JP2011235410A - Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy - Google Patents

Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy Download PDF

Info

Publication number
JP2011235410A
JP2011235410A JP2010109781A JP2010109781A JP2011235410A JP 2011235410 A JP2011235410 A JP 2011235410A JP 2010109781 A JP2010109781 A JP 2010109781A JP 2010109781 A JP2010109781 A JP 2010109781A JP 2011235410 A JP2011235410 A JP 2011235410A
Authority
JP
Japan
Prior art keywords
cemented carbide
based cemented
cutting tool
cutting
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010109781A
Other languages
Japanese (ja)
Inventor
Ryosuke Yamaguchi
亮介 山口
Kazuki Okada
一樹 岡田
Masanori Saito
正典 斉藤
Kazuhiro Akiyama
和裕 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010109781A priority Critical patent/JP2011235410A/en
Publication of JP2011235410A publication Critical patent/JP2011235410A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool which exhibits an excellent chipping resistance for a long period of use in a rolling cutting work of heat resistant alloy such as Ni-based alloy, Co-based alloy, and the like.SOLUTION: In the cutting tool formed with WC-based cemented carbide, the content of Co as a binding phase component is 4 to 12 mass%. In the binding phase, 3-20 mass% of solid Re is soluble. On a surface of a WC particle of a hard phase, a diffusion thin layer of Re is formed. The diffusion thin layer is formed throughout an area of depth of 1-10% in terms of a particle diameter from the surface of the WC particle. The content of the solid soluble Re in this area is 0.2-7 mass%. As components of the cemented carbide, VC, CrC, TiC, TaC and NbC are included as required. Otherwise, a hard coating layer is deposited on the surface of the cutting tool.

Description

この発明は、Ni基合金、Co基合金等の耐熱合金の切削加工において、長期の使用にわたって優れた耐欠損性を発揮するWC基超硬合金製切削工具(以下、WC基超硬工具という)および表面被覆WC基超硬合金製切削工具(以下、被覆WC基超硬工具という)に関するものである。   The present invention relates to a cutting tool made of a WC-based cemented carbide (hereinafter referred to as a WC-based cemented carbide tool) that exhibits excellent fracture resistance over long-term use in cutting of heat-resistant alloys such as Ni-based alloys and Co-based alloys. And a surface-coated WC-based cemented carbide cutting tool (hereinafter referred to as a coated WC-based cemented carbide tool).

従来から、耐摩耗性に優れた切削工具としては、例えば、結合相形成成分としてCoを含有し、残りがWCおよび不可避不純物からなるWC基超硬合金、あるいは、さらに、VC、Cr、TiC、TaC、NbCのうちから選ばれる少なくとも1種以上を含有するWC基超硬合金からなるWC基超硬工具が知られているが、工具特性をさらに高めるために、合金成分としてReをさらに含有させたWC基超硬工具も開発されている。
例えば、特許文献1には、原料粉末としてのW、C、Re等の粉末を混合・加熱処理した後、Co粉末等と混合して圧粉成形体を得て、その後焼結することにより、WC基超硬工具(従来超硬工具1という)を作製することが述べられており、この従来超硬工具1では、図2に示すように、硬質相を構成するWC粒子の粒子内部全体にわたって、0.1〜3wt%程度のReがほぼ均一に固溶しており、このような組織を備えることによって、すぐれた靭性を発揮することが知られている。
また、特許文献2には、結合相中に25wt%以上のReを含有するWC基超硬合金を固相焼結することによってWC基超硬工具を作製することが示されており、このWC基超硬工具(従来超硬工具2という)では、図3に示すように、結合相中に高融点のRe成分が存在することから、高温硬さが向上することが知られている。
Conventionally, as a cutting tool having excellent wear resistance, for example, a WC-based cemented carbide containing Co as a binder phase forming component and the remainder consisting of WC and inevitable impurities, or VC, Cr 3 C 2. WC based cemented carbide tools are known which are made of WC based cemented carbide containing at least one selected from TiC, TaC and NbC. In order to further improve the tool characteristics, Re is used as an alloy component. Furthermore, a WC-based carbide tool containing the same has also been developed.
For example, in patent document 1, after mixing and heat-processing powders, such as W, C, and Re, as raw material powder, it mixes with Co powder etc., obtains a compacting body, and sinters after that, It is described that a WC-based cemented carbide tool (referred to as a conventional cemented carbide tool 1) is manufactured. In the conventional cemented carbide tool 1, as shown in FIG. 2, the entire interior of the WC particles constituting the hard phase is covered. It is known that about 0.1 to 3 wt% of Re is dissolved in a substantially uniform manner, and by providing such a structure, excellent toughness is exhibited.
Patent Document 2 discloses that a WC-based cemented carbide tool is produced by solid-phase sintering a WC-based cemented carbide containing 25 wt% or more of Re in the binder phase. As shown in FIG. 3, it is known that a base carbide tool (conventional carbide tool 2) is improved in high-temperature hardness because a high melting point Re component exists in the binder phase.

特開2004−263251号公報JP 2004-263251 A 特表2006−513119号公報JP-T-2006-513119

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに、高能率化、低コスト化の要求は強く、また、切削工具の汎用化も求められているところであるが、例えば、特許文献1,2に示される従来超硬工具1、2を、通常条件の切削加工で用いた場合には特段の問題は生じない。
しかし、これを、特に、熱伝導率が小さく、切削加工時に切れ刃が高熱となるようなNi基合金、Co基合金等の耐熱合金の切削加工に用いた場合には、工具寿命の短命化が顕著となる。
つまり、例えば、従来超硬工具1では、WC粒子内部にReが均一に固溶していることによって、WC粒子自体の靭性は向上するものの、その反面、WC粒子の熱伝導性が著しく低下するため、切刃部が過熱されやすくなり、その結果、熱塑性変形が発生しやすくなり、偏摩耗の発生を招きやすいという問題がある。
また、従来超硬工具2では、結合相中に多量のReが存在することから結合相の高温硬さが向上する半面、硬質相であるWC粒子と結合相との密着強度は低下し、さらに、Reが過剰に存在するような場合には、結合相自体の靭性が低下するために、チッピング、欠損を発生しやすくなるという問題が生じる。
In recent years, the performance of cutting machines has been dramatically improved, while on the other hand, there are strong demands for labor saving and energy saving in cutting, and further high efficiency and low cost, and there is also a demand for generalization of cutting tools. However, for example, when the conventional carbide tools 1 and 2 shown in Patent Documents 1 and 2 are used in cutting under normal conditions, no particular problem occurs.
However, especially when this is used for cutting heat-resistant alloys such as Ni-base alloys and Co-base alloys that have low thermal conductivity and high cutting edges during cutting, the tool life is shortened. Becomes prominent.
That is, for example, in the conventional carbide tool 1, although Re is uniformly dissolved in the WC particles, the toughness of the WC particles themselves is improved, but on the other hand, the thermal conductivity of the WC particles is significantly reduced. For this reason, the cutting edge portion is likely to be overheated. As a result, there is a problem that thermoplastic deformation is likely to occur and uneven wear is likely to occur.
Further, in the conventional cemented carbide tool 2, since a large amount of Re is present in the binder phase, the high-temperature hardness of the binder phase is improved, whereas the adhesion strength between the hard phase WC particles and the binder phase is reduced, When Re is excessively present, the toughness of the binder phase itself is lowered, which causes a problem that chipping and defects are likely to occur.

そこで、本発明者等は、上述のような観点から、Ni基合金、Co基合金等の耐熱合金等の切削加工に用いた場合でも、すぐれた耐欠損性、耐熱塑性変形性を発揮し、長期の使用に亘ってすぐれた切削性能を発揮するWC基超硬工具について鋭意研究を行った結果、以下の知見を得た。   Therefore, the present inventors, from the above viewpoint, exhibit excellent fracture resistance and heat plastic deformation even when used for cutting heat-resistant alloys such as Ni-base alloys and Co-base alloys, As a result of earnest research on a WC-based carbide tool that exhibits excellent cutting performance over a long period of use, the following knowledge was obtained.

通常、WC基超硬合金からなる焼結体の製造は、特定の平均粒径のWC粉末、Co粉末とともに、必要に応じて、VC粉末、Cr粉末、TiC粉末、TaC粉末、NbC粉末を所定割合になるように配合した原料粉末を湿式ボールミル中で混合し、成形した後、この圧粉成形体を所定の温度で所定時間焼結することにより製造している。 Usually, a sintered body made of a WC-based cemented carbide is manufactured together with a WC powder and a Co powder having a specific average particle size, as needed, a VC powder, a Cr 3 C 2 powder, a TiC powder, a TaC powder, and an NbC. The raw material powder in which the powder is mixed in a predetermined ratio is mixed and molded in a wet ball mill, and the green compact is then sintered at a predetermined temperature for a predetermined time.

本発明者らは、上記通常のWC基超硬合金焼結体の製造方法において、結合相形成成分であるCo粉末に加えて、所定の平均粒径および所定の含有割合となるようにRe粉末をさらに追加して添加配合することで原料粉末を調製し、これを1380〜1500℃の範囲内の温度にて液相焼結し、さらに、所定の加圧雰囲気中で熱間静水圧プレス(HIP)成形し、その後、圧力を保持したまま、少なくとも1150℃までを1℃/min以下の冷却速度で徐冷することによって、硬質相を構成するWC粒子表面に、Reの拡散薄層を形成できることを見出したのである。
ここで、Reの拡散薄層とは、WC粒子の表面から、該WC粒子の粒径の1〜10%の深さ領域にわたって固溶Re含有量が0.2〜7質量%であるReの拡散領域であり、Reの拡散薄層以外の領域、即ち、WC粒子の内部側では平均固溶Re含有量は0.2質量%未満となっている。
そして、WC粒子表面に上記Reの拡散薄層が形成された焼結組織を有するWC基超硬合金から作製されたWC基超硬工具(以下、本発明超硬工具という)を用いて切削加工を行ったところ、高熱発生を伴うNi基合金、Co基合金等の耐熱合金の切削加工において、切刃部の過熱が抑制されるとともに、すぐれた耐欠損性、耐熱塑性変形性を発揮し、その結果、チッピング、偏摩耗等の発生を生じることなく長期の使用に亘ってすぐれた切削性能を発揮することを見出したのである。
In the above-described ordinary method for producing a WC-based cemented carbide sintered body, the present inventors have added Re powder so as to have a predetermined average particle size and a predetermined content ratio in addition to Co powder as a binder phase forming component. Is added and blended to prepare a raw material powder, which is subjected to liquid phase sintering at a temperature within the range of 1380 to 1500 ° C., and is further subjected to hot isostatic pressing in a predetermined pressurized atmosphere ( HIP) Then, while maintaining the pressure, by slowly cooling to at least 1150 ° C. at a cooling rate of 1 ° C./min or less, a thin Re diffusion layer is formed on the surface of the WC particles constituting the hard phase. I found what I could do.
Here, the diffusion thin layer of Re is a layer of Re having a solid solution Re content of 0.2 to 7% by mass from the surface of the WC particle to a depth region of 1 to 10% of the particle diameter of the WC particle. In the region other than the diffusion thin layer of Re, that is, the inner side of the WC particle, the average solid solution Re content is less than 0.2% by mass.
Then, cutting is performed using a WC-based cemented carbide tool (hereinafter referred to as a cemented carbide tool of the present invention) manufactured from a WC-based cemented carbide having a sintered structure in which the Re diffusion thin layer is formed on the surface of the WC particles. As a result, in cutting of heat-resistant alloys such as Ni-based alloys and Co-based alloys with high heat generation, overheating of the cutting edge portion is suppressed, and excellent fracture resistance and heat-resistant plastic deformation are exhibited. As a result, it has been found that excellent cutting performance is exhibited over a long period of use without occurrence of chipping, uneven wear and the like.

この発明は、上記の知見に基づいてなされたものであって、
「(1) 結合相成分としてCoを含有し、残部が硬質相成分としてのWCおよび不可避不純物からなるWC基超硬合金を工具基体とするWC基超硬合金製切削工具において、
結合相成分であるCoの含有量は4〜12質量%であり、また、結合相中にはReが固溶しており、結合相中の平均Re含有量は3〜20質量%であり、さらに、硬質相を構成するWC粒子表面には、Reの拡散薄層が形成されていることを特徴とするWC基超硬合金製切削工具。
(2) 上記Reの拡散薄層は、WC粒子の表面から、該WC粒子の粒径の1〜10%の深さ領域にわたって形成され、かつ、該深さ領域における固溶Re含有量は0.2〜7質量%であり、一方、WC粒子の内部側では、固溶Re含有量は0.2質量%未満であることを特徴とする前記(1)に記載のWC基超硬合金製切削工具。
(3) 上記WC基超硬合金製切削工具基体が、さらに、VC、Cr、TiC、TaC、NbCのうちから選ばれる1種または2種以上を合計で0.1〜2質量%含有することを特徴とする前記(1)または(2)に記載のWC基超硬合金製切削工具。
(4) 前記(1)乃至(3)のいずれかに記載のWC基超硬合金製切削工具の表面に、硬質被覆層を蒸着形成してなる表面被覆WC基超硬合金製切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
"(1) In a WC-based cemented carbide cutting tool having a tool base of a WC-based cemented carbide containing Co as a binder phase component and the balance being WC as a hard phase component and inevitable impurities,
The content of Co as a binder phase component is 4 to 12% by mass, and Re is dissolved in the binder phase, and the average Re content in the binder phase is 3 to 20% by mass, A WC-based cemented carbide cutting tool characterized in that a thin Re diffusion layer is formed on the surface of the WC particles constituting the hard phase.
(2) The Re diffusion thin layer is formed from the surface of the WC particle to a depth region of 1 to 10% of the particle size of the WC particle, and the solid solution Re content in the depth region is 0. 2-7 mass%, on the other hand, on the inner side of the WC particles, the solute Re content is less than 0.2 mass%. Cutting tools.
(3) The WC-based cemented carbide cutting tool base further includes one or more selected from VC, Cr 3 C 2 , TiC, TaC, and NbC in a total amount of 0.1 to 2% by mass. The WC-based cemented carbide cutting tool according to (1) or (2), wherein the WC-based cemented carbide cutting tool is contained.
(4) A surface-coated WC-based cemented carbide cutting tool formed by vapor-depositing a hard coating layer on the surface of the WC-based cemented carbide cutting tool according to any one of (1) to (3). "
It has the characteristics.

この発明のWC基超硬工具について、以下に詳細に説明する。
この発明のWC基超硬工具は、WC粉末、Co粉末に加えてRe粉末を配合し、さらに、必要に応じて、VC粉末、Cr粉末、TiC粉末、TaC粉末、NbC粉末を所定割合になるように配合した原料粉末を、湿式ボールミル中で混合し、所定形状にプレス成形したのち、この圧粉成形体を、1〜15Paの真空中で、1380〜1500℃の範囲内の所定の温度にて液相焼結し、次いで、例えばArガスを導入して3〜15MPaとした加圧雰囲気中で熱間静水圧プレス(HIP)成形し、その後、雰囲気圧を維持したままで、少なくとも1150℃までを1℃/min以下の冷却速度で徐冷することによって製造することができる。
ここで、焼結条件として、その雰囲気を1〜15Paの真空中と定めたのは、WCの脱炭素及び結合相の酸化を防止するという理由であり、また、1380〜1500℃の範囲内の温度での液相焼結と定めたのは、結合相中にReを均一に固溶させるためという理由である。
さらに、HIP後の冷却条件として、少なくとも1150℃までを1℃/min以下の冷却速度で徐冷としたのは、WC粒の表面にReを強制固溶させるためという理由による。
そして、上記の製造工程で作製した本発明WC基超硬工具は、結合相中に3〜20質量%のReが固溶されているとともに、WC粒子の表面から、該WC粒子の粒径の1〜10%の深さ領域にわたって、固溶Re含有量が0.2〜7質量%であるReの拡散薄層が形成され、また、該拡散薄層の内側、即ち、WC粒子の内部側では固溶Re含有量は0.2質量%未満となっている。
そして、このような組織が形成された本発明WC基超硬工具は、ReがWC粒子表面のみに存在することから、WC粒子の熱伝導性を大きく低下させることはなく、また、結合相中にReが固溶されていることから結合相の高温硬さが向上し、さらに、WC表面に形成されている拡散薄層によって、WC粒子と結合相との密着強度が高められる。
The WC-based carbide tool of the present invention will be described in detail below.
The WC-based cemented carbide tool of the present invention is blended with Re powder in addition to WC powder and Co powder, and further, VC powder, Cr 3 C 2 powder, TiC powder, TaC powder, and NbC powder as required. After mixing the raw material powder blended so as to be a ratio in a wet ball mill and press-molding it into a predetermined shape, this compacted body is subjected to a predetermined pressure within a range of 1380 to 1500 ° C. in a vacuum of 1 to 15 Pa. Liquid phase sintering at a temperature of, and then, for example, hot isostatic pressing (HIP) molding in a pressurized atmosphere introduced Ar gas to 3-15 MPa, for example, while maintaining the atmospheric pressure, It can be produced by slow cooling at least to 1150 ° C. at a cooling rate of 1 ° C./min or less.
Here, as the sintering condition, the atmosphere was set to 1-15 Pa in vacuum because it prevented the decarbonization of the WC and the oxidation of the binder phase, and it was in the range of 1380-1500 ° C. The reason why liquid-phase sintering at a temperature is determined is that Re is uniformly dissolved in the binder phase.
Furthermore, as the cooling conditions after HIP, the reason why the cooling was performed at a temperature of at least 1150 ° C. at a cooling rate of 1 ° C./min or less is because Re is forcibly dissolved on the surface of the WC grains.
The WC-based carbide tool of the present invention produced in the above manufacturing process has 3 to 20% by mass of Re dissolved in the binder phase, and from the surface of the WC particle, the particle size of the WC particle A Re diffusion thin layer having a solid solution Re content of 0.2 to 7% by mass is formed over a depth region of 1 to 10%, and the inside of the diffusion thin layer, that is, the inner side of the WC particles. Then, the solid solution Re content is less than 0.2% by mass.
In the WC-based cemented carbide tool of the present invention in which such a structure is formed, since Re is present only on the surface of the WC particle, the thermal conductivity of the WC particle is not greatly reduced, Since Re is dissolved in the solid phase, the high-temperature hardness of the binder phase is improved, and the adhesion strength between the WC particles and the binder phase is enhanced by the diffusion thin layer formed on the WC surface.

本発明WC基超硬工具において結合相を構成するCo成分は、その含有量が4質量%未満では、WC基超硬合金の緻密化が十分になされず、一方、結合相の含有割合が12質量%を越えると、WC基超硬合金の硬度が低下し、Ni基合金、Co基合金等の耐熱合金の切削加工において耐摩耗性が低下傾向を示すようになることから、本発明WC基超硬合金焼結体における結合相の含有割合は4〜12質量%と定めた。   If the Co component constituting the binder phase in the WC-based cemented carbide tool of the present invention is less than 4% by mass, the WC-based cemented carbide will not be sufficiently densified, while the binder phase content is 12%. If the mass% is exceeded, the hardness of the WC-based cemented carbide decreases, and the wear resistance tends to decrease in the cutting of heat-resistant alloys such as Ni-based alloys and Co-based alloys. The content ratio of the binder phase in the cemented carbide sintered body was determined to be 4 to 12% by mass.

また、本発明で、WC粉末、Co粉末とともに配合するRe粉末は結合相を構成するCoに大部分が(3〜20質量%)固溶し、一部がWC粒子表面領域に拡散し、拡散薄層を形成するが、Coに固溶するRe含有量(Re/(Co+Re))が3質量%未満であると、WC粒と結合相の密着性向上効果及び結合相の硬さ向上効果が不十分であり、一方、Coに固溶するRe含有量(Re/(Co+Re))が20質量%を超えると、結合相の靭性が著しく低下するため欠損を発生しやすくなることから、Coに固溶するRe含有量(Re/(Co+Re))は3〜20質量%と定めた。   In the present invention, the Re powder blended together with the WC powder and the Co powder is mostly dissolved (3 to 20% by mass) in Co constituting the binder phase, and part of the powder is diffused into the surface area of the WC particles. A thin layer is formed, but if the Re content (Re / (Co + Re)) dissolved in Co is less than 3% by mass, the effect of improving the adhesion between the WC grains and the binder phase and the effect of improving the hardness of the binder phase are obtained. On the other hand, if the content of Re dissolved in Co (Re / (Co + Re)) exceeds 20% by mass, the toughness of the binder phase is remarkably reduced, and defects are easily generated. The Re content (Re / (Co + Re)) to be dissolved is determined to be 3 to 20% by mass.

また、本発明では、WC粒子表面にReの拡散薄層を形成し、該拡散薄層については、WC粒子の粒径の1〜10%の深さ領域にわたって形成され、かつ、深さ領域における固溶Re含有量は0.2〜7質量%であるとしているが、WC粒子の粒径の1〜10%の深さ領域における固溶Re含有量が0.2質量%未満では、WC粒と結合相の密着性向上効果が得られず、一方、固溶Re含有量が7質量%を超えるようになると、WC粒子の熱伝導性が著しく低下するため切れ刃が過熱されやすくなり、その結果、熱塑性変形が発生しやすくなることから、拡散薄層、即ち、WC粒子の粒径の1〜10%の深さ領域における固溶Re含有量は0.2〜7質量%と定めた。
なお、「WC粒子の粒径の1〜10%の深さ領域」を別の表現で定義すれば、走査型電子顕微鏡(SEM)で観察されたWC粒子を、同一面積の円形に近似した時の直径をWC粒径とした場合に、WC粒の表面から該WC粒径の1〜10%の深さ領域ということになる。
Further, in the present invention, a Re diffusion thin layer is formed on the surface of the WC particle, and the diffusion thin layer is formed over a depth region of 1 to 10% of the particle size of the WC particle, and in the depth region. The solute Re content is 0.2 to 7% by mass. However, when the solute Re content in the depth region of 1 to 10% of the particle size of the WC particles is less than 0.2% by mass, the WC particles However, when the solid solution Re content exceeds 7% by mass, the thermal conductivity of the WC particles is remarkably reduced, and the cutting edge is likely to be overheated. As a result, since thermoplastic deformation is likely to occur, the content of solid solution Re in the diffusion thin layer, that is, a depth region of 1 to 10% of the particle diameter of the WC particles is determined to be 0.2 to 7% by mass.
In addition, when “the depth region of 1 to 10% of the particle diameter of the WC particles” is defined by another expression, the WC particles observed with a scanning electron microscope (SEM) are approximated to a circle of the same area. When the diameter of WC is the WC grain size, it is a depth region of 1 to 10% of the WC grain size from the surface of the WC grain.

本発明WC基超硬工具では、VC、Cr、TiC、TaC、NbCのうちから選ばれる1種または2種以上の成分を含有することができる。
VC、Cr、TiC、TaC、NbCのうちから選ばれる1種または2種以上の成分は、いずれも、焼結時のWCの粒成長を抑制する作用があるが、その合計含有量が0.1質量%未満では、粒成長抑制作用が小さく、一方、2質量%を越えて含有すると複合炭化物相が析出し、硬度が低下傾向を示すようになるので、VC、Cr、TiC、TaC、NbCのうちから選ばれる1種または2種以上の成分の含有量は、その合計量で0.1〜2質量%と定めた。
The WC-based cemented carbide tool of the present invention can contain one or more components selected from VC, Cr 3 C 2 , TiC, TaC, and NbC.
One or more components selected from VC, Cr 3 C 2 , TiC, TaC, and NbC all have an action of suppressing grain growth of WC during sintering, but the total content thereof If it is less than 0.1% by mass, the effect of suppressing grain growth is small. On the other hand, if it exceeds 2% by mass, a composite carbide phase is precipitated and the hardness tends to decrease. Therefore, VC, Cr 3 C 2 The content of one or more components selected from TiC, TaC, and NbC was determined to be 0.1 to 2% by mass in total.

また、本発明WC基超硬工具は、これをそのまま切削工具として用いることができるが、その表面に硬質被覆層を蒸着形成することによって、一段と耐欠損性、耐熱塑性変形性の向上を図ることができ、工具寿命の一層の延命化を図ることができるのである。
ここで、上記硬質被覆層とは、例えば、「周期律表のIVa族元素、Va族元素、VIa族元素、Al、BおよびSiからなる群から選ばれる少なくとも1種の元素と、炭素、窒素および酸素からなる群から選ばれる少なくとも1種の元素とを含む化合物」からなり、また、より具体的には、例えば、Tiの炭化物、窒化物、炭窒化物、TiとAlの複合窒化物、AlとCrの複合窒化物、TiとSiの複合窒化物、TiとAlとSiの複合窒化物のうちから選ばれる1種の単層または2種以上の複層からなる。
In addition, the WC-based cemented carbide tool of the present invention can be used as a cutting tool as it is, but by further forming a hard coating layer on the surface thereof, further improving the fracture resistance and the heat plastic deformation resistance. Thus, the tool life can be further extended.
Here, the hard coating layer is, for example, “at least one element selected from the group consisting of IVa group element, Va group element, VIa group element, Al, B and Si of the periodic table, carbon, nitrogen And a compound containing at least one element selected from the group consisting of oxygen, and more specifically, for example, Ti carbide, nitride, carbonitride, Ti and Al composite nitride, It consists of one kind of single layer or two or more kinds of multilayers selected from a composite nitride of Al and Cr, a composite nitride of Ti and Si, and a composite nitride of Ti, Al and Si.

この発明のWC基超硬工具、表面被覆WC基超硬工具は、これを構成するWC基超硬合金の結合相中にReが固溶し高温硬さを高めるとともに、硬質相を構成するWC粒子表面にReの拡散薄層が形成されていることにより、WC粒子の有する熱伝導率を低下させることなく、さらに、結合相と硬質相との密着強度を高めることから、耐欠損性及び耐熱塑性変形性に優れ、切刃部が局部的に高温に曝されるNi基合金、Co基合金等の耐熱合金等の切削加工に用いた場合でも、欠損、偏摩耗等の発生を生じることなく長期の使用に亘ってすぐれた切削性能を発揮するものである。   The WC-based cemented carbide tool and the surface-coated WC-based cemented carbide tool according to the present invention include a WC-based cemented carbide alloy constituting the WC-based cemented carbide in which the Re is dissolved and the high-temperature hardness is increased. By forming a thin Re diffusion layer on the particle surface, the adhesiveness between the binder phase and the hard phase is further increased without lowering the thermal conductivity of the WC particles. Even when used for cutting heat-resistant alloys such as Ni-base alloys and Co-base alloys, which have excellent plastic deformability and whose cutting edges are locally exposed to high temperatures, there is no occurrence of defects or uneven wear. It exhibits excellent cutting performance over a long period of use.

本発明WC基超硬工具における焼結体組織の模式図を示す。The schematic diagram of the sintered compact structure in this invention WC group carbide tool is shown. 従来WC基超硬工具(従来超硬工具1)における焼結体組織の模式図を示す。The schematic diagram of the sintered compact structure in the conventional WC base carbide tool (conventional carbide tool 1) is shown. 他の従来WC基超硬工具(従来超硬工具2)における焼結体組織の模式図を示す。The schematic diagram of the sintered compact structure in another conventional WC group carbide tool (conventional carbide tool 2) is shown.

つぎに、この発明の切削工具を実施例により具体的に説明する。   Next, the cutting tool of the present invention will be specifically described with reference to examples.

(a)原料粉末として、いずれも0.5〜5μmの平均粒径を有する、Co粉末、Re粉末、VC粉末、Cr粉末、TiC粉末、TaC粉末、NbC粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥した後、100MPaの圧力で8〜26mmの範囲内の所定の直径を有する丸棒圧粉体をプレス成形し、
(b)これらの圧粉成形体を、1.3Paの真空中で表1に示される焼結温度で1時間保持し、次いで、炉内にArガスを導入して6MPaの加圧雰囲気とするとともにさらに1時間保持し、次いで、圧力を保持したまま1150℃までを1℃/minの冷却速度で徐冷するとともに、その後は室温にまで炉冷し、
(c)得られた所定直径の丸棒焼結体を、所定寸法となるように加工して、表2に示す切れ刃部寸法となるように加工して、6枚刃スクエアエンドミルからなる表4に示す本発明WC基超硬合金製切削工具(本発明超硬工具という)1〜10を作製した。
なお、本発明超硬工具3,6,10については、工具基体表面に、アークイオンプレーティング装置を用いて、表3に示されるとおりの組成および平均膜厚の硬質被覆層を蒸着形成することにより、本発明表面被覆WC基超硬合金製切削工具を作製した。
(A) As raw material powder, Co powder, Re powder, VC powder, Cr 3 C 2 powder, TiC powder, TaC powder, NbC powder, WC powder, all having an average particle diameter of 0.5 to 5 μm are prepared. These raw material powders are blended in the blending composition shown in Table 1, further added with wax, wet-mixed with a ball mill for 72 hours, dried under reduced pressure, and then given a predetermined diameter in the range of 8 to 26 mm at a pressure of 100 MPa. Press-molding a round bar compact with
(B) These green compacts are held at a sintering temperature shown in Table 1 for 1 hour in a vacuum of 1.3 Pa, and then Ar gas is introduced into the furnace to form a pressurized atmosphere of 6 MPa. And then further cooled to 1150 ° C. at a cooling rate of 1 ° C./min while maintaining the pressure, and then furnace-cooled to room temperature,
(C) The obtained round bar sintered body having a predetermined diameter is processed so as to have a predetermined dimension, and processed so as to have the cutting edge part size shown in Table 2, and is a table composed of a 6-blade square end mill. Cutting tools made of the WC-based cemented carbide of the present invention (referred to as the present cemented carbide tool) 1 to 10 shown in FIG.
For the cemented carbide tools 3, 6, and 10 of the present invention, a hard coating layer having the composition and average film thickness as shown in Table 3 is vapor-deposited on the surface of the tool base using an arc ion plating apparatus. Thus, a cutting tool made of the surface-coated WC-based cemented carbide of the present invention was produced.

また、比較の目的で、表1に示される配合組成となるように原料粉末を配合し、本発明超硬工具1〜10と同様な工程により、表2に示す切れ刃部寸法となるように加工して、6枚刃スクエアエンドミルからなる表4に示す比較例WC基超硬合金製切削工具(比較例超硬工具という)11〜18を作製した。
なお、比較例超硬工具12,15,18については、工具基体表面に、アークイオンプレーティング装置を用いて、表3に示されるとおりの組成および平均膜厚の硬質被覆層を蒸着形成することにより、比較例表面被覆WC基超硬合金製切削工具を作製した。
In addition, for the purpose of comparison, the raw material powder is blended so as to have the blending composition shown in Table 1, and the cutting edge size shown in Table 2 is obtained by the same process as the cemented carbide tools 1 to 10 of the present invention. Processing was performed to produce comparative example WC-based cemented carbide cutting tools (referred to as comparative example cemented carbide tools) 11 to 18 shown in Table 4 consisting of a 6-blade square end mill.
For the comparative carbide tools 12, 15, and 18, a hard coating layer having the composition and average film thickness as shown in Table 3 is vapor-deposited on the surface of the tool base using an arc ion plating apparatus. Thus, a comparative example surface-coated WC-based cemented carbide cutting tool was produced.

さらに、参考のために、表1に示される配合組成となるように原料粉末を配合し、本発明超硬工具1〜10と同様な工程により、表2に示す切れ刃部寸法となるように加工して、6枚刃スクエアエンドミルからなる表4に示す参考例WC基超硬合金製切削工具(比較例超硬工具という)19、20を作製した。
なお、参考例超硬工具20については、工具基体表面に、アークイオンプレーティング装置を用いて、表3に示されるとおりの組成および平均膜厚の硬質被覆層を蒸着形成することにより、参考例表面被覆WC基超硬合金製切削工具を作製した。
Furthermore, for reference, the raw material powder is blended so as to have the blending composition shown in Table 1, and the cutting edge size shown in Table 2 is obtained by the same process as the cemented carbide tools 1 to 10 of the present invention. Processing was carried out to produce reference examples WC-based cemented carbide cutting tools (referred to as comparative example cemented carbide tools) 19 and 20 shown in Table 4 consisting of a 6-blade square end mill.
In addition, about the reference example cemented carbide tool 20, a reference example is obtained by vapor-depositing a hard coating layer having a composition and an average film thickness as shown in Table 3 on the surface of the tool base using an arc ion plating apparatus. A surface-coated WC-based cemented carbide cutting tool was produced.

上記本発明超硬工具1〜10および参考例超硬工具19、20について、走査型電子顕微鏡(SEM)にて観察し、画像解析によりWC粒の面積を測定し、さらに該WCを同一面積の円形に近似した時の直径を算出した。また、エネルギー分散型X線分析装置(EDS)を備えた透過型電子顕微鏡(TEM)を用い、WC粒と結合相の界面からWC粒の内部に向かって、2nm毎に点分析を行い、WC粒子表面に形成されたRe拡散薄層における固溶Re含有量、WC粒子の粒径に占めるRe拡散薄層(Re含有量が0.2〜7質量%である領域)の厚さ比(%)を測定した。
表5には、WC粒子10個の測定結果の各平均値を示した。
本発明超硬工具1〜10はいずれも、WC粒子表面にReの拡散薄層が形成されており、該拡散薄層における固溶Re含有量は0.2〜7質量%の範囲内であった。
図1には、一例として、本発明超硬工具3の焼結体組織の模式図を示す。
これに対して、参考例超硬工具19、20は、Re粉末の配合量が多かったため、Re拡散薄層が形成されたものの、該拡散薄層における固溶Re含有量は、本発明で規定する量を超えるものであり、さらに、拡散薄層の厚さ(WC粒子表面からのRe固溶範囲)も、WC粒子の粒径の22〜37%の深さ領域にまでわたっており、WC粒子内部側(例えば、WC粒子の粒径の10%を超え30%の深さ領域)において、平均固溶Re含有量は、3.68質量%(参考例超硬工具19)、6.21質量%(参考例超硬工具20)という高い値を示した。
The above-mentioned cemented carbide tools 1 to 10 and reference example cemented carbide tools 19 and 20 are observed with a scanning electron microscope (SEM), the area of WC grains is measured by image analysis, and the WC has the same area. The diameter when approximated to a circle was calculated. Also, using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer (EDS), point analysis is performed every 2 nm from the interface between the WC grains and the binder phase toward the inside of the WC grains. The solid solution Re content in the Re diffusion thin layer formed on the particle surface, the thickness ratio (% of the Re diffusion thin layer (region where the Re content is 0.2 to 7 mass%) occupying the particle size of the WC particles) ) Was measured.
Table 5 shows the average values of the measurement results of 10 WC particles.
In each of the cemented carbide tools 1 to 10 of the present invention, a thin Re diffusion layer is formed on the surface of the WC particles, and the solid solution Re content in the thin diffusion layer is in the range of 0.2 to 7% by mass. It was.
In FIG. 1, the schematic diagram of the sintered compact structure | tissue of this invention cemented carbide tool 3 is shown as an example.
On the other hand, although the reference example carbide tools 19 and 20 had a large amount of Re powder, a Re diffusion thin layer was formed, but the solid solution Re content in the diffusion thin layer was defined in the present invention. Furthermore, the thickness of the diffusion thin layer (the range of Re solid solution from the surface of the WC particles) also extends to a depth region of 22 to 37% of the particle size of the WC particles. On the inner side of the particles (for example, a depth region exceeding 10% and 30% of the particle size of the WC particles), the average solid solution Re content is 3.68% by mass (reference example carbide tool 19), 6.21. A high value of mass% (Reference Example Carbide Tool 20) was shown.

Figure 2011235410
Figure 2011235410

Figure 2011235410
Figure 2011235410

Figure 2011235410
Figure 2011235410

Figure 2011235410
Figure 2011235410

Figure 2011235410
Figure 2011235410

つぎに、上記本発明超硬工具1〜10、比較例超硬工具11〜18および参考例超硬工具19,20について、
Ni基合金耐熱合金(Cr:18.5%,Mo:3.0%,Al:0.5%,Nb+Ta:5.1%,残部:Niおよび不可避不純物)の角材を被削材として、表2に示す各種条件で切削加工試験を行い、外周刃の先端部における逃げ面摩耗幅が使用目安の値に至るまでの切削長を測定した。
また、切削加工試験後の切れ刃の摩耗状況について、これを観察した。
この測定結果、観察結果を表4に示した。
Next, for the above-described carbide tools 1 to 10 of the present invention, comparative carbide tools 11 to 18 and reference carbide tools 19 and 20,
A square material of a Ni-base alloy heat-resistant alloy (Cr: 18.5%, Mo: 3.0%, Al: 0.5%, Nb + Ta: 5.1%, balance: Ni and inevitable impurities) is used as a work material. A cutting test was performed under the various conditions shown in Fig. 2, and the cutting length until the flank wear width at the tip of the outer peripheral blade reached the value for use was measured.
Moreover, this was observed about the abrasion condition of the cutting edge after a cutting test.
The measurement results and observation results are shown in Table 4.

表4、表5に示される結果から、本発明超硬工具1〜10は、WC基超硬合金焼結体の結合相が、3〜20質量%の固溶Reを含有し、また、硬質相のWC粒子表面にReの拡散薄層が形成され、かつ、該拡散薄層における固溶Re含有量が0.2〜5質量%であって、熱伝導性の低下を招くことなく、高温硬さが向上し、また、結合相と硬質相の密着強度も高くなり、高温硬さに優れ、かつ、耐熱塑性変形性にも優れることから、切刃部が局部的に高温に曝されるNi基合金、Co基合金等の耐熱合金の切削加工に用いた場合でも、欠損、偏摩耗等を発生することなく長期の使用に亘ってすぐれた耐摩耗性を発揮する。
これに対して、比較例超硬工具11〜18、参考例超硬工具19、20においては、切刃部が局部的に高温に曝されるNi基合金、Co基合金等の耐熱合金の切削加工に用いた場合には、切刃部の欠損が発生し、また、耐摩耗性にも劣り、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 4 and 5, in the cemented carbide tools 1 to 10 of the present invention, the binder phase of the WC-based cemented carbide sintered body contains 3 to 20% by mass of solid solution Re and is hard. A Re diffusion thin layer is formed on the surface of the WC particles of the phase, and the solid solution Re content in the diffusion thin layer is 0.2 to 5% by mass, without causing a decrease in thermal conductivity. Hardness is improved, and adhesion strength between the binder phase and the hard phase is increased. Excellent high-temperature hardness and excellent heat-resistant plastic deformation, so the cutting edge is locally exposed to high temperatures. Even when it is used for cutting heat-resistant alloys such as Ni-base alloys and Co-base alloys, it exhibits excellent wear resistance over a long period of use without causing defects or uneven wear.
On the other hand, in the comparative example carbide tools 11 to 18 and the reference example carbide tools 19 and 20, cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys whose cutting edges are locally exposed to high temperatures. When used for processing, it is apparent that the cutting edge portion is broken and wear resistance is poor, and the service life is reached in a relatively short time.

(a)原料粉末として、いずれも0.5〜5μmの平均粒径を有する、Co粉末、Re粉末、VC粉末、Cr粉末、TiC粉末、TaC粉末、NbC粉末、WC粉末を用意し、これら原料粉末を、表6に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥した後、100MPaの圧力で所定形状にプレス成形し、
(b)これらの圧粉成形体を、1.3Paの真空中で表6に示される焼結温度で1時間保持し、次いで、炉内にArガスを導入して6MPaの加圧雰囲気とするとともにさらに1時間保持し、次いで、圧力を保持したまま1150℃までを1℃/minの冷却速度で徐冷するとともに、その後は炉冷し、
(c)得られた焼結体を、所定寸法となるように加工
して、APMT1604PDERのインサート形状をもった本発明超硬工具21〜28を作製した。
なお、本発明超硬工具21,23,26,28については、工具基体表面に、アークイオンプレーティング装置を用いて、表3に示されるとおりの組成および平均膜厚の硬質被覆層を蒸着形成することにより、表7に示す本発明表面被覆WC基超硬合金製切削工具を作製した。
(A) As raw material powder, Co powder, Re powder, VC powder, Cr 3 C 2 powder, TiC powder, TaC powder, NbC powder, WC powder, all having an average particle diameter of 0.5 to 5 μm are prepared. These raw material powders were blended into the blending composition shown in Table 6, added with wax, wet mixed with a ball mill for 72 hours, dried under reduced pressure, and then press-formed into a predetermined shape at a pressure of 100 MPa,
(B) These green compacts are held at a sintering temperature shown in Table 6 in a vacuum of 1.3 Pa for 1 hour, and then Ar gas is introduced into the furnace to form a pressurized atmosphere of 6 MPa. And then further cooling to 1150 ° C. at a cooling rate of 1 ° C./min while maintaining the pressure, followed by furnace cooling,
(C) The obtained sintered body was processed so as to have a predetermined size, and the cemented carbide tools 21 to 28 of the present invention having the insert shape of APMT1604PDER were produced.
For the cemented carbide tools 21, 23, 26, and 28 of the present invention, a hard coating layer having the composition and average film thickness as shown in Table 3 is vapor-deposited on the tool base surface using an arc ion plating apparatus. By doing this, the cutting tool made from this invention surface-coated WC base cemented carbide shown in Table 7 was produced.

また、比較の目的で、表6に示される配合組成となるように原料粉末を配合し、本発明超硬工具21〜28と同様にして、APMT1604PDERのインサート形状をもった比較例超硬工具31〜37を作製した。
なお、比較例超硬工具31,33,36については、工具基体表面に、アークイオンプレーティング装置を用いて、表3に示されるとおりの組成および平均膜厚の硬質被覆層を蒸着形成することにより、比較例表面被覆WC基超硬合金製切削工具を作製した。
In addition, for comparison purposes, the raw material powder was blended so as to have the blending composition shown in Table 6, and in the same manner as the cemented carbide tools 21 to 28 of the present invention, a comparative example cemented carbide tool 31 having an insert shape of APMT1604PDER. ~ 37 were made.
For the comparative carbide tools 31, 33, and 36, a hard coating layer having the composition and average film thickness as shown in Table 3 is vapor-deposited on the tool base surface using an arc ion plating apparatus. Thus, a comparative example surface-coated WC-based cemented carbide cutting tool was produced.

上記本発明超硬工具21〜28について、実施例1の場合と同様に、TEM−EDSによる点分析を行い、焼結組織の結合相中のRe固溶量、WC粒子の平均粒径、WC粒子表面に形成されたRe拡散薄層における固溶Re含有量、WC粒子の平均粒径に占めるRe拡散薄層の厚さ比(%)を測定した。
表8には、WC粒子10個の測定結果の各平均値を示した。
本発明超硬工具21〜28はいずれも、WC粒子表面にReの拡散薄層が形成されており、該拡散薄層における固溶Re含有量は0.2〜7質量%の範囲内であった。
About the said cemented carbide tools 21-28 of this invention, similarly to the case of Example 1, point analysis by TEM-EDS is performed, Re solid solution amount in the binder phase of a sintered structure, the average particle diameter of WC particles, WC The solid solution Re content in the Re diffusion thin layer formed on the particle surface and the thickness ratio (%) of the Re diffusion thin layer to the average particle diameter of the WC particles were measured.
Table 8 shows the average values of the measurement results of 10 WC particles.
In each of the cemented carbide tools 21 to 28 of the present invention, a thin Re diffusion layer is formed on the surface of the WC particles, and the solid solution Re content in the thin diffusion layer is in the range of 0.2 to 7% by mass. It was.

Figure 2011235410
Figure 2011235410

Figure 2011235410
Figure 2011235410

Figure 2011235410
Figure 2011235410

つぎに、上記本発明超硬工具21〜28および比較例超硬工具31〜37のそれぞれを、直径32mmの合金鋼製のカッターにねじ止め固定し、以下の条件で切削加工試験を行った。
被削材 :Ni基合金耐熱合金(Cr:18.5%,Mo:3.0%,Al:0.5%,Nb+Ta:5.1%,残部:Niおよび不可避不純物)の角材、
切削速度 : 40m/min、
軸歩行切込み: 5.0mm、
径方向切込み: 1.0mm、
送り : 0.15mm/刃
上記切削加工試験において、逃げ面摩耗幅が0.2mmに達するまでの切削長を測定し、また、切削加工試験後の切れ刃の摩耗状況を観察した。
この測定結果、観察結果を表7に示した。
Next, each of the cemented carbide tools 21 to 28 of the present invention and the comparative example cemented carbide tools 31 to 37 were fixed with screws to a cutter made of an alloy steel having a diameter of 32 mm, and a cutting test was performed under the following conditions.
Work Material: Ni-base alloy heat-resistant alloy (Cr: 18.5%, Mo: 3.0%, Al: 0.5%, Nb + Ta: 5.1%, balance: Ni and inevitable impurities),
Cutting speed: 40 m / min,
Axial walk cut: 5.0mm,
Radial depth of cut: 1.0 mm,
Feeding: 0.15 mm / blade In the cutting test, the cutting length until the flank wear width reached 0.2 mm was measured, and the wear state of the cutting edge after the cutting test was observed.
The measurement results and observation results are shown in Table 7.

表7、表8に示される結果から、本発明超硬工具21〜28は、WC基超硬合金焼結体の結合相が、3〜20質量%の固溶Reを含有し、また、硬質相のWC粒子表面にReの拡散薄層が形成され、かつ、該拡散薄層における固溶Re含有量が0.2〜7質量%であって、熱伝導性の低下を招くことなく、高温硬さが向上し、また、結合相と硬質相の密着強度も高くなり、耐欠損性に優れ、かつ、耐熱塑性変形性にも優れることから、切刃部が局部的に高温に曝されるNi基合金、Co基合金等の耐熱合金の切削加工に用いた場合でも、欠損、偏摩耗等を発生することなく長期の使用に亘ってすぐれた耐摩耗性を発揮する。
これに対して、比較例超硬工具31〜37は、切刃部が局部的に高温に曝されるNi基合金、Co基合金等の耐熱合金の切削加工に用いた場合には、切刃部の欠損が発生し、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 7 and 8, in the cemented carbide tools 21 to 28 of the present invention, the binder phase of the WC-based cemented carbide sintered body contains 3 to 20% by mass of solid solution Re and is hard. A Re diffusion thin layer is formed on the surface of the WC particles of the phase, and the solid solution Re content in the diffusion thin layer is 0.2 to 7% by mass, without causing a decrease in thermal conductivity. Hardness is improved and adhesion strength between the binder phase and the hard phase is increased, and the cutting edge is locally exposed to high temperature because of excellent fracture resistance and excellent heat-resistant plastic deformation. Even when it is used for cutting heat-resistant alloys such as Ni-base alloys and Co-base alloys, it exhibits excellent wear resistance over a long period of use without causing defects or uneven wear.
On the other hand, when the comparative example carbide tools 31 to 37 are used for cutting heat-resistant alloys such as Ni-base alloys and Co-base alloys whose cutting edges are locally exposed to high temperatures, It is clear that the defect of the part occurs and the service life is reached in a relatively short time.

この発明のWC基超硬合金製切削工具、表面被覆WC基超硬合金製切削工具は、Ni基合金、Co基合金等の耐熱合金の切削加工ばかりでなく、各種の鋼や鋳鉄などの通常の条件での切削加工にも勿論適用可能であり、長期の使用に亘ってすぐれた切削性能を発揮し、切削加工の省力化および省エネ化、さらに低コスト化に適うものである。   The WC-based cemented carbide cutting tool and the surface-coated WC-based cemented carbide cutting tool according to the present invention are not only used for cutting heat-resistant alloys such as Ni-based alloys and Co-based alloys, but also for various steels and cast irons. Of course, the present invention can be applied to cutting under the above conditions, and exhibits excellent cutting performance over a long period of use, and is suitable for labor saving and energy saving of cutting work and further cost reduction.

Claims (4)

結合相成分としてCoを含有し、残部が硬質相成分としてのWCおよび不可避不純物からなるWC基超硬合金を工具基体とするWC基超硬合金製切削工具において、
結合相成分であるCoの含有量は4〜12質量%であり、また、結合相中にはReが固溶しており、結合相中の平均Re含有量は3〜20質量%であり、さらに、硬質相を構成するWC粒子表面には、Reの拡散薄層が形成されていることを特徴とするWC基超硬合金製切削工具。
In a WC-based cemented carbide cutting tool having a tool base of a WC-based cemented carbide containing Co as a binder phase component and the balance being WC as a hard phase component and unavoidable impurities,
The content of Co as a binder phase component is 4 to 12% by mass, and Re is dissolved in the binder phase, and the average Re content in the binder phase is 3 to 20% by mass, A WC-based cemented carbide cutting tool characterized in that a thin Re diffusion layer is formed on the surface of the WC particles constituting the hard phase.
上記Reの拡散薄層は、WC粒子の表面から、該WC粒子の粒径の1〜10%の深さ領域にわたって形成され、かつ、該深さ領域における固溶Re含有量は0.2〜7質量%であり、一方、WC粒子の内部側では、固溶Re含有量は0.2質量%未満であることを特徴とする請求項1に記載のWC基超硬合金製切削工具。   The Re diffusion thin layer is formed from the surface of the WC particle to a depth region of 1 to 10% of the particle size of the WC particle, and the solid solution Re content in the depth region is 0.2 to The WC-based cemented carbide cutting tool according to claim 1, wherein the WC-based cemented carbide cutting tool according to claim 1, wherein the content is 7% by mass, and on the other hand, the solute Re content is less than 0.2% by mass on the inner side of the WC particles. 上記WC基超硬合金製切削工具基体が、さらに、VC、Cr、TiC、TaC、NbCのうちから選ばれる1種または2種以上を合計で0.1〜2質量%含有することを特徴とする請求項1または2に記載のWC基超硬合金製切削工具。 The WC-based cemented carbide cutting tool base further contains a total of 0.1 to 2% by mass of one or more selected from VC, Cr 3 C 2 , TiC, TaC, and NbC. A cutting tool made of a WC-based cemented carbide according to claim 1 or 2. 請求項1乃至3のいずれか一項に記載のWC基超硬合金製切削工具の表面に、硬質被覆層を蒸着形成してなる表面被覆WC基超硬合金製切削工具。   A surface-coated WC-based cemented carbide cutting tool obtained by vapor-depositing a hard coating layer on the surface of the WC-based cemented carbide cutting tool according to any one of claims 1 to 3.
JP2010109781A 2010-05-12 2010-05-12 Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy Withdrawn JP2011235410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109781A JP2011235410A (en) 2010-05-12 2010-05-12 Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109781A JP2011235410A (en) 2010-05-12 2010-05-12 Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy

Publications (1)

Publication Number Publication Date
JP2011235410A true JP2011235410A (en) 2011-11-24

Family

ID=45323949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109781A Withdrawn JP2011235410A (en) 2010-05-12 2010-05-12 Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy

Country Status (1)

Country Link
JP (1) JP2011235410A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2512983A (en) * 2013-02-11 2014-10-15 Element Six Gmbh Cemented carbide material and method of making same
CN106893915A (en) * 2017-01-22 2017-06-27 苏州新锐合金工具股份有限公司 The porous effective sintered-carbide die material of microchannel aluminium alloy flat of one kind extruding
JP2018154917A (en) * 2017-03-17 2018-10-04 三菱日立ツール株式会社 Cemented carbide and method for producing the same, and cutting tool prepared therewith
CN109868404A (en) * 2019-03-27 2019-06-11 成都川硬合金材料有限责任公司 A kind of hard alloy axle sleeve and preparation method thereof
CN112176237A (en) * 2020-09-07 2021-01-05 湖北金谷材料科技有限公司 Hard alloy and preparation method thereof
US11123803B2 (en) * 2018-11-30 2021-09-21 Korloy Inc. Cutting insert for hard-to-cut material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2512983A (en) * 2013-02-11 2014-10-15 Element Six Gmbh Cemented carbide material and method of making same
WO2014122306A3 (en) * 2013-02-11 2015-04-09 Element Six Gmbh Cemented carbide material and method of making same
CN105074029A (en) * 2013-02-11 2015-11-18 六号元素有限责任公司 Cemented carbide material and method of making same
JP2016513177A (en) * 2013-02-11 2016-05-12 エレメント、シックス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングElement Six Gmbh Cemented carbide material and method for producing the same
GB2512983B (en) * 2013-02-11 2017-11-15 Element Six Gmbh Cemented carbide material and method of making same
US20210222273A1 (en) * 2013-02-11 2021-07-22 Element Six Gmbh Cemented carbide material and method of making same
CN106893915A (en) * 2017-01-22 2017-06-27 苏州新锐合金工具股份有限公司 The porous effective sintered-carbide die material of microchannel aluminium alloy flat of one kind extruding
JP2018154917A (en) * 2017-03-17 2018-10-04 三菱日立ツール株式会社 Cemented carbide and method for producing the same, and cutting tool prepared therewith
JP7021528B2 (en) 2017-03-17 2022-02-17 株式会社Moldino Cemented carbide and its manufacturing method, and cutting tools using it
US11123803B2 (en) * 2018-11-30 2021-09-21 Korloy Inc. Cutting insert for hard-to-cut material
CN109868404A (en) * 2019-03-27 2019-06-11 成都川硬合金材料有限责任公司 A kind of hard alloy axle sleeve and preparation method thereof
CN112176237A (en) * 2020-09-07 2021-01-05 湖北金谷材料科技有限公司 Hard alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
JP4690475B2 (en) Cermet and coated cermet tools
JPWO2011002008A1 (en) Cermet and coated cermet
JP5454678B2 (en) Cermet and coated cermet
JP6144763B2 (en) Cermet, manufacturing method thereof and cutting tool
JP2010031308A (en) Cermet
JP5559575B2 (en) Cermet and coated cermet
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP5594568B2 (en) Cutting tool made of cubic boron nitride based ultra high pressure sintered material and cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
JP6384098B2 (en) Titanium carbonitride-based cermet for chipsaw
JP2012086297A (en) Wc-based cemented carbide cutting tool exercising superior chipping resistance and wear resistance in high speed intermittent cutting
JP5273987B2 (en) Cermet manufacturing method
JP5381616B2 (en) Cermet and coated cermet
JP2008195971A (en) Cermet
JP2006111947A (en) Ultra-fine particle of cermet
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP2010253607A (en) Cutting tool
JP2012041595A (en) Cermet
JP2012086298A (en) Cutting tool made of surface-coated wc-based cemented carbide exhibiting excellent defect resistance in high-speed intermittent cutting of steel
JP5906813B2 (en) Hard materials and cutting tools
JP2020132972A (en) Cemented carbide and cutting tool
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP2020132971A (en) Cemented carbide and cutting tool
JP2011132057A (en) Sintered compact

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806