優れるが、欠損しやすく、寿命が短いという問題があった。本発明は、このような問題を解決するためになされたものであり、耐摩耗性および耐欠損性に優れたサーメットおよび被覆サーメットを提供することを目的とする。 In recent years, further high-efficiency machining has been demanded in cutting. For example, since highly efficient machining is possible by reducing the number of times of exchanging the cutting tool, a cutting tool having a longer life than before has been demanded. Conventional cermets and coated cermets are excellent in wear resistance, but have a problem that they are easily broken and have a short life. The present invention has been made to solve such problems, and an object thereof is to provide a cermet and a coated cermet having excellent wear resistance and fracture resistance.

本発明者らは、サーメットの耐摩耗性を低下させずに耐欠損性を向上させる方法を検討してきた。その結果、サーメットの欠損が主に熱衝撃によって生じること、熱衝撃によるサーメットの欠損を減少させるためにはサーメットの熱伝導率を向上させることが非常に有効であることが分かった。サーメットの熱伝導率を向上させるためには、熱伝導率の高いWC相を含有させるとよいが、WC相が多いと耐摩耗性が低下するため必要以上の増加させることはできない。このため、WC相以外の硬質相であるTi含有物の熱伝導率を向上させる必要性が出てきた。さらに研究を重ねたところ、Ti含有物に含まれるW量を減少させるとTi含有物の熱伝導率が向上することを見出した。 The present inventors have studied a method for improving fracture resistance without reducing the wear resistance of the cermet. As a result, it was found that the loss of cermet is mainly caused by thermal shock, and that it is very effective to improve the thermal conductivity of cermet in order to reduce the loss of cermet due to thermal shock. In order to improve the thermal conductivity of the cermet, it is preferable to contain a WC phase having a high thermal conductivity. However, if there are many WC phases, the wear resistance is lowered, so that it cannot be increased more than necessary. For this reason, it has become necessary to improve the thermal conductivity of Ti-containing materials that are hard phases other than the WC phase. As a result of further research, it was found that the thermal conductivity of the Ti-containing material is improved when the amount of W contained in the Ti-containing material is reduced.

すなわち、本発明のサーメットは、周期表4a、5a、6a族元素の炭化物、窒化物、炭窒化物およびこれらの相互固溶体の中の少なくとも1種からなる硬質相と、鉄族金属を主成分とする結合相とから構成されたサーメットであって、硬質相は、第1硬質相、第2硬質相および第3硬質相の中の2種または3種と、WC相とから構成され、第1硬質相はTiを含み第1硬質相に含まれる金属元素に対するW量が10原子%未満であり、第2硬質相はTiを含み第2硬質相に含まれる金属元素に対するW量が10原子%以上であり、第3硬質相はコアとリムからなり、第3硬質相のコアはTiを含み第3硬質相のコアに含まれる金属元素に対するW量が10原子%未満であり、第3硬質相のリムはTiを含み第3硬質相のリムに含まれる金属元素に対するW量が10原子%以上であり、サーメットの断面組織における第2硬質相の面積率V2と、サーメットの断面組織における第3硬質相のリムの面積率V3Rと、サーメットの断面組織における第1硬質相と第2硬質相と第3硬質相の面積率の総合計V123は、((V2+V3R)/V123)<0.4を満足するサーメットである。 That is, the cermet of the present invention comprises a hard phase composed of at least one of carbides, nitrides, carbonitrides and their mutual solid solutions of periodic table 4a, 5a, and 6a group elements, and an iron group metal as a main component. The hard phase is composed of two or three of the first hard phase, the second hard phase, and the third hard phase, and the WC phase. The hard phase contains Ti and the amount of W with respect to the metal element contained in the first hard phase is less than 10 atomic%, and the second hard phase contains Ti and the amount of W with respect to the metal element contained in the second hard phase is 10 atomic%. The third hard phase is composed of a core and a rim. The third hard phase core contains Ti, and the amount of W with respect to the metal element contained in the core of the third hard phase is less than 10 atomic%. The rim of the phase contains Ti and the metal contained in the rim of the third hard phase Has a W weight 10 atomic% or more with respect to iodine, and the area ratio V 2 of the second hard phase in the cermet of the cross-sectional structure, the area ratio V 3R of the rim of the third hard phase in the cermet of the cross-sectional structure, cermet sectional structure The total area V 123 of the area ratios of the first hard phase, the second hard phase, and the third hard phase in (1) is a cermet that satisfies ((V 2 + V 3R ) / V 123 ) <0.4.

これまでの研究の結果、TiCNなどのTi含有物の熱伝導率は、Ti含有物へのWの固溶により低下することがわかった。特にTi含有物に含まれる金属元素に対するW量が10原子%以上になると熱伝導率は急激に低下することがわかった。そのため、優れた熱伝導性を示すサーメットを得るためには、W量が10原子%以上のTi含有物を減少させるとともに、W量が10原子%未満のTi化合物を増加させるとよいことが明らかとなってきた。本発明のサーメットの硬質相を、(1)金属元素に対するW量が10原子%未満のもの、(2)金属元素に対するW量が10原子%以上100原子%未満のもの、(3)金属元素に対するW量が100原子%のものに分類すると、(1)Tiを含み金属元素に対するW量が10原子%未満である第1硬質相と第3硬質相のコア、(2)Tiを含み金属元素に対するW量が10原子%以上である第2硬質相と第3硬質相のリム、(3)WC相に分類することができる。本発明のサーメットの断面組織における、第2硬質相の面積率V2と、第3硬質相中のリムの面積率V3Rと、第1硬質相と第2硬質相と第3硬質相の面積率の総合計V123が、((V2+V3R)/V123)<0.4であると熱衝撃による欠損が減少し工具寿命が増加する。逆に((V2+V3R)/V123)≧0.4であると欠損が生じやすく十分な性能を示さない。 As a result of previous studies, it has been found that the thermal conductivity of Ti-containing materials such as TiCN decreases due to solid solution of W in the Ti-containing materials. In particular, it has been found that when the amount of W with respect to the metal element contained in the Ti-containing material is 10 atomic% or more, the thermal conductivity rapidly decreases. Therefore, it is clear that in order to obtain a cermet exhibiting excellent thermal conductivity, it is preferable to decrease the Ti content with a W content of 10 atomic% or more and increase the Ti compound with a W content of less than 10 atomic%. It has become. The hard phase of the cermet of the present invention includes (1) a W amount with respect to a metal element of less than 10 atomic%, (2) a W amount with respect to a metal element of 10 atomic% or more and less than 100 atomic%, When the amount of W is 100 atomic%, (1) the core of the first hard phase and the third hard phase having a W content of less than 10 atomic% including Ti, and (2) the metal including Ti It can be classified into rims of the second hard phase and the third hard phase, and (3) WC phase, in which the W amount relative to the element is 10 atomic% or more. In the cross-sectional structure of the cermet of the present invention, the area ratio V 2 of the second hard phase, the area ratio V 3R of the rim in the third hard phase, and the areas of the first hard phase, the second hard phase, and the third hard phase. If the total rate V 123 is ((V 2 + V 3R ) / V 123 ) <0.4, defects due to thermal shock are reduced and the tool life is increased. On the other hand, if ((V 2 + V 3R ) / V 123 ) ≧ 0.4, defects are likely to occur and sufficient performance is not exhibited.

第2硬質相と第3硬質相のリムにはTiとWが含まれるが、強靭化のためにTi、W以外の周期表4a、5a、6a族元素を含ませても好ましい。また、第1硬質相と第3硬質相のコアにはTiが含まれるが、強靭化のためにTi以外の周期表4a、5a、6a族元素を含ませても好ましい。 Ti and W are contained in the rim of the second hard phase and the third hard phase, but it is also preferable to include periodic table 4a, 5a, 6a elements other than Ti and W for toughening. Further, Ti is contained in the cores of the first hard phase and the third hard phase, but it is also preferable to contain periodic table 4a, 5a, 6a elements other than Ti for toughening.

第1硬質相に含まれる金属元素に対するW量は5原子%未満であると熱伝導率はさらに高まり耐熱性が向上し、W量は1原子%未満であるとさらに耐熱性を高めることができるので好ましい。また、第2硬質相に含まれる金属元素に対するW量および第3硬質相のリムに含まれる金属元素に対するW量をそれぞれ30原子%以下、すなわち、10〜30原子%とすると、耐熱性の低下を抑えることができるので、さらに好ましい。 When the amount of W with respect to the metal element contained in the first hard phase is less than 5 atomic%, the thermal conductivity is further increased and the heat resistance is improved, and when the amount of W is less than 1 atomic%, the heat resistance can be further increased. Therefore, it is preferable. Further, if the amount of W with respect to the metal element contained in the second hard phase and the amount of W with respect to the metal element contained in the rim of the third hard phase are 30 atomic% or less, that is, 10 to 30 atomic%, the heat resistance decreases. Is more preferable.

本発明のサーメットの断面組織におけるWC相の面積率が1面積%以上になると靱性が向上し、WC相の面積率が55面積%を超えると十分な耐摩耗性を得ることができないので、WC相の面積率は1〜55面積%であると好ましい。 When the area ratio of the WC phase in the cross-sectional structure of the cermet of the present invention is 1 area% or more, toughness is improved, and when the area ratio of the WC phase exceeds 55 area%, sufficient wear resistance cannot be obtained. The area ratio of the phase is preferably 1 to 55 area%.

本発明の結合相は硬質相と硬質相を強固に結合させてサーメットの強度を高める作用がある。本発明における鉄族金属を主成分とする結合相とは、鉄族金属または鉄族金属に周期表4a、5a、6a族元素、Si、Al、Zn、Cu、Ru、Rh、Reの少なくとも1種を50重量%未満固溶させたものである。本発明において鉄族金属とはCo、Ni、Feを示す。その中でも、結合相がCo、Niの1種または2種からなると、機械的強度が向上するのでさらに好ましく、その中でも結合相がCoからなるとサーメットと硬質膜との密着性が向上するのでさらに好ましい。なお、硬質相成分の結合相への固溶または結合相の特性向上のため、結合相の鉄族金属に周期表4a、5a、6a族元素を50重量%未満固溶させると好ましい。結合相の鉄族金属にSi、Al、Zn、Cuが50重量%未満含まれると焼結性が向上するので好ましい。また、結合相の鉄族金属にRu、Rh、Reを30重量%以下含有させると耐摩耗性が向上するので好ましい。 The binder phase of the present invention has an effect of increasing the strength of the cermet by firmly bonding the hard phase and the hard phase. In the present invention, the binder phase containing an iron group metal as a main component is an iron group metal or an iron group metal having at least one of elements of the periodic tables 4a, 5a, and 6a, Si, Al, Zn, Cu, Ru, Rh, and Re. The seed is dissolved in less than 50% by weight. In the present invention, the iron group metal represents Co, Ni, or Fe. Among them, it is more preferable that the binder phase is composed of one or two of Co and Ni because the mechanical strength is improved, and among them, the bond phase is more preferable because adhesion between the cermet and the hard film is improved. . In addition, it is preferable to dissolve less than 50% by weight of the periodic table 4a, 5a, and 6a group elements in the iron group metal of the binder phase in order to dissolve the hard phase component in the binder phase or improve the characteristics of the binder phase. If the iron group metal in the binder phase contains less than 50% by weight of Si, Al, Zn, Cu, it is preferable because the sinterability is improved. Further, it is preferable to contain 30% by weight or less of Ru, Rh, and Re in the iron group metal of the binder phase because the wear resistance is improved.

本発明のサーメットの断面組織における、結合相の面積率が3面積%未満、硬質相の面積率が97面積%を超えると、本発明のサーメットに十分な靱性を付与することができず、結合相の面積率が20面積%を超え、硬質相の面積率が80面積%未満になると、十分な耐摩耗性が得られない。そのため、結合相の面積率は3〜20面積%、硬質相の面積率は80〜97面積%であると好ましい。 In the cross-sectional structure of the cermet of the present invention, when the area ratio of the binder phase is less than 3% by area and the area ratio of the hard phase exceeds 97% by area, sufficient toughness cannot be imparted to the cermet of the present invention, When the area ratio of the phase exceeds 20 area% and the area ratio of the hard phase is less than 80 area%, sufficient wear resistance cannot be obtained. Therefore, the area ratio of the binder phase is preferably 3 to 20 area%, and the area ratio of the hard phase is preferably 80 to 97 area%.

本発明のサーメットの表面に、CVD法またはPVD法により周期表4a、5a、6a族元素、Al,Siの酸化物、炭化物、窒化物およびこれらの相互固溶体、硬質炭素膜などの硬質膜を被覆した被覆サーメットはさらに耐摩耗性に優れる。硬質膜の具体例としては、TiN、TiC、TiCN、TiAlN、TiSiN、AlCrN、Al23、ダイヤモンド、ダイヤモンドライクカーボン(DLC)などを挙げることができる。硬質膜の総膜厚は0.1μm以上になると耐摩耗性が向上し、30μmを超えて厚くなると耐欠損性が低下するので、0.1〜30μmが好ましい。 The surface of the cermet of the present invention is coated with a hard film such as periodic table 4a, 5a, 6a group element, Al, Si oxide, carbide, nitride and their mutual solid solution, hard carbon film by CVD method or PVD method. The coated cermet is further excellent in wear resistance. Specific examples of the hard film include TiN, TiC, TiCN, TiAlN, TiSiN, AlCrN, Al 2 O 3 , diamond, diamond-like carbon (DLC), and the like. When the total film thickness of the hard film is 0.1 μm or more, the wear resistance is improved, and when it exceeds 30 μm, the chipping resistance is decreased. Therefore, 0.1 to 30 μm is preferable.

本発明のサーメットは、例えばTiCやTiCN粉と、WC粉と、周期表4a、5a、6a族元素の炭化物、窒化物、炭窒化物およびこれらの相互固溶体の粉末と、鉄族金属の粉末とを所定の配合組成となるように混合した混合物を、
(A)非酸化雰囲気で常温から1200〜1300℃の第1加熱温度まで昇温させる工程と、
(B)1200〜1300℃の第1加熱温度で20Torr以上の窒素およびアルゴン混合雰囲気で30分間以上保持する工程と、
(C)1200〜1300℃の第1加熱温度から1420〜1600℃の第2加熱温度まで昇温時に5Torr以下の非酸化性雰囲気に5分間以上保持したのち圧力10Torr以上の窒素雰囲気で昇温させる工程と、
(D)1420〜1600℃の第2加熱温度にて圧力10Torr以上の窒素雰囲気で保持する工程と
(E)冷却する工程と
を含むサーメットの製造方法により得ることができる。
The cermet of the present invention includes, for example, TiC and TiCN powder, WC powder, periodic table 4a, 5a, and 6a group carbides, nitrides, carbonitrides and their mutual solid solution powders, and iron group metal powders. A mixture obtained by mixing so as to have a predetermined composition,
(A) raising the temperature from normal temperature to a first heating temperature of 1200 to 1300 ° C. in a non-oxidizing atmosphere;
(B) a step of holding at a first heating temperature of 1200 to 1300 ° C. in a nitrogen and argon mixed atmosphere of 20 Torr or more for 30 minutes or more;
(C) When the temperature is raised from a first heating temperature of 1200 to 1300 ° C. to a second heating temperature of 1420 to 1600 ° C., a non-oxidizing atmosphere of 5 Torr or less is held for 5 minutes or more, and then the temperature is raised in a nitrogen atmosphere of 10 Torr or more Process,
(D) It can obtain by the manufacturing method of a cermet including the process hold | maintained by the 2nd heating temperature of 1420-1600 degreeC in the nitrogen atmosphere of a pressure of 10 Torr or more, and the process of (E) cooling.

工程(A)において、混合物を非酸化雰囲気で昇温させることにより混合物の酸化を防いでいる。非酸化雰囲気として、具体的には、真空中、窒素雰囲気、不活性ガス雰囲気、水素雰囲気などを挙げることができる。工程(B)の雰囲気の圧力は20Torr以上が好ましく、これにより焼結体の内部と表面部の窒素量を等しくすることができる。また、工程(C)では、5Torr以下の非酸化性雰囲気で5分間以上保持することで焼結性を高めることができる。工程(C)(D)での窒素雰囲気の圧力は10Torr以上が好ましく、これにより第2硬質相を少なくすることができる。なお、窒素雰囲気の圧力が300Torrを超えて高くなるとサーメットの焼結性が低下するので、窒素雰囲気の圧力は10〜300Torrであると好ましい。 In step (A), the mixture is heated in a non-oxidizing atmosphere to prevent oxidation of the mixture. Specific examples of the non-oxidizing atmosphere include a vacuum, a nitrogen atmosphere, an inert gas atmosphere, and a hydrogen atmosphere. The pressure of the atmosphere in the step (B) is preferably 20 Torr or more, whereby the amount of nitrogen in the sintered body and the surface portion can be made equal. Further, in the step (C), the sinterability can be enhanced by holding for 5 minutes or more in a non-oxidizing atmosphere of 5 Torr or less. The pressure of the nitrogen atmosphere in the steps (C) and (D) is preferably 10 Torr or more, whereby the second hard phase can be reduced. In addition, since the sinterability of a cermet will fall when the pressure of nitrogen atmosphere exceeds 300 Torr, it is preferable that the pressure of nitrogen atmosphere is 10-300 Torr.

本発明のサーメットの具体的な製造方法としては、以下の方法が挙げられる。TiCN粉と、WC粉と、周期表4a、5a、6a族元素の炭化物、窒化物、炭窒化物およびこれらの相互固溶体の粉末と、鉄族金属の粉末を用意する。これらの粉末を所定の重量比率に秤量し、溶媒とともに湿式ボールミルにて混合し、混合後に溶媒を蒸発させて混合物を乾燥させる。得られた混合物にパラフィン等の成形用のワックスを添加して所定の形状に成形する。なお、成形する方法としては、プレス成形、押出成形、射出成形などを挙げることができる。成形した混合物を焼結炉に入れて、真空中で350〜450℃まで昇温してワックスを除去させた後、真空中または窒素雰囲気で450℃から1200〜1300℃の第1加熱温度まで昇温させたのち、50Torrの窒素およびアルゴン混合雰囲気で60分間保持したのち、混合物を1200〜1300℃の第1加熱温度から1420〜1600℃の第2加熱温度まで1Torrの非酸化性雰囲気で20分間保持して、その後、圧力10Torr以上の窒素雰囲気で昇温させ、窒素雰囲気で1420〜1600℃の第2加熱温度にて10〜60分間保持する。その後、1420〜1600℃の第2加熱温度から常温まで冷却する。 The following method is mentioned as a specific manufacturing method of the cermet of this invention. A TiCN powder, a WC powder, carbides, nitrides, carbonitrides of these periodic table elements 4a, 5a, and 6a and their mutual solid solution powders, and iron group metal powders are prepared. These powders are weighed to a predetermined weight ratio, mixed with a solvent in a wet ball mill, and after mixing, the solvent is evaporated to dry the mixture. A molding wax such as paraffin is added to the obtained mixture to form a predetermined shape. Examples of the molding method include press molding, extrusion molding, and injection molding. The molded mixture is placed in a sintering furnace and heated to 350 to 450 ° C. in vacuum to remove the wax, and then heated from 450 ° C. to 1200 to 1300 ° C. in the vacuum or in a nitrogen atmosphere. After being warmed and held in a mixed atmosphere of nitrogen and argon of 50 Torr for 60 minutes, the mixture is heated from a first heating temperature of 1200 to 1300 ° C. to a second heating temperature of 1420 to 1600 ° C. in a non-oxidizing atmosphere of 1 Torr for 20 minutes. After that, the temperature is raised in a nitrogen atmosphere at a pressure of 10 Torr or higher, and held in a nitrogen atmosphere at a second heating temperature of 1420 to 1600 ° C. for 10 to 60 minutes. Then, it cools from 1220-1600 degreeC 2nd heating temperature to normal temperature.

本発明のサーメットの表面に、従来のCVD法やPVD法により硬質膜を被覆することにより本発明の被覆サーメットを得ることができる。 The coated cermet of the present invention can be obtained by coating the surface of the cermet of the present invention with a hard film by a conventional CVD method or PVD method.

本発明のサーメットおよび被覆サーメットは、耐摩耗性および耐欠損性に優れるため、切削工具として用いると優れた切削性能を発揮する。そのため、本発明のサーメットおよび被覆サーメットを切削工具として用いると、従来よりも工具寿命を向上させることができる。 Since the cermet and coated cermet of the present invention are excellent in wear resistance and fracture resistance, they exhibit excellent cutting performance when used as a cutting tool. Therefore, when the cermet and the coated cermet of the present invention are used as a cutting tool, the tool life can be improved as compared with the conventional case.

本発明のサーメットおよび被覆サーメットは耐摩耗性および耐欠損性に優れ、工具に使用すると工具寿命を長くする効果が得られる。 The cermet and coated cermet of the present invention are excellent in wear resistance and fracture resistance, and when used in a tool, an effect of extending the tool life can be obtained.

サーメットの原料粉末として、平均粒径1.4μmのTiC、平均粒径1.5μmのTi(C0.50.5)粉、平均粒径1.5μmのTi(C0.30.7)粉、平均粒径1.7μmの(Ti0.92Nb0.05Zr0.010.02)(C0.50.5)粉、平均粒径1.7μmの(Ti0.91Ta0.050.04)(C0.50.5)粉、平均粒径1.6μmの(Ti0.82Nb0.090.09)(C0.50.5)粉、平均粒径1.5μmの(W0.5Ti0.2Ta0.3)C粉、平均粒径1.5μmのWC粉、 平均粒径1.5μmのTaC粉、平均粒径1.5μmのNbC粉、 平均粒径1.5μmのMo2C粉、平均粒径1.6μmのCr32粉、平均粒径1.1μmのVC粉、平均粒径1.0μmのZrC粉、平均粒径1.2μmのHfC粉、平均粒径1.3μmのCo粉、平均粒径1.6μmのNi粉を用意した。これらを用いて、表1に示す配合組成に秤量した。 As cermet raw material powder, TiC with an average particle size of 1.4 μm, Ti (C 0.5 N 0.5 ) powder with an average particle size of 1.5 μm, Ti (C 0.3 N 0.7 ) powder with an average particle size of 1.5 μm, average particle size 1.7 μm (Ti 0.92 Nb 0.05 Zr 0.01 W 0.02 ) (C 0.5 N 0.5 ) powder, average particle size 1.7 μm (Ti 0.91 Ta 0.05 W 0.04 ) (C 0.5 N 0.5 ) powder, average particle size 1. 6 μm (Ti 0.82 Nb 0.09 W 0.09 ) (C 0.5 N 0.5 ) powder, average particle size 1.5 μm (W 0.5 Ti 0.2 Ta 0.3 ) C powder, average particle size 1.5 μm WC powder, average particle size 1 .5 μm TaC powder, NbC powder with an average particle size of 1.5 μm, Mo 2 C powder with an average particle size of 1.5 μm, Cr 3 C 2 powder with an average particle size of 1.6 μm, VC powder with an average particle size of 1.1 μm ZrC powder having an average particle size of 1.0 μm, HfC powder having an average particle size of 1.2 μm, Co powder having an average particle size of 1.3 μm, an average particle size of 1. We were prepared Ni powder of μm. Using these, the blending composition shown in Table 1 was weighed.

Figure 0005381616
Figure 0005381616

秤量した混合粉末を湿式ボールミルにて混合・粉砕した後、溶媒を蒸発させて、混合物を乾燥させた。乾燥させた混合物にパラフィンを添加して、プレス成形した。ここで、発明品1〜8については、プレス成形した混合物を焼結炉に入れて、真空中で常温から450℃まで徐々に昇温してパラフィンを蒸発させた後、真空中で450℃から1250℃の第1加熱温度まで昇温させ、50Torrの窒素およびアルゴン混合雰囲気で60分間保持したのち、さらに、混合物を1250℃の第1加熱温度から1500℃の第2加熱温度までの昇温工程において1Torrの非酸化性雰囲気で20分間保持したのち150Torrの窒素雰囲気で昇温させ、同じ圧力の窒素雰囲気で1500℃の第2加熱温度にて60分間保持して、室温まで冷却した。一方、比較品1〜4については、プレス成形した混合物を焼結炉に入れて、真空中で常温から450℃まで徐々に昇温してパラフィンを蒸発させた後、真空中で450℃から1280℃まで昇温させた。さらに、真空中で1280℃から1480℃まで昇温させ、1480℃にて真空中で50分間保持した。その後、真空中で1480℃から常温まで冷却した。 After the weighed mixed powder was mixed and pulverized by a wet ball mill, the solvent was evaporated to dry the mixture. Paraffin was added to the dried mixture and press molded. Here, for inventions 1 to 8, the press-molded mixture was put in a sintering furnace, and the temperature was gradually raised from room temperature to 450 ° C. in a vacuum to evaporate paraffin, and from 450 ° C. in vacuum. The temperature is raised to a first heating temperature of 1250 ° C., held in a mixed atmosphere of nitrogen and argon of 50 Torr for 60 minutes, and then the mixture is heated from a first heating temperature of 1250 ° C. to a second heating temperature of 1500 ° C. Then, after maintaining in a non-oxidizing atmosphere of 1 Torr for 20 minutes, the temperature was raised in a nitrogen atmosphere of 150 Torr, held in a nitrogen atmosphere of the same pressure at a second heating temperature of 1500 ° C. for 60 minutes, and cooled to room temperature. On the other hand, for the comparative products 1 to 4, the press-molded mixture was put in a sintering furnace, the temperature was gradually raised from room temperature to 450 ° C. in vacuum to evaporate paraffin, and then 450 ° C. to 1280 in vacuum. The temperature was raised to ° C. Furthermore, the temperature was raised from 1280 ° C. to 1480 ° C. in a vacuum, and held at 1480 ° C. in a vacuum for 50 minutes. Then, it cooled from 1480 degreeC to normal temperature in the vacuum.

得られたサーメットの内部の断面組織を走査電子顕微鏡にて観察し、走査電子顕微鏡付属のEDSを用いながら、第1硬質相、第2硬質相、第3硬質相のコアおよびリムのW量を分析した。さらにWC相、結合相も含めた各相の面積%を測定した。これらの結果は表2、3に示した。VWCはWC相の面積%、V1は第1硬質相の面積%、V2は第2硬質相の面積%、V3Cは第3硬質相のコアの面積%、V3Rは第3硬質相のリムの面積%、V123は第1硬質相と第2硬質相と第3硬質相の面積%の総合計(V123=V1+V2+V3C+V3R)、Vbは結合相の面積%、C1Wは第1硬質相に含まれる金属元素に対するW量の原子%、C2Wは第2硬質相に含まれる金属元素に対するW量の原子%、C3CWは第3硬質相のコアに含まれる金属元素に対するW量の原子%、C3RWは第3硬質相のリムに含まれる金属元素に対するW量の原子%を示す。また、V2、V3R、V123から求めた(V2+V3R)/V123の値も表2に示した。 The cross-sectional structure inside the obtained cermet was observed with a scanning electron microscope, and using the EDS attached to the scanning electron microscope, the W amount of the core and rim of the first hard phase, the second hard phase, and the third hard phase were measured. analyzed. Furthermore, the area% of each phase including the WC phase and the binder phase was measured. These results are shown in Tables 2 and 3. V WC is the area% of the WC phase, V 1 is the area% of the first hard phase, V 2 is the area% of the second hard phase, V 3C is the area% of the core of the third hard phase, and V 3R is the third hard phase Rim area%, V 123 is the total sum of the first hard phase, second hard phase, and third hard phase area% (V 123 = V 1 + V 2 + V 3C + V 3R ), V b is the binder phase Area%, C 1W is the atomic% of the W amount relative to the metal element contained in the first hard phase, C 2W is the atomic percent of the W amount relative to the metal element contained in the second hard phase, and C 3CW is the core of the third hard phase The atomic% of the W amount with respect to the metal element contained in C, and C 3RW represents the atomic% of the W amount with respect to the metal element contained in the rim of the third hard phase. The values of (V 2 + V 3R ) / V 123 determined from V 2 , V 3R and V 123 are also shown in Table 2.

Figure 0005381616
Figure 0005381616

Figure 0005381616
Figure 0005381616

また、サーメットの各相に含まれる成分を、走査電子顕微鏡付属のEDSを用いて分析した。その結果を表4に示した。なお、結合相に含まれる成分については、結合相全体に対して50重量%以上の元素を主成分とし、結合相全体に対して50重量%未満の元素を微量成分とした。また、結合相に鉄族元素が2種以上含まれている場合、鉄族元素の合計が結合相全体に対して50重量%以上であれば、その鉄族元素を主成分とした。 Moreover, the component contained in each phase of cermet was analyzed using EDS attached to a scanning electron microscope. The results are shown in Table 4. In addition, about the component contained in a binder phase, the element of 50 weight% or more with respect to the whole binder phase was made into a main component, and the element of less than 50 weight% with respect to the whole binder phase was made into the trace component. Further, when two or more kinds of iron group elements are contained in the binder phase, the iron group elements are used as the main component if the total of iron group elements is 50% by weight or more with respect to the whole binder phase.

Figure 0005381616
Figure 0005381616

作製したサーメットに研削とホーニングを施し、ISO規格SNGN120408形状に加工した。さらにPVD法により厚さ2.5μmのTiAlNを被覆して発明品1〜8、比較品1〜4の被覆サーメットを得た。また、発明品7のサーメット基材に、膜構成が(基材側)平均膜厚0.2μmTiN−平均膜厚2.0μmTi(C,N)−平均膜厚0.6μmAl23−平均膜厚0.2μmTiN(最表面側)(平均総膜厚3μm)である硬質膜をCVD法により被覆したものを発明品9とした。得られた被覆サーメットを用いて切削試験1、2を行った。 The produced cermet was ground and honed and processed into an ISO standard SNGN120408 shape. Further, TiAlN having a thickness of 2.5 μm was coated by the PVD method to obtain coated cermets of Invention products 1 to 8 and Comparative products 1 to 4. In addition, the cermet base material of Invention 7 has a film configuration (base material side) average film thickness 0.2 μm TiN−average film thickness 2.0 μm Ti (C, N) −average film thickness 0.6 μm Al 2 O 3 −average film Invention 9 was obtained by coating a hard film having a thickness of 0.2 μm TiN (outermost surface side) (average total film thickness of 3 μm) by the CVD method. Cutting tests 1 and 2 were performed using the obtained coated cermet.

[切削試験1]
耐欠損性評価試験
試料形状:SNGN120408
被削材:S40C(形状:円柱に4本の溝を入れた略円柱状)
切削速度:160m/min
切り込み:2.0mm
送り量:0.25mm/rev
雰囲気:湿式切削
試験回数:3回
寿命の判定基準:欠損するまでの衝撃回数を寿命とする。なお、衝撃回数が25000回になるまでに欠損しない場合は、その時点で試験を終了する。
[Cutting test 1]
Fracture resistance evaluation test sample shape: SNGN120408
Work material: S40C (shape: substantially cylindrical shape with four grooves in a cylinder)
Cutting speed: 160 m / min
Cutting depth: 2.0mm
Feed amount: 0.25mm / rev
Atmosphere: Number of wet cutting tests: 3 times Judgment criteria of life: The number of impacts until chipping is regarded as the life. In addition, a test is complete | finished at that time, when it does not lose | delete by the frequency | count of impact reaching 25000 times.

表5に切削試験1の結果を示した。 Table 5 shows the results of the cutting test 1.

Figure 0005381616
Figure 0005381616

[切削試験2]
耐摩耗性評価試験
試料形状:SNGN120408
被削材:S40C(形状:円柱)
切削速度:200m/min
切り込み:2.0mm
送り量:0.25mm/rev
雰囲気:湿式切削
寿命の判定基準:欠損したとき、または、最大逃げ面摩耗量VBmaxが0.3mm以上になったときを寿命とする。
[Cutting test 2]
Wear resistance evaluation test sample shape: SNGN120408
Work material: S40C (shape: cylinder)
Cutting speed: 200 m / min
Cutting depth: 2.0mm
Feed amount: 0.25mm / rev
Atmosphere: Criteria for wet cutting life: Life is defined as when it is missing or when the maximum flank wear amount V Bmax is 0.3 mm or more.

表6に切削試験2の結果を示した。 Table 6 shows the results of the cutting test 2.

Figure 0005381616
Figure 0005381616

表6に示されるように、発明品の加工時間が24分以上であり、比較品の加工時間は、20分20秒以下であった。発明品は、比較品よりも切削性能が優れることが分かる。 As shown in Table 6, the processing time of the inventive product was 24 minutes or longer, and the processing time of the comparative product was 20 minutes 20 seconds or shorter. It can be seen that the inventive product is superior in cutting performance to the comparative product.

切削試験1と切削試験2の結果を点数化した。すなわち、切削試験1の衝撃回数について、25000回以上を3点、20000回以上を2点、15000回以上を1点、15000回未満を0点とし、1回目から3回目までの結果を平均した。また、切削試験2の加工時間について、30分以上を3点、20分以上30分未満を2点、10分以上20分未満を1点とした。切削試験1の点数の平均値と切削試験2の点数を合計し、その値を総合評価の結果とした。点数が大きいほど切削性能に優れる。得られた総合評価の結果は表7に示した。 The results of cutting test 1 and cutting test 2 were scored. That is, with respect to the number of impacts in the cutting test 1, 25000 times or more were 3 points, 20000 times or more were 2 points, 15000 times or more were 1 point, and less than 15000 times were 0 points, and the results from the 1st to the 3rd time were averaged. . Moreover, about the processing time of the cutting test 2, 30 minutes or more was made into 3 points | pieces, 20 minutes or more and less than 30 minutes were made into 2 points | pieces, and 10 minutes or more and less than 20 minutes made 1 point | pieces. The average value of the score of the cutting test 1 and the score of the cutting test 2 were totaled, and the value was used as a result of the comprehensive evaluation. The larger the score, the better the cutting performance. The obtained comprehensive evaluation results are shown in Table 7.

Figure 0005381616
Figure 0005381616

表7に示されるように発明品の切削試験1の平均値は2〜3点であり耐欠損性に優れることが分かる。発明品の切削試験2の結果は2〜3点であり耐摩耗性に優れることが分かる。耐欠損性と耐摩耗性がバランスよく優れる発明品は総合評価において4.0〜5.0点と高い点数になった。比較品は発明品よりも総合評価の点数が低い。このことは総合的な切削性能が発明品よりも劣ることを示している。例えば、比較品1については、切削試験2において2点であり優れた耐摩耗性を示すが、切削試験1の平均値は1.3点であり、総合評価は3.3点になった。比較品4については、切削試験1および切削試験2がいずれも1.0点であり、総合評価では2.0点になった。 As shown in Table 7, it can be seen that the average value of the cutting test 1 of the invention is 2 to 3 points and is excellent in fracture resistance. The results of the cutting test 2 of the invention product are 2 to 3 points, and it is understood that the wear resistance is excellent. Invention products with excellent balance between fracture resistance and wear resistance have a high score of 4.0 to 5.0 in the overall evaluation. Comparative products have lower overall evaluation scores than invention products. This indicates that the overall cutting performance is inferior to that of the invention. For example, the comparative product 1 showed 2 points in the cutting test 2 and excellent wear resistance, but the average value of the cutting test 1 was 1.3 points, and the overall evaluation was 3.3 points. For the comparative product 4, the cutting test 1 and the cutting test 2 were both 1.0 points, and the overall evaluation was 2.0 points.

実施例1における被覆前の発明品4、5のサーメット基材、比較品1、4のサーメット基材と同一のサーメットを作製し、研削とホーニングを施してISO規格TNGN160408形状に加工した。これらに被覆処理をせずに、それぞれを発明品10、11、比較品5、6のサーメットとして切削試験3を行った。試料内容は表8に示す。 The same cermet as the cermet base material of invention products 4 and 5 before coating in Example 1 and the cermet base material of comparative products 1 and 4 were prepared, and ground and honed, and processed into an ISO standard TNGN160408 shape. The cutting test 3 was performed by using these as the cermets of the inventive products 10 and 11, and the comparative products 5 and 6, respectively, without being coated. Table 8 shows the sample contents.

Figure 0005381616
Figure 0005381616

[切削試験3]
耐摩耗性評価試験
試料形状:TNGN160408
被削材:S40C(形状:円柱状)
切削速度:100m/min
切り込み:2.0mm
送り量:0.25mm/rev
雰囲気:乾式切削
寿命の判定基準:10コーナを最大15分間切削して、欠損したとき、または、最大逃げ面摩耗量VBmaxが0.3mm以上になったときを寿命とする。
[Cutting test 3]
Wear resistance evaluation test sample shape: TNGN160408
Work material: S40C (shape: cylindrical)
Cutting speed: 100 m / min
Cutting depth: 2.0mm
Feed amount: 0.25mm / rev
Atmosphere: Criteria for dry cutting life: 10 corners are cut for a maximum of 15 minutes and broken, or the maximum flank wear amount V Bmax is 0.3 mm or more.

表9に切削試験3の結果を示した。 Table 9 shows the results of the cutting test 3.

Figure 0005381616
Figure 0005381616

表9から発明品10、11のサーメットは比較品5、6のサーメットよりも耐欠損性および耐摩耗性に優れることが分かる。 It can be seen from Table 9 that the cermets of the inventive products 10 and 11 are superior in fracture resistance and wear resistance to the cermets of the comparative products 5 and 6.

Claims (6)

周期表4a、5a、6a族元素の炭化物、窒化物、炭窒化物およびこれらの相互固溶体の中の少なくとも1種からなる硬質相と、鉄族金属を主成分とする結合相とから構成されたサーメットであって、硬質相は、第1硬質相、第2硬質相および第3硬質相の中の2種または3種と、WC相とから構成され、第1硬質相はTiを含み第1硬質相に含まれる金属元素に対するW量が10原子%未満であり、第2硬質相はTiを含み第2硬質相に含まれる金属元素に対するW量が10原子%以上であり、第3硬質相はコアとリムからなり、第3硬質相のコアはTiを含み第3硬質相のコアに含まれる金属元素に対するW量が10原子%未満であり、第3硬質相のリムはTiを含み第3硬質相のリムに含まれる金属元素に対するW量が10原子%以上であり、サーメットの断面組織における第2硬質相の面積率V2と、サーメットの断面組織における第3硬質相のリムの面積率V3Rと、サーメットの断面組織における第1硬質相と第2硬質相と第3硬質相の面積率の総合計V123は、((V2+V3R)/V123)<0.4を満足するサーメット。 It was composed of a hard phase composed of at least one of carbides, nitrides, carbonitrides and their mutual solid solutions of the periodic table 4a, 5a, 6a group elements and a binder phase mainly composed of iron group metals. In the cermet, the hard phase is composed of two or three of the first hard phase, the second hard phase, and the third hard phase, and the WC phase, and the first hard phase includes Ti and the first hard phase. The amount of W with respect to the metal element contained in the hard phase is less than 10 atomic%, the second hard phase contains Ti, the amount of W with respect to the metal element contained in the second hard phase is 10 atomic% or more, and the third hard phase Is composed of a core and a rim, and the third hard phase core contains Ti, and the amount of W with respect to the metal element contained in the third hard phase core is less than 10 atomic%, and the third hard phase rim contains Ti. The amount of W with respect to the metal element contained in the rim of 3 hard phases is 10 atomic% or more There, an area ratio V 2 of the second hard phase in the cermet of the cross-sectional structure, the area ratio V 3R of the rim of the third hard phase in the cermet of the cross-sectional structure, the first hard phase in the cermet of the cross-sectional structure and the second hard phase And the total area ratio V 123 of the third hard phase is a cermet that satisfies ((V 2 + V 3R ) / V 123 ) <0.4. 第1硬質相に含まれる金属元素に対するW量が5原子%未満である請求項1に記載のサーメット。 The cermet according to claim 1, wherein the amount of W with respect to the metal element contained in the first hard phase is less than 5 atomic%. 第1硬質相に含まれる金属元素に対するW量が1原子%未満である請求項1または請求項2に記載のサーメット。 The cermet according to claim 1 or 2, wherein the amount of W with respect to the metal element contained in the first hard phase is less than 1 atomic%. 第2硬質相に含まれる金属元素に対するW量の合計が10〜30原子%であり、第3硬質相のリムに含まれる金属元素に対するW量の合計が10〜30原子%である請求項1〜3のいずれか1項に記載のサーメット。 The total amount of W with respect to the metal elements contained in the second hard phase is 10 to 30 atomic%, and the total amount of W with respect to the metal elements contained in the rim of the third hard phase is 10 to 30 atomic%. The cermet of any one of -3. サーメットの断面組織におけるWC相の面積率が1〜55面積%である請求項1〜4のいずれか1項に記載のサーメット。 The cermet according to any one of claims 1 to 4, wherein the area ratio of the WC phase in the cross-sectional structure of the cermet is 1 to 55 area%. 請求項1〜5いずれか1項に記載のサーメットの表面に硬質膜を被覆した被覆サーメット。 The coated cermet which coat | covered the hard film | membrane on the surface of the cermet of any one of Claims 1-5.
JP2009246193A 2009-10-27 2009-10-27 Cermet and coated cermet Active JP5381616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009246193A JP5381616B2 (en) 2009-10-27 2009-10-27 Cermet and coated cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009246193A JP5381616B2 (en) 2009-10-27 2009-10-27 Cermet and coated cermet

Publications (2)

Publication Number Publication Date
JP2011093006A JP2011093006A (en) 2011-05-12
JP5381616B2 true JP5381616B2 (en) 2014-01-08

Family

ID=44110507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009246193A Active JP5381616B2 (en) 2009-10-27 2009-10-27 Cermet and coated cermet

Country Status (1)

Country Link
JP (1) JP5381616B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534567B2 (en) * 2012-06-21 2014-07-02 住友電気工業株式会社 Hard materials and cutting tools
CN109642277B (en) 2016-08-22 2020-12-29 住友电气工业株式会社 Hard material and cutting tool
KR101816712B1 (en) 2016-11-10 2018-01-11 한국야금 주식회사 Cutting tools having hard coated layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195950A (en) * 1985-02-25 1986-08-30 Mitsubishi Metal Corp Cermet for cutting tool having high hardness and toughness
JPS62265107A (en) * 1985-10-14 1987-11-18 Sumitomo Electric Ind Ltd Production of double carbonitride material
JP3319213B2 (en) * 1995-03-24 2002-08-26 三菱マテリアル株式会社 Cermet cutting tool with excellent fracture resistance
JPH08300204A (en) * 1995-05-02 1996-11-19 Mitsubishi Materials Corp Cutting tool made of titanium carbonitride cermet
JP4280048B2 (en) * 2002-09-27 2009-06-17 京セラ株式会社 Method for producing TiCN-based cermet
JP4659682B2 (en) * 2005-10-18 2011-03-30 日本特殊陶業株式会社 Cermet inserts and cutting tools

Also Published As

Publication number Publication date
JP2011093006A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
WO2011002008A1 (en) Cermet and coated cermet
JP5454678B2 (en) Cermet and coated cermet
JP6439975B2 (en) Cermet manufacturing method
JP5989930B1 (en) Cermet and cutting tools
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
JP5559575B2 (en) Cermet and coated cermet
JP5594568B2 (en) Cutting tool made of cubic boron nitride based ultra high pressure sintered material and cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP5381616B2 (en) Cermet and coated cermet
JP2011156645A (en) Surface-coated cutting tool made of wc-based cemented carbide excellent in thermal plastic deformation resistance
JP2012086297A (en) Wc-based cemented carbide cutting tool exercising superior chipping resistance and wear resistance in high speed intermittent cutting
KR101306194B1 (en) Sintered body for cutting tools and manufacturing method for the same
JP5063129B2 (en) cermet
JP4069749B2 (en) Cutting tool for roughing
WO2015141757A1 (en) Cermet tool
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP2012086298A (en) Cutting tool made of surface-coated wc-based cemented carbide exhibiting excellent defect resistance in high-speed intermittent cutting of steel
JP5644388B2 (en) Cermet and coated cermet
JP6380016B2 (en) Cermet tools and coated cermet tools
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP2020132971A (en) Cemented carbide and cutting tool
WO2012036037A1 (en) Surface coating insert made of wc-based cemented carbide
JP7170965B2 (en) Cemented Carbide and Coated Cemented Carbide
JP7441420B2 (en) Cutting tools that exhibit excellent fracture resistance and plastic deformation resistance
JP2014077178A (en) Cermet and coated cermet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250