JP2016513177A - Cemented carbide material and method for producing the same - Google Patents

Cemented carbide material and method for producing the same Download PDF

Info

Publication number
JP2016513177A
JP2016513177A JP2015556525A JP2015556525A JP2016513177A JP 2016513177 A JP2016513177 A JP 2016513177A JP 2015556525 A JP2015556525 A JP 2015556525A JP 2015556525 A JP2015556525 A JP 2015556525A JP 2016513177 A JP2016513177 A JP 2016513177A
Authority
JP
Japan
Prior art keywords
cemented carbide
carbide material
material according
binder
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015556525A
Other languages
Japanese (ja)
Other versions
JP6275750B2 (en
Inventor
イゴール ユリエヴィチ コンヤシン
イゴール ユリエヴィチ コンヤシン
ベルント ハインリッヒ リース
ベルント ハインリッヒ リース
フランク フリードリッヒ ラヒマン
フランク フリードリッヒ ラヒマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Element Six GmbH
Original Assignee
Element Six GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Element Six GmbH filed Critical Element Six GmbH
Publication of JP2016513177A publication Critical patent/JP2016513177A/en
Application granted granted Critical
Publication of JP6275750B2 publication Critical patent/JP6275750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/006Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

超硬合金材料は、WC、約3〜約10質量%の間のCoおよび約0.5〜約8質量%の間のReを含む。WCに対する超硬合金材料の全炭素当量(ETC)含有率は、約6.3質量%〜約6.9質量%の間であり、超硬合金材料は、η相および遊離炭素を実質的に含まない。また、そのような材料を生成する方法およびそのような材料の使用が開示される。The cemented carbide material includes WC, between about 3 and about 10% by weight Co and between about 0.5 and about 8% by weight Re. The total carbon equivalent (ETC) content of the cemented carbide material relative to the WC is between about 6.3 wt% and about 6.9 wt%, and the cemented carbide material substantially contains η phase and free carbon. Not included. Also disclosed are methods of producing such materials and uses of such materials.

Description

本開示は、例えばダイヤモンドもしくはc−BNの合成、または多結晶のダイヤモンドもしくはc−BNの製造のための高圧構成要素における使用のための超硬合金材料、およびそれを作製する方法に関する。   The present disclosure relates to cemented carbide materials for use in high pressure components, for example for the synthesis of diamond or c-BN, or for the production of polycrystalline diamond or c-BN, and methods of making the same.

ダイヤモンド合成および多結晶ダイヤモンド(PCD)の製造に使用され、アンビルおよびダイを含む高圧高温(HPHT)構成要素に採用される超硬合金が、高い圧力、温度および負荷を受けることは周知である。そのような好ましくない条件はそれらの変形をもたらし、変形がある特定のレベルを超えると、HPHT構成要素は破損する。この点において、高圧での変形を低減し、結果としてHPHT構成要素の変形抵抗および寿命を改善するために、高レベルのヤング率を有する超硬合金材料を有することが非常に重要である。   It is well known that cemented carbides used in diamond synthesis and polycrystalline diamond (PCD) production and employed in high pressure high temperature (HPHT) components, including anvils and dies, are subject to high pressures, temperatures and loads. Such unfavorable conditions result in their deformation, and if the deformation exceeds a certain level, the HPHT component breaks. In this regard, it is very important to have a cemented carbide material with a high level of Young's modulus in order to reduce deformation at high pressure and consequently improve the deformation resistance and life of the HPHT component.

したがって、改善された変形抵抗、ならびに高い破壊靭性および強度を有する高圧高温構成要素の製造における使用のための超硬合金材料が必要とされている。   Accordingly, there is a need for a cemented carbide material for use in the manufacture of high pressure, high temperature components having improved deformation resistance and high fracture toughness and strength.

第1の態様から見ると、WC、CoおよびReを含む超硬合金材料であって、
超硬合金材料は、約3〜約10質量%の間のCoおよび約0.5〜約8質量%の間のReを含み、
WCに対する超硬合金材料の全炭素当量(ETC)含有率は、約6.3質量%〜約6.9質量%の間であり、
超硬合金材料は、η相および遊離炭素を実質的に含まない、超硬合金材料が提供される。
第2の態様から見ると、
上で定義された超硬合金材料を含む基材と、
界面に沿って基材に結合された多結晶性超硬質材料の物体
とを備える、多結晶性超硬質構造物が提供される。
第3の態様から見ると、地面穿孔用の回転ドリルビットに適合された多結晶性超硬質材料の物体に結合された、上で定義された超硬合金材料を含む基材を備えるカッターが提供される。
第4の態様から見ると、地面穿孔用の回転せん断ビット、パーカッション用ドリルビットまたは採鉱もしくはアスファルト分解用のピックのPCD要素であって、上で定義されたような超硬合金材料の物体に結合された超硬質多結晶性材料の物体を備えるカッター要素を備えるPCD要素が提供される。
第5の態様から見ると、上で定義されたようなPCD要素を備える、地面穿孔用のドリルビットまたはドリルビットの構成要素が提供される。
第6の態様から見ると、上で定義された超硬合金材料を生成する方法であって、
WCおよび炭素と共に、Re、Co、Niおよび/またはFeを含有し、V、Cr、Ta、Ti、Mo、Zr、NbおよびHfの1種もしくは複数種、またはそれらの炭化物を含む粒子成長阻害剤を含有してもよい超硬合金混合物を粉砕するステップと、
混合物から超硬合金物品をプレスするステップと、
真空中約1〜10分の間の期間、およびArの圧力下(HIP)で約5〜120分の期間、約1450℃超の温度で物品を焼結するステップと、
焼結温度から摂氏約1300度(℃)まで物品を冷却するステップと
を含む方法が提供される。
第7の態様から見ると、上で定義された超硬合金材料をリサイクルする方法であって、炭化物材料を保護雰囲気中で液体Znと共に溶融するステップと、Znを蒸発させて最終生成物を形成するステップと、最終生成物を粉砕して生成物からReを回収するステップとを含む方法が提供される。
Viewed from the first aspect, a cemented carbide material containing WC, Co and Re,
The cemented carbide material comprises between about 3 to about 10% by weight Co and between about 0.5 to about 8% by weight Re;
The total carbon equivalent (ETC) content of the cemented carbide material relative to WC is between about 6.3 wt% and about 6.9 wt%,
A cemented carbide material is provided that is substantially free of η phase and free carbon.
From the second aspect,
A substrate comprising a cemented carbide material as defined above;
A polycrystalline superhard structure is provided comprising an object of polycrystalline superhard material bonded to a substrate along an interface.
Viewed from a third aspect, there is provided a cutter comprising a substrate comprising a cemented carbide material as defined above bonded to an object of polycrystalline cemented carbide material adapted to a rotating drill bit for ground drilling Is done.
Viewed from a fourth aspect, a rotary shear bit for ground drilling, a percussion drill bit or a PCD element for picking for mining or asphalt decomposition, bonded to an object of cemented carbide material as defined above There is provided a PCD element comprising a cutter element comprising an object of a fabricated ultra-hard polycrystalline material.
Viewed from a fifth aspect, there is provided a drill bit for drilling ground or a component of a drill bit comprising a PCD element as defined above.
Viewed from a sixth aspect, a method of producing a cemented carbide material as defined above, comprising:
Particle growth inhibitor containing Re, Co, Ni and / or Fe together with WC and carbon, and containing one or more of V, Cr, Ta, Ti, Mo, Zr, Nb and Hf, or carbides thereof Crushing a cemented carbide mixture that may contain:
Pressing a cemented carbide article from the mixture;
Sintering the article at a temperature greater than about 1450 ° C. for a period of between about 1-10 minutes in a vacuum and under a pressure of Ar (HIP) for about 5-120 minutes;
Cooling the article from a sintering temperature to about 1300 degrees Celsius (° C.).
Viewed from a seventh aspect, a method of recycling a cemented carbide material as defined above, comprising melting a carbide material with liquid Zn in a protective atmosphere and evaporating Zn to form a final product And a step of grinding the final product to recover Re from the product.

第8の態様から見ると、上で定義された超硬合金材料をリサイクルする方法であって、超硬合金材料を酸浸出混合物に供し、超硬合金材料から結合剤相を除去するステップと、除去された結合剤相からCoおよびReを化学的に回収するステップとを含む方法が提供される。
第9の態様から見ると、上で定義された超硬合金材料をリサイクルする方法であって、超硬合金材料を酸化して炭化物、ReおよびCoを溶解するステップと、Reを回収するステップとを含む方法が提供される。
第10の態様から見ると、5GPa超の圧力および1100℃超の温度で行われる、ダイヤモンドもしくはc−BNの合成のための、または多結晶のダイヤモンドもしくはc−BNの製造における、高圧構成要素中での超硬合金材料の使用であって、超硬合金材料が、
第二炭化物相の形態をした、または材料中の結合剤相に固溶した1種または複数種の金属の炭化物であって、1種または複数種の前記金属が、Ti、V、Cr、Mn、Zr、Nb、Mo、Hfおよび/またはTaを含む、炭化物と、
約0.5〜約8質量%の間のReおよび約3〜約10質量%の間のCoとを含み、
WCに対する超硬合金材料の全炭素当量(ETC)含有率が、約6.3質量%〜約6.9質量%の間であり、
超硬合金材料が、η相および遊離炭素を実質的に含まない、超硬合金材料の使用が提供される。
ここで、例示として、および添付の図面を参照して実施形態を説明する。
Viewed from an eighth aspect, a method of recycling a cemented carbide material as defined above, comprising subjecting the cemented carbide material to an acid leaching mixture to remove the binder phase from the cemented carbide material; Chemically recovering Co and Re from the removed binder phase.
Viewed from a ninth aspect, a method of recycling a cemented carbide material as defined above, comprising: oxidizing a cemented carbide material to dissolve carbides, Re and Co; and collecting Re Is provided.
Viewed from the tenth aspect, in a high pressure component for the synthesis of diamond or c-BN or in the production of polycrystalline diamond or c-BN, carried out at a pressure of more than 5 GPa and a temperature of more than 1100 ° C. Use of cemented carbide material in which the cemented carbide material is
A carbide of one or more metals in the form of a second carbide phase or dissolved in a binder phase in the material, wherein the one or more metals are Ti, V, Cr, Mn Carbides containing Zr, Nb, Mo, Hf and / or Ta,
Between about 0.5 and about 8% by weight of Re and between about 3 and about 10% by weight of Co;
The total carbon equivalent (ETC) content of the cemented carbide material relative to WC is between about 6.3 wt% and about 6.9 wt%,
There is provided the use of a cemented carbide material, wherein the cemented carbide material is substantially free of η phase and free carbon.
Embodiments will now be described by way of example and with reference to the accompanying drawings.

第1の例による、WC−Co−Reを含む超硬合金材料のSEM画像である。It is a SEM image of the cemented carbide material containing WC-Co-Re by the 1st example. 図1のWC−Co−Re超硬合金材料のEBSD画像である。It is an EBSD image of the WC-Co-Re cemented carbide material of FIG. 従来のWC−Co超硬合金材料の微細構造を示すEBSD画像である。It is an EBSD image which shows the microstructure of the conventional WC-Co cemented carbide material.

従来のWC−Co材料のWCに対する全炭素当量(ETC)含有率は、約6.0〜6.3質量%の間であることは周知である。[例えば、「Exner H., Gurland J. A review of parameters influencing some mechanical properties of tungsten carbide-cobalt alloy. Powder Met., 13 (1970) 13-31」;およびI. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, T. Weirich, F. Dorn, A. Sologubenko on the 「Mechanism of WC Coarsening in WC-Co Hardmetals with Various Carbon Contents」, International Journal of Refractory Metals and Hard Materials, 27 (2009) 234-243を参照されたい。]炭素含量がこの範囲の炭素含量より低い、または高い場合、炭化物微細構造中に追加的な相(例えばη相または遊離炭素)が出現し、WC−Co材料の機械的特性、例えば圧縮強度、抗折力、および破壊靭性の大幅な低下をもたらす。
ここで、驚くべきことに、WC−Co−Re超硬合金が、6.3質量%〜6.9質量%の間のWCに対する全炭素当量(ETC)含有率に対応する著しく増加した炭素含量を有する場合、その機械的特性、例えば圧縮強度、抗折力、硬度、破壊靭性および高温硬度が劇的に改善され得ることが認識された。
It is well known that the total carbon equivalent (ETC) content of WC-Co material to WC is between about 6.0 and 6.3 wt%. [For example, “Exner H., Gurland J. A review of parameters influencing some mechanical properties of tungsten carbide-cobalt alloy. Powder Met., 13 (1970) 13-31”; and I. Konyashin, S. Hlawatschek, B. Ries, F. Lachmann, T. Weirich, F. Dorn, A. Sologubenko on the `` Mechanism of WC Coarsening in WC-Co Hardmetals with Various Carbon Contents '', International Journal of Refractory Metals and Hard Materials, 27 (2009) 234- See 243. When the carbon content is lower or higher than this range, additional phases (eg, η phase or free carbon) appear in the carbide microstructure and mechanical properties of the WC-Co material, such as compressive strength, This results in a significant decrease in bending strength and fracture toughness.
Here, surprisingly, the WC—Co—Re cemented carbide has a significantly increased carbon content corresponding to a total carbon equivalent (ETC) content of WC between 6.3 wt% and 6.9 wt%. It has been recognized that its mechanical properties such as compressive strength, bending strength, hardness, fracture toughness and high temperature hardness can be dramatically improved.

理論に束縛されることを望まないが、その考えられる理由は、そのような材料中のWC−Co−Re超硬合金の結合剤相における残留圧縮応力の存在であり得る。WC−Co超硬合金における残留応力に関する多くの出版物によれば、WC−Co中の結合剤相は常に高い残留引張応力下にあり、従来のWC−Co材料の硬度および破壊靭性の組合せの低下をもたらす[例えば、Mari D、Clausen B、Bourke M A M、Buss Kによる出版物、「Measurement of residual thermal stress in WC-Co by neutron diffraction」, Int. J. Refractory Met. Hard Mater., 2009; 27: 282-287、Krawitz A D、Venter A M、Drake E F、Luyckx S B、Clausen Bによる出版物、「Phase response in WC-Ni to cyclic compressive loading and its relation to roughness」, Int. J. Refractory Met. Hard Mater., 2009; 27: 313-316、およびCoats D I、Krawitz A Dによる出版物、「Effect of particle size on thermal residual stress in WC-Co composites」, Mater. Sci. Engin., 2003; A359:338-342を参照されたい]。   Without wishing to be bound by theory, the possible reason may be the presence of residual compressive stress in the binder phase of the WC-Co-Re cemented carbide in such materials. According to many publications on residual stresses in WC-Co cemented carbides, the binder phase in WC-Co is always under high residual tensile stress, a combination of the hardness and fracture toughness of conventional WC-Co materials. [For example, publication by Mari D, Clausen B, Bourke MAM, Buss K, “Measurement of residual thermal stress in WC-Co by neutron diffraction”, Int. J. Refractory Met. Hard Mater., 2009; 27 : 282-287, Krawitz AD, Venter AM, Drake EF, Luyckx SB, Clausen B publication, "Phase response in WC-Ni to cyclic compressive loading and its relation to roughness", Int. J. Refractory Met. Hard Mater 27, 313-316, and publication by Coats DI, Krawitz AD, “Effect of particle size on thermal residual stress in WC-Co composites”, Mater. Sci. Engin., 2003; A359: 338-342 Please refer to].

本明細書において使用される場合、「超硬質材料」は、少なくとも約25GPaのビッカース硬度を有する材料である。ダイヤモンドおよび立方晶窒化ホウ素(cBN)材料が、超硬質材料の例である。
本明細書において使用される場合、「超硬質構造物」は、多結晶性超硬質材料もしくは超硬質複合材料を含む構造物、または、超硬合金基材に結合された多結晶性超硬質材料および超硬質複合材料を含む構造物を意味する。
本明細書において使用される場合、多結晶ダイヤモンド(PCD)は、その実質的な部分が互いに直接相互結合しているダイヤモンド粒塊を含むPCS材料であり、ダイヤモンドの含量は、材料の少なくとも約80体積パーセントである。PCD材料の一実施形態において、ダイヤモンド粒間の隙間は、ダイヤモンドの触媒を含む結合剤材料で少なくとも部分的に充填されていてもよい。本明細書において使用される場合、「隙間」または「隙間領域」は、PCD材料のダイヤモンド粒間の領域である。PCD材料の実施形態において、隙間または隙間領域は、ダイヤモンド以外の材料で実質的にもしくは部分的に充填されていてもよく、または実質的に空であってもよい。PCD材料の実施形態は、少なくとも、触媒材料が隙間から除去され、ダイヤモンド粒間に空隙が残された領域を含んでもよい。
As used herein, an “ultrahard material” is a material having a Vickers hardness of at least about 25 GPa. Diamond and cubic boron nitride (cBN) materials are examples of ultra-hard materials.
As used herein, “superhard structure” refers to a structure comprising a polycrystalline superhard material or a superhard composite material, or a polycrystalline superhard material bonded to a cemented carbide substrate. And a structure including an ultra-hard composite material.
As used herein, polycrystalline diamond (PCD) is a PCS material that includes diamond agglomerates whose substantial portions are directly interconnected with each other, and the diamond content is at least about 80% of the material. Volume percent. In one embodiment of the PCD material, the gaps between the diamond grains may be at least partially filled with a binder material comprising a diamond catalyst. As used herein, “gap” or “gap region” is a region between diamond grains of PCD material. In embodiments of the PCD material, the gap or gap area may be substantially or partially filled with a material other than diamond, or may be substantially empty. Embodiments of the PCD material may include at least a region where the catalyst material is removed from the gaps and voids are left between the diamond grains.

本明細書において使用される場合、多結晶立方晶窒化ホウ素(PCBN)材料は、セラミックもしくは金属材料、またはその両方を含んでもよい耐摩耗性マトリックス内に分散したcBN粒塊を含むPCS材料であり、cBNの含量は、材料の少なくとも約50体積パーセントである。PCBN材料のいくつかの実施形態において、cBN粒の含量は、少なくとも約60体積パーセント、少なくとも約70体積パーセント、または少なくとも約80体積パーセントである。超硬質材料の実施形態は、硬質マトリックス内に分散した超硬質材料の粒を含んでもよく、硬質マトリックスは、好ましくは、主要成分としてセラミック材料を含み、セラミック材料は、好ましくは炭化ケイ素、窒化チタンおよび炭窒化チタンから選択される。
図1および図2を参照すると、超硬合金材料は、炭化物相を含む硬質材料の粒塊と、結合剤相を構成する結合剤材料で充填された硬質粒間の隙間とを含む。図1に示される実施形態において、炭化物相は、WCであり、結合剤相は、CoおよびReの合金、ならびにそれに固溶した一部のWおよびCを含む。
As used herein, a polycrystalline cubic boron nitride (PCBN) material is a PCS material comprising cBN agglomerates dispersed within a wear resistant matrix that may comprise a ceramic or metallic material, or both. , CBN content is at least about 50 volume percent of the material. In some embodiments of the PCBN material, the content of cBN grains is at least about 60 volume percent, at least about 70 volume percent, or at least about 80 volume percent. Embodiments of the superhard material may include grains of superhard material dispersed within the hard matrix, the hard matrix preferably including a ceramic material as a major component, the ceramic material preferably being silicon carbide, titanium nitride. And selected from titanium carbonitride.
Referring to FIGS. 1 and 2, the cemented carbide material includes hard material agglomerates including a carbide phase and gaps between hard particles filled with the binder material that constitutes the binder phase. In the embodiment shown in FIG. 1, the carbide phase is WC, and the binder phase includes an alloy of Co and Re, and some W and C dissolved therein.

図3は、比較のために、炭化物相としてWCを、および結合剤相としてCoを含む従来の超硬合金材料を示す。
いくつかの実施形態において、超硬合金材料は、第二炭化物相の形態の、または結合剤相に固溶した1種または複数種の金属の炭化物をさらに含み、1種または複数種の金属は、Ti、V、Cr、Mn、Zr、Nb、Mo、Hfおよび/またはTaを含む。超硬合金材料は、η相および遊離炭素を実質的に含まない。
いくつかの実施形態において、超硬合金材料は、約0.5〜約8質量%の間のReを含む。
FIG. 3 shows, for comparison, a conventional cemented carbide material containing WC as the carbide phase and Co as the binder phase.
In some embodiments, the cemented carbide material further comprises a carbide of one or more metals in the form of a second carbide phase or dissolved in the binder phase, wherein the one or more metals are , Ti, V, Cr, Mn, Zr, Nb, Mo, Hf and / or Ta. The cemented carbide material is substantially free of η phase and free carbon.
In some embodiments, the cemented carbide material comprises between about 0.5 and about 8% by weight of Re.

いくつかの実施形態において、超硬合金材料は、約3〜約10質量%の間のCoを含む。
他の実施形態において、超硬合金材料は、約0.5〜約6質量%の間のReを含む。
超硬合金材料中のWCは、例えば、約0.6μm未満の平均粒径を有してもよい。
さらに、いくつかの実施形態において、WCに対する全炭素当量(ETC)含有率は、約6.3質量%〜約6.9質量%の間である。
In some embodiments, the cemented carbide material comprises between about 3 to about 10% by weight Co.
In other embodiments, the cemented carbide material comprises between about 0.5 and about 6 weight percent Re.
The WC in the cemented carbide material may have an average particle size of less than about 0.6 μm, for example.
Further, in some embodiments, the total carbon equivalent (ETC) content relative to WC is between about 6.3 wt% and about 6.9 wt%.

超硬合金材料の磁気特性は、重要な構造および組成特性に関連し得、超硬合金材料中の炭素含量の指標として理解される。超硬合金中の炭素含量を測定するための最も一般的な技法は、炭素含量が間接的に比例する結合剤に固溶したタングステンの濃度を測定することによる、間接的なものである。結合剤に固溶した炭素の含量が高い程、結合剤に固溶したタングステンの濃度は低い。超硬炭化タングステンがその一例である硬質金属の磁気飽和4πσまたは磁気モーメントσは、単位質量当たりの磁気モーメントまたは磁気飽和として定義される。純Coの磁気モーメントσは、16.1マイクロテスラ×立方メートル毎キログラム(μT.m3/kg)であり、純Coの磁気飽和4πσとも呼ばれる飽和の誘導は、201.9μT.m3/kgである。結合剤中のタングステン含量は、磁気モーメントσまたは磁気飽和Ms=4πσの測定から決定され得るが、これらの値は、タングステン含量と反比例関係にある(Roebuck (1996), 「Magnetic moment (saturation) measurements on cemented carbide materials」, Int. J. Refractory Met., Vol. 14, pp. 419-424.)。以下の式は、磁気飽和Msを、結合剤中のWおよびCの濃度と関連付けるために使用され得る。
s∝[C]/[W]×Coの質量%×201.9(μT.m3/kgの単位)
The magnetic properties of a cemented carbide material can be related to important structural and compositional properties and are understood as an indicator of the carbon content in the cemented carbide material. The most common technique for measuring the carbon content in cemented carbide is indirect, by measuring the concentration of tungsten dissolved in a binder whose carbon content is indirectly proportional. The higher the content of carbon dissolved in the binder, the lower the concentration of tungsten dissolved in the binder. The magnetic saturation 4πσ or magnetic moment σ of a hard metal, for example, tungsten carbide is defined as the magnetic moment or magnetic saturation per unit mass. The magnetic moment σ of pure Co is 16.1 microtesla × cubic meter per kilogram (μT.m 3 / kg), and the induction of saturation, also called magnetic saturation 4πσ of pure Co, is 201.9 μT. m 3 / kg. The tungsten content in the binder can be determined from measurements of magnetic moment σ or magnetic saturation M s = 4πσ, but these values are inversely related to tungsten content (Roebuck (1996), “Magnetic moment (saturation) measurements on cemented carbide materials ", Int. J. Refractory Met., Vol. 14, pp. 419-424.). The following equation can be used to relate the magnetic saturation Ms to the concentration of W and C in the binder.
M s ∝ [C] / [W] × mass% of Co × 201.9 (unit of μT.m 3 / kg)

超硬合金材料のいくつかの実施形態は、名目上純粋なCoの磁気飽和の少なくとも約40パーセント〜約80パーセントの関連磁気飽和を有する。
WC粒等の炭化物粒の平均粒径は、例えば平均直線切片(mean linear intercept)技法を適用して、超硬合金材料体の冶金学的に調製された断面の走査型電子顕微鏡(SEM)または光学顕微鏡画像を使用して得られた顕微鏡写真の検査により決定され得る。代替として、WC粒の平均径は、粒の間に介在するCoの平均自由行程を示す超硬合金材料の保磁力を測定することにより間接的に推定することができ、その保磁力から、当該技術分野において周知の単純な式を使用して、WC粒径を計算することができる。この式は、Co超硬WC超硬合金材料の保磁力とCo平均自由行程との間の反比例関係を数値化し、結果として平均WC粒径を数値化する。保磁力は、MFPと反比例関係を有する。
Some embodiments of the cemented carbide material have an associated magnetic saturation of at least about 40 percent to about 80 percent of the magnetic saturation of nominally pure Co.
The average particle size of carbide grains, such as WC grains, can be determined by scanning electron microscopy (SEM) of a metallurgically prepared cross-section of a cemented carbide material body, for example, by applying a mean linear intercept technique. It can be determined by examination of micrographs obtained using optical microscope images. Alternatively, the average diameter of the WC grains can be estimated indirectly by measuring the coercivity of the cemented carbide material showing the mean free path of Co intervening between the grains, and from the coercivity, WC particle size can be calculated using simple formulas well known in the art. This equation quantifies the inverse relationship between the coercivity of the Co cemented carbide WC cemented carbide material and the Co mean free path, resulting in a quantification of the average WC grain size. The coercive force has an inversely proportional relationship with the MFP.

本明細書において使用される場合、超硬合金等の複合材料の「平均自由行程」(MFP)は、結合剤材料内の超硬凝集炭化物粒間の平均距離の尺度である。超硬合金材料の平均自由行程特性は、材料の研磨断面の顕微鏡写真を使用して測定され得る。例えば、顕微鏡写真は、約1500倍の倍率を有し得る。MFPは、均一グリッド上で線および粒界の各交点の間の距離を測定することにより決定され得る。マトリックスの線分Lmが合計され、粒の線分Lgが合計される。両方の軸を使用した平均マトリックス線分長さが、「平均自由行程」である。炭化タングステン粒子経の複数の分布の混合は、同じマトリックス含量に対して広いMFP値の分布をもたらし得る。
本明細書において使用される場合、粒径は、ISO FDIS 13067標準に従う円相当径(ECD)の点で表現される。ECDは、研磨表面に露出した各粒の面積Aを測定し、式ECD=(4A/π)1/2に従い同じ面積Aを有する円の直径を計算することにより得られる(ISO FDIS 13067のセクション3.3.2「Microbeam analysis - Electron Backscatter Diffraction - Measurement of average grain size.」, International Standards Organisation Geneva, Switzerland, 2011を参照されたい)。
As used herein, the “mean free path” (MFP) of a composite material such as cemented carbide is a measure of the average distance between cemented carbide grains within the binder material. The mean free path characteristics of a cemented carbide material can be measured using a photomicrograph of a polished cross section of the material. For example, the micrograph may have a magnification of about 1500 times. The MFP can be determined by measuring the distance between each intersection of lines and grain boundaries on a uniform grid. The line segments Lm of the matrix are summed, and the line segments Lg of the grains are summed. The average matrix segment length using both axes is the “average free path”. Mixing multiple distributions of tungsten carbide particles may result in a broad distribution of MFP values for the same matrix content.
As used herein, particle size is expressed in terms of equivalent circle diameter (ECD) according to the ISO FDIS 13067 standard. The ECD is obtained by measuring the area A of each grain exposed on the polished surface and calculating the diameter of a circle with the same area A according to the formula ECD = (4A / π) 1/2 (section of ISO FDIS 13067 See 3.3.2 “Microbeam analysis-Electron Backscatter Diffraction-Measurement of average grain size”, International Standards Organization Geneva, Switzerland, 2011).

いくつかの実施形態において、超硬合金材料の炭化物相は、少なくとも約0.1μm〜最大約10μmの平均粒径を有する炭化物粒で形成され、超硬合金材料は、約2kA/m〜約70kA/mで変動する関連保磁力を有してもよい。
いくつかの実施形態において、炭化物相は、WCを含み、超硬合金材料は、炭化物微細構造のEBSD画像に基づき決定されるμm単位のWC平均粒径Dwcの関数として、以下の式により与えられる値以下のkA/m単位の保磁力Hcを有する。
Hc=10×Dwc -0.62
In some embodiments, the carbide phase of the cemented carbide material is formed of carbide grains having an average particle size of at least about 0.1 μm to up to about 10 μm, and the cemented carbide material is about 2 kA / m to about 70 kA. It may have an associated coercivity that varies at / m.
In some embodiments, the carbide phase comprises WC and the cemented carbide material is given by the following equation as a function of the WC average particle size D wc in μm determined based on the EBSD image of the carbide microstructure: It has a coercive force Hc of kA / m unit or less.
Hc = 10 × D wc -0.62

いくつかの実施形態において、炭化物相は、WCを含み、結合剤相は、CoおよびReを含む。
超硬合金材料の結合剤相は、例えば、Re、炭素およびW、ならびにFe、CoおよびNiの1種または複数種の固溶体であってもよい。いくつかの実施形態において、結合剤相は、固溶体として、および/または炭化物化合物の形態で少なくとも約0.1質量パーセント〜最大約5質量パーセントのV、Cr、Ta、Ti、Mo、Zr、NbおよびHfの1種または複数種を含む。いくつかの他の実施形態において、材料は、少なくとも約0.01質量パーセントおよび最大約2質量パーセントのRu、Rh、Pd、Os、IrおよびPtの1種または複数種を含む。
In some embodiments, the carbide phase includes WC and the binder phase includes Co and Re.
The binder phase of the cemented carbide material may be, for example, Re, carbon and W, and one or more solid solutions of Fe, Co and Ni. In some embodiments, the binder phase is at least about 0.1 weight percent up to about 5 weight percent V, Cr, Ta, Ti, Mo, Zr, Nb as a solid solution and / or in the form of a carbide compound. And one or more of Hf. In some other embodiments, the material comprises at least about 0.01 weight percent and up to about 2 weight percent of one or more of Ru, Rh, Pd, Os, Ir, and Pt.

超硬合金は、関連硬度を有し、いくつかの実施形態において、300℃における硬度低下は、最大20%であり、またはいくつかの他の実施形態において、最大17%である。硬度測定は、DIN ISO 3878に従い、Ar雰囲気中、室温ならびに300℃、500℃および800℃で、30kgfの負荷で金属断面に対し行われた。高温に達した後、断面を10分間アニールし、その後30kgfの負荷下でビッカース押込みを行い、負荷を15秒間印加した。Co結合剤を含有する従来の超硬合金材料、およびCo−Re結合剤を含有する超硬合金材料の実施形態の両方の硬度値を測定し、従来の材料および実施形態の材料の両方に対して、室温における硬度低下と比較した高温における硬度低下を計算した。   Cemented carbide has an associated hardness, and in some embodiments, the hardness drop at 300 ° C. is up to 20%, or in some other embodiments, up to 17%. Hardness measurements were performed on metal cross sections according to DIN ISO 3878, in an Ar atmosphere at room temperature and at 300 ° C., 500 ° C. and 800 ° C. with a load of 30 kgf. After reaching high temperature, the cross section was annealed for 10 minutes, and then Vickers indentation was performed under a load of 30 kgf, and the load was applied for 15 seconds. The hardness values of both the conventional cemented carbide material containing the Co binder and the embodiment of the cemented carbide material containing the Co-Re binder are measured and for both the conventional material and the material of the embodiment Thus, the decrease in hardness at high temperature compared to the decrease in hardness at room temperature was calculated.

超硬合金材料は、例えば、500℃において最大30%、またはいくつかの他の実施形態において最大27%の硬度低下を有してもよい。
GPa単位のビッカース硬度およびMPa m1/2単位の押込み破壊靭性を乗じることにより、硬度−靭性係数を計算してもよく、いくつかの実施形態において、これは150超である。いくつかの実施形態において、超硬合金材料は、ビッカース硬度を有する。
いくつかの実施形態において、超硬合金材料の結合剤相は、1つまたは複数の残留圧縮応力を有し、これらは、例えば、約−5MPa〜約100MPaの間であってもよい。
超硬合金材料の実施形態は、炭化物と共に、Re、Co、Niおよび/またはFeを含有し、V、Cr、Ta、Ti、Mo、Zr、NbおよびHfまたはそれらの炭化物を含む粒子成長阻害剤を含有してもよい超硬合金混合物を粉砕するステップと、次いで混合物から超硬合金物品をプレスするステップとを含む方法により作製されてもよい。物品は、次いで、真空中1〜10分間、およびその後Arの圧力下(HIP)で5〜120分間、1450℃超の温度で焼結される。物品は、次いで、不活性ガス、窒素、水素もしくはそれらの混合物を含む雰囲気中で、または真空中で、1分当たり約0.2〜2度の冷却速度で焼結温度から摂氏約1300度(℃)まで冷却される。
ここで、限定を意図しない以下に続く例を参照しながら、いくつかの実施形態をより詳細に説明する。
The cemented carbide material may have a hardness reduction of, for example, up to 30% at 500 ° C., or up to 27% in some other embodiments.
The hardness-toughness coefficient may be calculated by multiplying the Vickers hardness in GPa units and the indentation fracture toughness in MPa m 1/2 units, and in some embodiments this is greater than 150. In some embodiments, the cemented carbide material has a Vickers hardness.
In some embodiments, the binder phase of the cemented carbide material has one or more residual compressive stresses, which may be, for example, between about −5 MPa and about 100 MPa.
Embodiments of cemented carbide materials include particle growth inhibitors containing Re, Co, Ni and / or Fe with carbides, including V, Cr, Ta, Ti, Mo, Zr, Nb and Hf or carbides thereof May be made by a method comprising crushing a cemented carbide mixture that may contain, and then pressing a cemented carbide article from the mixture. The article is then sintered at a temperature above 1450 ° C. in a vacuum for 1 to 10 minutes and then under Ar pressure (HIP) for 5 to 120 minutes. The article is then cooled to about 1300 degrees Celsius from the sintering temperature at a cooling rate of about 0.2 to 2 degrees per minute in an atmosphere containing an inert gas, nitrogen, hydrogen or mixtures thereof, or in a vacuum. ℃).
Several embodiments will now be described in more detail with reference to the following examples that are not intended to be limiting.

WC粒が約0.6μmの平均粒径を有し、炭素含量が6.13質量%である炭化タングステン粉末を、5.5%のRe粉末および3.7%のCo粉末と共に粉砕した。Co粒は、約1μmの平均粒径を有していた。ボールミルを使用して、2質量%のパラフィンワックスと共にヘキサンを含む粉砕媒体中、1:6の粉末対ボール比を用いて粉末を一緒に24時間粉砕することにより、粉末混合物を生成した。粉砕後、0.35質量%のカーボンブラックを添加し、さらなる粉砕を1時間行うと、混合物のWCに対する全炭素当量(ETC)含有率が、6.51質量%と等しいことが事実となった。混合物を乾燥させた後、素地を1540℃で60分間プレスおよび焼結した(30分間真空+30分間50バールの圧力のAr中でのHIP)。1540℃で焼結した後、焼結体を1分当たり0.5度の速度で1300℃まで冷却し、その後は非制御速度で室温まで冷却した。LECO WC600機器を用いて、焼結試料を手作業で粉砕した後にその炭素含量を測定すると、5.85質量%に等しいと決定され、WCに対する全炭素当量(ETC)含有率が6.44質量%に等しいことが証明された。   Tungsten carbide powder with WC grains having an average particle size of about 0.6 μm and a carbon content of 6.13% by mass was pulverized with 5.5% Re powder and 3.7% Co powder. The Co grains had an average particle size of about 1 μm. A powder mixture was produced using a ball mill by grinding the powder together for 24 hours in a grinding media containing hexane with 2% by weight paraffin wax using a powder to ball ratio of 1: 6. After pulverization, 0.35% by mass of carbon black was added and further pulverization was performed for 1 hour, and it became a fact that the total carbon equivalent (ETC) content with respect to WC of the mixture was equal to 6.51% by mass . After the mixture had dried, the substrate was pressed and sintered at 1540 ° C. for 60 minutes (30 minutes vacuum + 30 minutes HIP in Ar at 50 bar pressure). After sintering at 1540 ° C., the sintered body was cooled to 1300 ° C. at a rate of 0.5 degrees per minute and then cooled to room temperature at an uncontrolled rate. Using a LECO WC600 instrument to measure the carbon content after manually grinding the sintered sample, it was determined to be equal to 5.85% by weight, and the total carbon equivalent (ETC) content relative to WC was 6.44%. Proven to be equal to%.

Reを含まない従来のWC−Co超硬合金の対照バッチを、同じWC粉末バッチおよび6質量%のCoから作製したが、これは、カーボンブラックを添加しないWC−Co−Re材料の場合と同じ結合剤の体積パーセントに相当する。バッチを、WC−Co−Re炭化物と同じ様式で粉砕し、1440℃で、30の真空焼結および30分の圧力下(HIP)焼結を含む1時間の焼結を行った。WC−Co−Re超硬合金の場合と同じ様式で焼結試料の炭素含量を測定すると、5.77質量%に等しいことが判明し、WCに対する全炭素当量(ETC)含有率が6.13質量%に等しいことが証明された。
WC−Co−ReおよびWC−Co超硬合金の金属断面を作製し、光学顕微鏡およびSEMにより検査した。焼結体の硬度(HV20)、押込み破壊靭性(K1C)、抗折力(TRS)、圧縮強度およびヤング率、ならびに保磁力および磁気モーメント(飽和)を調査した。
A control batch of conventional WC-Co cemented carbide without Re was made from the same WC powder batch and 6 wt% Co, which is the same as for the WC-Co-Re material without the addition of carbon black Corresponds to the volume percent of binder. The batch was ground in the same manner as the WC—Co—Re carbide and sintered at 1440 ° C. for 1 hour including 30 vacuum sinterings and 30 minutes of pressure (HIP) sintering. Measuring the carbon content of the sintered sample in the same manner as for the WC-Co-Re cemented carbide, it was found to be equal to 5.77 wt% and the total carbon equivalent (ETC) content relative to WC was 6.13. Equal to mass%.
Metal cross sections of WC-Co-Re and WC-Co cemented carbide were prepared and examined with an optical microscope and SEM. The sintered body was examined for hardness (HV20), indentation fracture toughness (K 1C ), bending strength (TRS), compressive strength and Young's modulus, and coercive force and magnetic moment (saturation).

WC平均粒径は、K.P. Mingard, B. Roebuck a, E.G. Bennett, M.G. Gee, H. Nordenstrom, G. Sweetman, P. Chan. Comparison of EBSD and conventional methods of grain size measurement of hard metals. Int. Journal of Refractory Metals & Hard Materials 27 (2009) 213-223に記載の手順に従い、断面のEBSD画像に基づいて測定した。
図1および2は、それぞれ、実施例1に従い形成されたWC−Co−Re超硬合金のSEMおよびEBSD画像を示し、図3は、Reを含まず、6.13質量%のWCに対する等価全炭素含量を有する従来のWC−Co超硬合金の微細構造を示す。図1および図2に示されるWC−Co−Re炭化物は、0.44μmのWC平均粒径を有する。図1および2に示される両方の炭化物材料の微細構造には、η相も遊離炭素も細孔も存在しないことが観察される。表1は、図1および図2に示されるWC−Co−Re超硬合金の微細構造における粒径分布を示す。
WC average particle size is measured by KP Mingard, B. Roebuck a, EG Bennett, MG Gee, H. Nordenstrom, G. Sweetman, P. Chan. Comparison of EBSD and conventional methods of grain size measurement of hard metals. Int. Journal of According to the procedure described in Refractory Metals & Hard Materials 27 (2009) 213-223, the measurement was performed based on the EBSD image of the cross section.
FIGS. 1 and 2 show SEM and EBSD images of a WC—Co—Re cemented carbide formed according to Example 1, respectively, and FIG. 3 shows the equivalent total for 6.13 wt% WC without Re. 1 shows the microstructure of a conventional WC-Co cemented carbide having a carbon content. The WC—Co—Re carbide shown in FIGS. 1 and 2 has a WC average particle size of 0.44 μm. It is observed that neither the η phase, free carbon nor pores are present in the microstructure of both carbide materials shown in FIGS. Table 1 shows the particle size distribution in the microstructure of the WC—Co—Re cemented carbide shown in FIGS. 1 and 2.

Figure 2016513177
Figure 2016513177

図1および図2のWC−Co−Re炭化物材料の磁気モーメントは、4.7Gcm3/gに等しく、これは、3.7%の名目上純粋なCoを有する超硬合金に対する理論値の64%であり、パーセント単位のその固有磁気飽和(SMS)を証明している。WC−Co−Re材料の保磁力は、284Oeと決定された。その機械的特性は、HV20=1860または18.6GPa、K1C=10.5MPa m1/2、およびTRS=3700MPaと決定された。したがって、GPa単位のビッカース硬度およびMPa m1/2単位の破壊靭性を乗じることにより計算される硬度−靭性係数は、195に等しかった。WC−Co−Re超硬合金の圧縮強度は、6020MPaと決定され、そのヤングモジュールは、712GPaに等しいと決定された。その高温硬度は、300℃で16.9GPaおよび500℃で14.9GPaに等しいことが判明し、高温における硬度低下は、それに対応して約9.1%および19.8%であることが証明された。温度を室温から300℃および500℃に上昇させても、圧縮強度はほとんど変化しなかった。 The magnetic moment of the WC—Co—Re carbide material of FIGS. 1 and 2 is equal to 4.7 Gcm 3 / g, which is the theoretical value of 64 for a cemented carbide with 3.7% nominally pure Co. %, Demonstrating its intrinsic magnetic saturation (SMS) in percent. The coercivity of the WC—Co—Re material was determined to be 284 Oe. Its mechanical properties were determined as HV20 = 1860 or 18.6 GPa, K 1C = 10.5 MPa m 1/2 , and TRS = 3700 MPa. Therefore, the hardness-toughness coefficient calculated by multiplying the Vickers hardness in GPa and the fracture toughness in MPa m 1/2 was equal to 195. The compressive strength of the WC-Co-Re cemented carbide was determined to be 6020 MPa, and its Young module was determined to be equal to 712 GPa. Its high temperature hardness was found to be equal to 16.9 GPa at 300 ° C. and 14.9 GPa at 500 ° C., and the decrease in hardness at high temperatures was correspondingly about 9.1% and 19.8%. It was done. Even when the temperature was increased from room temperature to 300 ° C. and 500 ° C., the compressive strength hardly changed.

WC−Co−Re超硬合金のCo−Re結合剤相内の残留応力を、Cu−Kα放射線を用いたBruker D8 Discover回折計を使用して測定した。このX線の波長は、典型的には約5μmの深さからの回折情報を得た。0.01059°のビンサイズでBraun Position Sensivite Detectorを使用して回折ビームを収集した。残留応力測定は、0.01059°のステップ幅、およびステップ当たり10秒の計数時間を使用して、146.6°の角度のCo(211)ピークを用いることにより行った。残留応力測定は、参考文献「Fitzpatrick M, Fry T, Holdway P, et al. NPL Good Practice Guide No. 52: Determination of Residual Stresses by X-ray Diffraction - Issue 2. September 2005」に従い、標準的並傾sin2ψ技法を使用して行った。 Residual stress in the Co-Re binder phase of the WC-Co-Re cemented carbide was measured using a Bruker D8 Discover diffractometer with Cu-Ka radiation. This X-ray wavelength typically obtained diffraction information from a depth of about 5 μm. The diffracted beam was collected using a Braun Position Sensitive Detector with a 0.01059 ° bin size. Residual stress measurements were made by using a Co (211) peak at an angle of 146.6 ° using a step width of 0.01059 ° and a counting time of 10 seconds per step. Residual stress measurement is performed in accordance with the reference `` Fitzpatrick M, Fry T, Holdway P, et al. NPL Good Practice Guide No. 52: Determination of Residual Stresses by X-ray Diffraction-Issue 2. September 2005 ''. This was done using the sin 2 ψ technique.

WC−Co−Re超硬合金の2回の測定を行ったが、これは、第1の測定において、圧縮応力がφ=0の方向で−11MPa、およびφ=90の方向で−8MPaであり、第2の測定において、φ=0の方向で−9MPa、およびφ=90の方向で−31MPaであるデータを提供した。したがって、すべての場合において、WC−Co−Re材料の結合剤相は、残留圧縮応力下であった。
WC−Co−Re超硬合金と同じ体積割合の結合剤相を有する従来のWC−6%Co炭化物材料の磁気モーメントは、9.2Gcm3/gに等しいことが判明し、これは、6%の名目上純粋なCoを有する超硬合金に対する理論値の95.2%であり、保磁力は270Oe、HV20=1610または16.1GPa、K1C=9.5MPa m1/2、TRS=2900MPa、圧縮強度は5200GPa、およびヤング率は640GPaであった。そのWC平均粒径は、0.59μmに等しいと決定された。その高温硬度は、300℃で12.1GPaおよび500℃で8.1GPaに等しいことが判明し、硬度低下は、それに対応して約25%および49%であることが証明された。
Two measurements of the WC-Co-Re cemented carbide were performed. In the first measurement, the compressive stress was -11 MPa in the direction of φ = 0, and -8 MPa in the direction of φ = 90. In the second measurement, data was provided that was −9 MPa in the direction of φ = 0 and −31 MPa in the direction of φ = 90. Therefore, in all cases, the binder phase of the WC-Co-Re material was under residual compressive stress.
The magnetic moment of a conventional WC-6% Co carbide material with the same volume fraction binder phase as the WC-Co-Re cemented carbide was found to be equal to 9.2 Gcm 3 / g, which is 6% 95.2% of the theoretical value for a cemented carbide with nominally pure Co, the coercivity being 270 Oe, HV20 = 1610 or 16.1 GPa, K 1C = 9.5 MPa m 1/2 , TRS = 2900 MPa, The compressive strength was 5200 GPa and the Young's modulus was 640 GPa. The WC average particle size was determined to be equal to 0.59 μm. Its high temperature hardness was found to be equal to 12.1 GPa at 300 ° C. and 8.1 GPa at 500 ° C., and the hardness reduction proved to be correspondingly about 25% and 49%.

ヤング率は弾性係数の1種であり、材料が弾性挙動を示す応力範囲内の一軸応力に対する一軸歪みの尺度である。ヤング率Eを測定する方法は、超音波を使用して材料を通る音の速さの横成分および縦成分を測定することによるものである。具体的には、ヤング率Eを測定する好ましい方法は、式E=2ρ.CT 2(1+ν)(式中、ν=(1−2(CT/CL2)/(2−2(CT/CL2)であり、CLおよびCTは、それぞれ、それを通る音の測定された縦方向および横方向速度であり、ρは、材料の密度である)に従い、材料を通る音の速さの横成分および縦成分を測定することによるものである。音の縦方向および横方向速度は、当該技術分野において周知のように、超音波を使用して測定され得る。材料が異なる材料の複合物である場合、平均ヤング率は、3つの式、すなわち以下のような調和、幾何学的、および複合則の式の1つを使用して推定され得る:E=1/(f1/E1+f2/E2));E=E1 f1+E1 f2;およびE=f11+f22。ここで、異なる材料は、合計が1となる各体積分率f1およびf2を有する2つの部分に分割される。 Young's modulus is a type of elastic modulus and is a measure of uniaxial strain relative to uniaxial stress within the stress range in which the material exhibits elastic behavior. The method of measuring the Young's modulus E is by measuring the transverse and longitudinal components of the speed of sound through the material using ultrasound. Specifically, a preferred method for measuring the Young's modulus E is the formula E = 2ρ. C T 2 (1 + ν) (where ν = (1-2 (C T / C L ) 2 ) / (2-2 (C T / C L ) 2 ), where C L and C T are respectively , Is the measured longitudinal and transverse velocities of the sound through it, and ρ is the density of the material), according to measuring the transverse and longitudinal components of the speed of sound through the material . The longitudinal and lateral velocities of the sound can be measured using ultrasound, as is well known in the art. If the material is a composite of different materials, the average Young's modulus can be estimated using one of three equations: the harmonic, geometric, and compound law equations as follows: E = 1 / (F 1 / E 1 + f 2 / E 2 )); E = E 1 f1 + E 1 f2 ; and E = f 1 E 1 + f 2 E 2 . Here, the different material is divided into two parts having respective volume fractions f 1 and f 2 which add up to one.

1つまたは複数の実施形態の超硬合金材料は、5GPa超の圧力および1100℃超の温度で行われる、ダイヤモンドもしくはc−BNの合成のための、または多結晶ダイヤモンドもしくはc−BNの製造における高圧構成要素における使用の特定の用途を見出すことができる。
そのような用途において、PCD複合材圧密要素は、上述の金属炭化物および結合剤材料の粒子を含む超硬合金基材の実施形態に界面に沿って結合したPCD構造を備えてもよい。
The cemented carbide material of one or more embodiments is for the synthesis of diamond or c-BN, or in the production of polycrystalline diamond or c-BN, carried out at pressures greater than 5 GPa and temperatures greater than 1100 ° C. Specific applications for use in high pressure components can be found.
In such applications, the PCD composite consolidation element may comprise a PCD structure bonded along the interface to an embodiment of a cemented carbide substrate comprising particles of the metal carbide and binder material described above.

PCD複合材圧密要素の実施形態は、超硬合金基材を提供するステップと、凝集した実質的に結合していないダイヤモンド粒子塊を基材の表面に接触させ、焼結前アセンブリを形成するステップと、焼結前アセンブリを超高圧炉用のカプセル内に封入して、焼結前アセンブリを少なくとも約5.5GPaの圧力および少なくとも摂氏約1,250度の温度に供するステップと、ダイヤモンド粒子を焼結して、超硬合金基材上に一体形成され接合されたPCD構造を備えるPCD複合材圧密要素を形成するステップとを含む方法により作製され得る。本発明のいくつかの実施形態において、焼結前アセンブリは、少なくとも約6GPa、少なくとも約6.5GPa、少なくとも約7GPa、またはさらに少なくとも約7.5GPaの圧力を受けてもよい。   Embodiments of a PCD composite consolidation element include providing a cemented carbide substrate and contacting an agglomerated substantially unbonded diamond particle mass with the surface of the substrate to form a pre-sinter assembly. Encapsulating the pre-sinter assembly in a capsule for an ultra-high pressure furnace, subjecting the pre-sinter assembly to a pressure of at least about 5.5 GPa and a temperature of at least about 1,250 degrees Celsius; And forming a PCD composite consolidation element comprising a PCD structure integrally formed and bonded onto a cemented carbide substrate. In some embodiments of the invention, the pre-sinter assembly may be subjected to a pressure of at least about 6 GPa, at least about 6.5 GPa, at least about 7 GPa, or even at least about 7.5 GPa.

超硬炭化タングステン基材の硬度は、基材を超高圧および高温に、特にダイヤモンドが熱力学的に安定である圧力および温度に供することにより向上され得る。硬度の向上の程度は、圧力および温度条件に依存し得る。特に、硬度向上は、圧力が高い程増加し得る。特定の理論に束縛されることを望まないが、これは、硬度増加の度合いが基材内のCo含量の低下に直接依存するため、プレス焼結の間の基材からPCD内へのCoの移動に関連すると考えられる。
いくつかの実施形態において、上述のように、基材を形成する超硬合金材料は、約2〜約9質量%の間のRe、および約3〜約9質量%の間のCoを含んでもよく、残りはWCであってもよい。
高圧構成要素の表面上の作用温度は、少なくとも約200℃および最大約800℃であってもよい。
The hardness of a cemented tungsten carbide substrate can be improved by subjecting the substrate to ultra-high pressures and temperatures, particularly pressures and temperatures at which diamond is thermodynamically stable. The degree of hardness improvement can depend on pressure and temperature conditions. In particular, the hardness improvement can increase as the pressure increases. While not wishing to be bound by any particular theory, this is because the degree of hardness increase is directly dependent on the decrease in Co content in the substrate, so that the amount of Co into the PCD from the substrate during press sintering. It is thought to be related to movement.
In some embodiments, as described above, the cemented carbide material forming the substrate may comprise between about 2 and about 9 wt% Re and between about 3 and about 9 wt% Co. Well, the rest may be WC.
The working temperature on the surface of the high pressure component may be at least about 200 ° C and up to about 800 ° C.

本発明に関連して、ここで、驚くべきことに、超硬合金がコバルト(Co)およびレニウム(Re)を含有し、ReおよびCoの割合がある特定範囲内にある場合、超硬合金材料のヤング率を大幅に改善することが可能となり得ることが発見された。同時に、飛躍的にも、800℃までの温度での超硬合金の高温硬度を改善することも可能となり得る。その結果、HPHT構成要素としてWC−Co−Re超硬合金材料の実施形態を使用することが可能となり得る。
さらに、超硬合金材料の使用済みの実施形態をリサイクルすることが可能となり得る。これは、明確な環境的および経済的利益を有する。リサイクル手順は、超硬合金材料を保護雰囲気中で液体Znと共に溶融し、その結果Znを混合物から蒸発させることと、最終生成物を粉砕することとを含んでもよい。
In the context of the present invention, here, surprisingly, when the cemented carbide contains cobalt (Co) and rhenium (Re) and the ratio of Re and Co is within a certain range, the cemented carbide material. It has been discovered that it may be possible to significantly improve the Young's modulus. At the same time, it may be possible to dramatically improve the high temperature hardness of the cemented carbide at temperatures up to 800 ° C. As a result, it may be possible to use embodiments of the WC-Co-Re cemented carbide material as HPHT components.
Furthermore, it may be possible to recycle used embodiments of cemented carbide material. This has clear environmental and economic benefits. The recycling procedure may include melting the cemented carbide material with liquid Zn in a protective atmosphere so that the Zn is evaporated from the mixture and the final product is comminuted.

代替として、超硬合金材料を酸浸出処理に供して、超硬合金物品の結合剤相を除去し、CoおよびReを化学的に回収してもよい。
超硬合金材料をリサイクルするさらなる方法は、超硬合金物品の酸化、またその結果としての炭化物、ReおよびCoの溶解、ならびにそれらの回収を含んでもよい。
例を参照しながら様々な実施形態を説明したが、様々な変更が行われてもよく、また均等物がその要素と置換されてもよいこと、およびこれらの例が開示される具体的実施形態を限定することを意図しないことが、当業者に理解される。
Alternatively, the cemented carbide material may be subjected to an acid leaching process to remove the binder phase of the cemented carbide article and chemically recover Co and Re.
Further methods of recycling the cemented carbide material may include oxidation of the cemented carbide article and the resulting dissolution of carbides, Re and Co, and their recovery.
While various embodiments have been described with reference to examples, various modifications may be made and equivalents may be substituted for the elements and the specific embodiments in which these examples are disclosed It will be understood by those skilled in the art that this is not intended to be limiting.

代替として、超硬合金材料を酸浸出処理に供して、超硬合金物品の結合剤相を除去し、CoおよびReを化学的に回収してもよい。
超硬合金材料をリサイクルするさらなる方法は、超硬合金物品の酸化、またその結果としての炭化物、ReおよびCoの溶解、ならびにそれらの回収を含んでもよい。
例を参照しながら様々な実施形態を説明したが、様々な変更が行われてもよく、また均等物がその要素と置換されてもよいこと、およびこれらの例が開示される具体的実施形態を限定することを意図しないことが、当業者に理解される。
本発明のまた別の態様は、以下のとおりであってもよい。
〔1〕WC、CoおよびReを含む超硬合金材料であって、
超硬合金材料は、約3〜約10質量%の間のCoおよび約0.5〜約8質量%の間のReを含み、
WCに対する超硬合金材料の全炭素当量(ETC)含有率は、約6.3質量%〜約6.9質量%の間であり、
超硬合金材料は、η相および遊離炭素を実質的に含まない、超硬合金材料。
〔2〕約0.5〜約6質量%の間のReを含む、前記〔1〕に記載の超硬合金材料。
〔3〕材料中のWCが、約0.6μm未満の平均粒径を有する、前記〔1〕または〔2〕に記載の超硬合金材料。
〔4〕名目上純粋なCoの磁気飽和の少なくとも約40パーセント〜約80パーセントの磁気飽和を有する、前記〔1〕から〔3〕までのいずれか1項に記載の超硬合金材料。
〔5〕炭化物相が、少なくとも約0.1μm〜最大約10μmの平均粒径を有する炭化物粒で形成される、前記〔1〕から〔4〕までのいずれか1項に記載の超硬合金材料。
〔6〕約2kA/m〜約70kA/mで変動する関連保磁力を有する、前記〔1〕から〔5〕までのいずれか1項に記載の超硬合金材料。
〔7〕第二炭化物相の形態の、または材料中の結合剤相に固溶した1種または複数種の金属の炭化物をさらに含み、前記1種または複数種の金属は、Ti、V、Cr、Mn、Zr、Nb、Mo、Hfおよび/またはTaを含む、前記〔1〕から〔6〕までのいずれか1項に記載の超硬合金材料。
〔8〕1つまたは複数の残留圧縮応力を有する結合剤相を含む、前記〔1〕から〔7〕までのいずれか1項に記載の超硬合金材料。
〔9〕結合剤相が、約−5MPa〜約100MPaの間の1つまたは複数の残留圧縮応力を有する、前記〔8〕に記載の超硬合金材料。
〔10〕結合剤相が、Co、Re、WおよびCを含む結合剤材料を含む、前記〔8〕または〔9〕に記載の超硬合金材料。
〔11〕結合剤相が、結合剤材料を含み、結合剤材料が、Re、炭素およびW、ならびにFe、Co、およびNiの1種または複数種の固溶体を含む、前記〔8〕または〔9〕に記載の超硬合金材料。
〔12〕炭化物相が、WCを含み;超硬合金材料が、炭化物微細構造のEBSD画像に基づき決定されるμm単位のWC平均粒径D wc の関数として、以下の式により与えられる値以下のkA/m単位の保磁力Hcを有する、前記〔1〕から〔11〕までのいずれか1項に記載の超硬合金材料。
Hc=10×D wc -0.62
〔13〕室温および約500℃までの高温で約5500MPa超の圧縮強度を有する、前記〔1〕から〔12〕までのいずれか1項に記載の超硬合金材料。
〔14〕前記材料が、ビッカース硬度を有し、300℃における硬度低下が、最大約12%である、前記〔13〕に記載の超硬合金材料。
〔15〕前記材料が、ビッカース硬度を有し、500℃における硬度低下が、最大約21%である、前記〔1〕から〔14〕までのいずれか1項に記載の超硬合金材料。
〔16〕前記材料のヤング率が、約700GPa超である、前記〔1〕から〔15〕までのいずれか1項に記載の超硬合金材料。
〔17〕GPa単位のビッカース硬度およびMPa m 1/2 単位の破壊靭性を乗じることにより計算される硬度−靭性係数が、約190超である、前記〔1〕から〔16〕までのいずれか1項に記載の超硬合金材料。
〔18〕固溶体として、および/または炭化物化合物の形態で少なくとも約0.1質量パーセントから最大約5質量パーセントのV、Cr、Ta、Ti、Mo、Zr、NbおよびHfの1種または複数種を含む結合剤材料を有する結合剤相を含む、前記〔1〕から〔17〕までのいずれか1項に記載の超硬合金材料。
〔19〕少なくとも約0.01質量パーセントおよび最大約2質量パーセントのRu、Rh、Pd、Os、IrおよびPtの1種または複数種を含む、前記〔1〕から〔18〕までのいずれか1項に記載の超硬合金材料。
〔20〕前記〔1〕から〔19〕までのいずれか1項に記載の超硬合金材料を含む基材と、
界面に沿って基材に結合された多結晶性超硬質材料の物体と
を備える、多結晶性超硬質構造物。
〔21〕多結晶性超硬質材料の物体が、多結晶ダイヤモンド(PCD)材料を含む、前記〔20〕に記載の多結晶性超硬質構造物。
〔22〕多結晶性超硬質材料の物体が、PCBNを含む、前記〔20〕に記載の多結晶性超硬質構造物。
〔23〕地面穿孔用の回転ドリルビットに適合された多結晶性超硬質材料の物体に結合された、前記〔1〕から〔19〕までのいずれか1項に記載の超硬合金材料を含む基材を備えるカッター。
〔24〕地面穿孔用の回転せん断ビット、パーカッション用ドリルビットまたは採鉱もしくはアスファルト分解用のピックのPCD要素であって、前記〔1〕から〔19〕までのいずれか1項に記載の超硬合金材料の物体に結合された超硬質多結晶性材料の物体を備えるカッター要素を備えるPCD要素。
〔25〕前記〔24〕に記載のPCD要素を備える、地面穿孔用のドリルビットまたはドリルビットの構成要素。
〔26〕前記〔1〕から〔19〕までのいずれか1項に記載の超硬合金材料を生成する方法であって、
− WCおよび炭素と共に、Re、Co、Niおよび/またはFeを含有し、V、Cr、Ta、Ti、Mo、Zr、NbおよびHfまたはそれらの炭化物の1種または複数種を含む粒子成長阻害剤を含有してもよい超硬合金混合物を粉砕するステップと、
− 混合物から超硬合金物品をプレスするステップと、
− 真空中約1〜10分の間の期間、およびArの圧力下(HIP)で約5〜120分の期間、約1450℃超の温度で物品を焼結するステップと、
− 焼結温度から摂氏約1300度(℃)まで物品を冷却するステップと
を含む方法。
〔27〕物品を冷却するステップが、不活性ガス、窒素、水素またはそれらの混合物の1つまたは複数を含む雰囲気中で、1分当たり約0.2〜2度の冷却速度で物品を冷却するステップを含む、前記〔26〕に記載の方法。
〔28〕物品を冷却するステップが、真空中で、1分当たり約0.2〜2度の冷却速度で物品を冷却するステップを含む、前記〔26〕に記載の方法。
〔29〕超硬合金混合物を粉砕するステップが、1種または複数種の炭化物を約0.5〜約8質量%の間のReと共に粉砕して、約0.5〜約8質量%の間のReを含む超硬合金材料を形成するステップを含む、前記〔26〕から〔28〕までのいずれか1項に記載の方法。
〔30〕前記〔1〕から〔19〕までのいずれか1項に記載の超硬合金材料をリサイクルする方法であって、炭化物材料を保護雰囲気中で液体Znと共に溶融するステップと、Znを蒸発させて最終生成物を形成するステップと、最終生成物を粉砕して生成物からReを回収するステップとを含む方法。
〔31〕前記〔1〕から〔19〕までのいずれか1項に記載の超硬合金材料をリサイクルする方法であって、超硬合金材料を酸浸出混合物に供し、超硬合金材料から結合剤相を除去するステップと、除去された結合剤相からCoおよびReを化学的に回収するステップとを含む方法。
〔32〕前記〔1〕から〔19〕までのいずれか1項に記載の超硬合金材料をリサイクルする方法であって、超硬合金材料を酸化して炭化物、ReおよびCoを溶解するステップと、Reを回収するステップとを含む方法。
〔33〕5GPa超の圧力および1100℃超の温度で行われる、ダイヤモンドもしくはc−BNの合成のための、または多結晶ダイヤモンドもしくはc−BNの製造における高圧構成要素における、超硬合金材料の使用であって、超硬合金材料は、
第二炭化物相の形態の、または材料中の結合剤相に固溶した1種または複数種の金属の炭化物であって、前記1種または複数種の金属は、Ti、V、Cr、Mn、Zr、Nb、Mo、Hfおよび/またはTaを含む、炭化物と、
約0.5〜約8質量%の間のReおよび約3〜約10質量%の間のCoとを含み、
WCに対する超硬合金材料の全炭素当量(ETC)含有率は、約6.3質量%〜約6.9質量%の間であり、
超硬合金材料は、η相および遊離炭素を実質的に含まない、超硬合金材料の使用。
〔34〕超硬合金材料が、約0.5〜約6質量%の間のReを含む、前記〔33〕に記載の超硬合金材料の使用。
〔35〕材料中のWCが、約0.6μm未満の平均粒径を有する、前記〔33〕または〔34〕に記載の超硬合金材料の使用。
〔36〕超硬合金材料が、名目上純粋なCoの磁気飽和の少なくとも約40パーセント〜約80パーセントの磁気飽和を有する、前記〔33〕から〔35〕までのいずれか1項に記載の超硬合金材料の使用。
〔37〕炭化物相が、少なくとも約0.1μm〜最大約10μmの平均粒径を有する炭化物粒で形成される、前記〔33〕から〔36〕までのいずれか1項に記載の超硬合金材料の使用。
〔38〕超硬合金材料が、約2kA/m〜約70kA/mで変動する関連保磁力を有する、前記〔33〕から〔37〕までのいずれか1項に記載の超硬合金材料の使用。
〔39〕炭化物相がWCを含む、前記〔33〕から〔38〕までのいずれか1項に記載の超硬合金材料の使用。
〔40〕超硬合金材料が、Co、Re、WおよびCを含む結合剤材料を有する結合剤相を含む、前記〔33〕から〔39〕までのいずれか1項に記載の超硬合金材料の使用。
〔41〕超硬合金材料が、結合剤材料を有する結合剤相を含み、結合剤材料が、Re、炭素およびW、ならびにFe、Co、およびNiの1種または複数種の固溶体を含む、前記〔33〕から〔39〕までのいずれか1項に記載の超硬合金材料の使用。
〔42〕炭化物相が、WCを含み;超硬合金材料が、炭化物微細構造のEBSD画像に基づき決定されるμm単位のWC平均粒径D wc の関数として、以下の式により与えられる値以下のkA/m単位の保磁力Hcを有する、前記〔33〕から〔41〕までのいずれか1項に記載の超硬合金材料の使用。
Hc=10×D wc -0.62
〔43〕材料が、ビッカース硬度を有し、室温における硬度低下と比較して、300℃における硬度低下が、最大20%である、前記〔33〕から〔42〕までのいずれか1項に記載の超硬合金材料の使用。
〔44〕300℃における硬度低下が、最大17%である、前記〔43〕に記載の超硬合金材料の使用。
〔45〕材料が、ビッカース硬度を有し、500℃における硬度低下が、最大30%である、前記〔33〕から〔44〕までのいずれか1項に記載の超硬合金材料の使用。
〔46〕500℃における硬度低下が、最大27%である、前記〔45〕に記載の超硬合金材料の使用。
〔47〕GPa単位のビッカース硬度およびMPa m 1/2 単位の破壊靭性を乗じることにより計算される硬度−靭性係数が、150超である、前記〔33〕から〔46〕までのいずれか1項に記載の超硬合金材料の使用。
〔48〕材料が、固溶体として、および/または炭化物化合物の形態で少なくとも約0.1質量パーセント〜最大約5質量パーセントのV、Cr、Ta、Ti、Mo、Zr、NbおよびHfの1種または複数種を含む結合剤材料を有する結合剤相を含む、前記〔33〕から〔47〕までのいずれか1項に記載の超硬合金材料の使用。
〔49〕材料が、少なくとも約0.01質量パーセントおよび最大約2質量パーセントのRu、Rh、Pd、Os、IrおよびPtの1種または複数種を含む、前記〔33〕から〔48〕までのいずれか1項に記載の超硬合金材料の使用。
〔50〕任意の1つの実施形態を参照して実質的に上述され、その実施形態は添付の図面に示されている、超硬合金材料。
〔51〕任意の1つの実施形態を参照して実質的に上述され、その実施形態は添付の図面に示されている、超硬合金材料を生成する方法。
Alternatively, the cemented carbide material may be subjected to an acid leaching process to remove the binder phase of the cemented carbide article and chemically recover Co and Re.
Further methods of recycling the cemented carbide material may include oxidation of the cemented carbide article and the resulting dissolution of carbides, Re and Co, and their recovery.
While various embodiments have been described with reference to examples, various modifications may be made and equivalents may be substituted for the elements and the specific embodiments in which these examples are disclosed It will be understood by those skilled in the art that this is not intended to be limiting.
Another aspect of the present invention may be as follows.
[1] A cemented carbide material containing WC, Co and Re,
The cemented carbide material comprises between about 3 to about 10% by weight Co and between about 0.5 to about 8% by weight Re;
The total carbon equivalent (ETC) content of the cemented carbide material relative to WC is between about 6.3 wt% and about 6.9 wt%,
The cemented carbide material is a cemented carbide material substantially free of η phase and free carbon.
[2] The cemented carbide material according to the above [1], which contains Re of about 0.5 to about 6 mass%.
[3] The cemented carbide material according to [1] or [2], wherein the WC in the material has an average particle size of less than about 0.6 μm.
[4] The cemented carbide material according to any one of [1] to [3], having a magnetic saturation of at least about 40 percent to about 80 percent of the magnetic saturation of nominally pure Co.
[5] The cemented carbide material according to any one of [1] to [4], wherein the carbide phase is formed of carbide grains having an average grain size of at least about 0.1 μm to a maximum of about 10 μm. .
[6] The cemented carbide material according to any one of [1] to [5], which has an associated coercive force that varies between about 2 kA / m and about 70 kA / m.
[7] It further includes one or more metal carbides in the form of a second carbide phase or dissolved in a binder phase in the material, wherein the one or more metals are Ti, V, Cr The cemented carbide material according to any one of [1] to [6], including Mn, Zr, Nb, Mo, Hf and / or Ta.
[8] The cemented carbide material according to any one of [1] to [7], including a binder phase having one or more residual compressive stresses.
[9] The cemented carbide material according to [8], wherein the binder phase has one or more residual compressive stresses between about −5 MPa and about 100 MPa.
[10] The cemented carbide material according to [8] or [9], wherein the binder phase includes a binder material containing Co, Re, W, and C.
[11] The above [8] or [9], wherein the binder phase contains a binder material, and the binder material contains Re, carbon and W, and one or more solid solutions of Fe, Co, and Ni. ] The cemented carbide material described in the above.
[12] The carbide phase contains WC; the cemented carbide material is less than or equal to the value given by the following equation as a function of the WC average particle size D wc in μm determined based on the EBSD image of the carbide microstructure : The cemented carbide material according to any one of [1] to [11], which has a coercive force Hc of kA / m.
Hc = 10 × D wc -0.62
[13] The cemented carbide material according to any one of [1] to [12], which has a compressive strength of more than about 5500 MPa at room temperature and a high temperature up to about 500 ° C.
[14] The cemented carbide material according to [13], wherein the material has Vickers hardness, and the maximum decrease in hardness at 300 ° C. is about 12%.
[15] The cemented carbide material according to any one of [1] to [14], wherein the material has Vickers hardness, and the maximum decrease in hardness at 500 ° C. is about 21%.
[16] The cemented carbide material according to any one of [1] to [15], wherein a Young's modulus of the material is greater than about 700 GPa.
[17] Any one of [1] to [16] above, wherein the hardness-toughness coefficient calculated by multiplying the Vickers hardness in GPa unit and the fracture toughness in MPa m 1/2 unit is about 190 or more. The cemented carbide material according to item.
[18] At least about 0.1 weight percent up to about 5 weight percent of one or more of V, Cr, Ta, Ti, Mo, Zr, Nb and Hf as a solid solution and / or in the form of a carbide compound The cemented carbide material according to any one of [1] to [17], including a binder phase having a binder material.
[19] Any one of [1] to [18] above, comprising at least about 0.01 weight percent and at most about 2 weight percent of one or more of Ru, Rh, Pd, Os, Ir and Pt The cemented carbide material according to item.
[20] A substrate containing the cemented carbide material according to any one of [1] to [19],
An object of polycrystalline superhard material bonded to the substrate along the interface; and
A polycrystalline super-hard structure comprising:
[21] The polycrystalline superhard structure according to [20], wherein the object of the polycrystalline superhard material includes a polycrystalline diamond (PCD) material.
[22] The polycrystalline superhard structure according to [20] above, wherein the object of the polycrystalline superhard material includes PCBN.
[23] The cemented carbide material according to any one of [1] to [19], which is bonded to an object of polycrystalline superhard material adapted to a rotary drill bit for ground drilling. A cutter provided with a base material.
[24] A rotational shear bit for drilling the ground, a drill bit for percussion, or a PCD element for picking for mining or asphalt decomposition, the cemented carbide according to any one of [1] to [19] A PCD element comprising a cutter element comprising an object of ultra-hard polycrystalline material bonded to an object of material.
[25] A drill bit for drilling a ground or a component of a drill bit, comprising the PCD element according to [24].
[26] A method of producing the cemented carbide material according to any one of [1] to [19],
A particle growth inhibitor containing Re, Co, Ni and / or Fe, together with WC and carbon, comprising one or more of V, Cr, Ta, Ti, Mo, Zr, Nb and Hf or their carbides Crushing a cemented carbide mixture that may contain:
-Pressing the cemented carbide article from the mixture;
Sintering the article at a temperature above about 1450 ° C. for a period of between about 1-10 minutes in a vacuum and under a pressure of Ar (HIP) for about 5-120 minutes;
Cooling the article from the sintering temperature to about 1300 degrees Celsius (° C.);
Including methods.
[27] The step of cooling the article cools the article at a cooling rate of about 0.2 to 2 degrees per minute in an atmosphere containing one or more of an inert gas, nitrogen, hydrogen, or a mixture thereof. The method according to [26] above, comprising a step.
[28] The method according to [26], wherein the step of cooling the article includes the step of cooling the article in a vacuum at a cooling rate of about 0.2 to 2 degrees per minute.
[29] crushing the cemented carbide mixture comprising crushing one or more carbides with between about 0.5 and about 8 wt% Re, between about 0.5 and about 8 wt% The method according to any one of [26] to [28], comprising the step of forming a cemented carbide material containing Re.
[30] A method for recycling the cemented carbide material according to any one of [1] to [19], wherein the carbide material is melted together with liquid Zn in a protective atmosphere, and Zn is evaporated. Forming a final product, and crushing the final product to recover Re from the product.
[31] A method for recycling the cemented carbide material according to any one of [1] to [19], wherein the cemented carbide material is subjected to an acid leaching mixture, and the cemented carbide material is used as a binder. Removing the phase and chemically recovering Co and Re from the removed binder phase.
[32] A method for recycling the cemented carbide material according to any one of [1] to [19], wherein the cemented carbide material is oxidized to dissolve carbides, Re, and Co; Recovering Re.
[33] Use of cemented carbide materials for the synthesis of diamond or c-BN, or in high pressure components in the production of polycrystalline diamond or c-BN, carried out at pressures above 5 GPa and temperatures above 1100 ° C. And the cemented carbide material is
A carbide of one or more metals in the form of a second carbide phase or dissolved in a binder phase in the material, wherein the one or more metals are Ti, V, Cr, Mn, Carbides including Zr, Nb, Mo, Hf and / or Ta;
Between about 0.5 and about 8% by weight of Re and between about 3 and about 10% by weight of Co;
The total carbon equivalent (ETC) content of the cemented carbide material relative to WC is between about 6.3 wt% and about 6.9 wt%,
Use of cemented carbide material that is substantially free of η phase and free carbon.
[34] Use of the cemented carbide material according to the above [33], wherein the cemented carbide material contains between about 0.5 and about 6 mass% of Re.
[35] Use of the cemented carbide material according to the above [33] or [34], wherein the WC in the material has an average particle size of less than about 0.6 μm.
[36] The superhard according to any one of [33] to [35], wherein the cemented carbide material has a magnetic saturation of at least about 40 percent to about 80 percent of the magnetic saturation of nominally pure Co. Use of hard alloy material.
[37] The cemented carbide material according to any one of [33] to [36], wherein the carbide phase is formed of carbide grains having an average grain size of at least about 0.1 μm to a maximum of about 10 μm. Use of.
[38] Use of the cemented carbide material according to any one of [33] to [37], wherein the cemented carbide material has an associated coercive force that varies between about 2 kA / m and about 70 kA / m. .
[39] Use of the cemented carbide material according to any one of [33] to [38], wherein the carbide phase includes WC.
[40] The cemented carbide material according to any one of [33] to [39], wherein the cemented carbide material includes a binder phase having a binder material containing Co, Re, W, and C. Use of.
[41] The cemented carbide material includes a binder phase having a binder material, and the binder material includes one or more solid solutions of Re, carbon and W, and Fe, Co, and Ni. Use of the cemented carbide material according to any one of [33] to [39].
[42] The carbide phase contains WC; the cemented carbide material is less than or equal to the value given by the following equation as a function of the WC average particle size D wc in μm determined based on the EBSD image of the carbide microstructure : Use of the cemented carbide material according to any one of [33] to [41], which has a coercive force Hc of kA / m unit.
Hc = 10 × D wc -0.62
[43] The material according to any one of [33] to [42], wherein the material has Vickers hardness, and the hardness decrease at 300 ° C. is 20% at maximum compared to the hardness decrease at room temperature. Use of cemented carbide material.
[44] Use of the cemented carbide material according to [43], wherein the hardness decrease at 300 ° C. is 17% at maximum.
[45] Use of the cemented carbide material according to any one of [33] to [44], wherein the material has Vickers hardness, and the maximum decrease in hardness at 500 ° C is 30%.
[46] Use of the cemented carbide material according to the above [45], wherein the hardness decrease at 500 ° C. is a maximum of 27%.
[47] Any one of [33] to [46], wherein the hardness-toughness coefficient calculated by multiplying the Vickers hardness in GPa unit and the fracture toughness in MPa m1 / 2 unit is over 150. Use of the cemented carbide material described in 1.
[48] The material is at least about 0.1 weight percent up to about 5 weight percent of one of V, Cr, Ta, Ti, Mo, Zr, Nb and Hf as a solid solution and / or in the form of a carbide compound or Use of the cemented carbide material according to any one of [33] to [47], including a binder phase having a binder material containing a plurality of species.
[49] The above [33] to [48], wherein the material comprises at least about 0.01 weight percent and up to about 2 weight percent of one or more of Ru, Rh, Pd, Os, Ir and Pt Use of the cemented carbide material according to any one of the above.
[50] A cemented carbide material substantially as described above with reference to any one embodiment, the embodiment being shown in the accompanying drawings.
[51] A method of producing a cemented carbide material substantially as described above with reference to any one embodiment, which embodiment is illustrated in the accompanying drawings.

Claims (51)

WC、CoおよびReを含む超硬合金材料であって、
超硬合金材料は、約3〜約10質量%の間のCoおよび約0.5〜約8質量%の間のReを含み、
WCに対する超硬合金材料の全炭素当量(ETC)含有率は、約6.3質量%〜約6.9質量%の間であり、
超硬合金材料は、η相および遊離炭素を実質的に含まない、超硬合金材料。
A cemented carbide material containing WC, Co and Re,
The cemented carbide material comprises between about 3 to about 10% by weight Co and between about 0.5 to about 8% by weight Re;
The total carbon equivalent (ETC) content of the cemented carbide material relative to WC is between about 6.3 wt% and about 6.9 wt%,
The cemented carbide material is a cemented carbide material substantially free of η phase and free carbon.
約0.5〜約6質量%の間のReを含む、請求項1に記載の超硬合金材料。   The cemented carbide material according to claim 1, comprising between about 0.5 and about 6 mass% Re. 材料中のWCが、約0.6μm未満の平均粒径を有する、請求項1または2に記載の超硬合金材料。   The cemented carbide material according to claim 1 or 2, wherein the WC in the material has an average particle size of less than about 0.6 m. 名目上純粋なCoの磁気飽和の少なくとも約40パーセント〜約80パーセントの磁気飽和を有する、請求項1から3までのいずれか1項に記載の超硬合金材料。   The cemented carbide material according to any one of claims 1 to 3, having a magnetic saturation of at least about 40 percent to about 80 percent of the magnetic saturation of nominally pure Co. 炭化物相が、少なくとも約0.1μm〜最大約10μmの平均粒径を有する炭化物粒で形成される、請求項1から4までのいずれか1項に記載の超硬合金材料。   The cemented carbide material according to any one of claims 1 to 4, wherein the carbide phase is formed of carbide grains having an average grain size of at least about 0.1 µm to a maximum of about 10 µm. 約2kA/m〜約70kA/mで変動する関連保磁力を有する、請求項1から5までのいずれか1項に記載の超硬合金材料。   The cemented carbide material according to any one of claims 1 to 5, having an associated coercivity that varies from about 2 kA / m to about 70 kA / m. 第二炭化物相の形態の、または材料中の結合剤相に固溶した1種または複数種の金属の炭化物をさらに含み、前記1種または複数種の金属は、Ti、V、Cr、Mn、Zr、Nb、Mo、Hfおよび/またはTaを含む、請求項1から6までのいずれか1項に記載の超硬合金材料。   And further comprising a carbide of one or more metals in the form of a second carbide phase or dissolved in a binder phase in the material, wherein the one or more metals are Ti, V, Cr, Mn, The cemented carbide material according to any one of claims 1 to 6, comprising Zr, Nb, Mo, Hf and / or Ta. 1つまたは複数の残留圧縮応力を有する結合剤相を含む、請求項1から7までのいずれか1項に記載の超硬合金材料。   Cemented carbide material according to any one of the preceding claims, comprising a binder phase having one or more residual compressive stresses. 結合剤相が、約−5MPa〜約100MPaの間の1つまたは複数の残留圧縮応力を有する、請求項8に記載の超硬合金材料。   The cemented carbide material according to claim 8, wherein the binder phase has one or more residual compressive stresses between about −5 MPa and about 100 MPa. 結合剤相が、Co、Re、WおよびCを含む結合剤材料を含む、請求項8または9に記載の超硬合金材料。   The cemented carbide material according to claim 8 or 9, wherein the binder phase comprises a binder material comprising Co, Re, W and C. 結合剤相が、結合剤材料を含み、結合剤材料が、Re、炭素およびW、ならびにFe、Co、およびNiの1種または複数種の固溶体を含む、請求項8または9に記載の超硬合金材料。   The cemented carbide according to claim 8 or 9, wherein the binder phase comprises a binder material, the binder material comprising Re, carbon and W, and one or more solid solutions of Fe, Co, and Ni. Alloy material. 炭化物相が、WCを含み;超硬合金材料が、炭化物微細構造のEBSD画像に基づき決定されるμm単位のWC平均粒径Dwcの関数として、以下の式により与えられる値以下のkA/m単位の保磁力Hcを有する、請求項1から11までのいずれか1項に記載の超硬合金材料。
Hc=10×Dwc -0.62
The carbide phase contains WC; the cemented carbide material is kA / m below the value given by the following equation as a function of the WC average particle size D wc in μm determined based on the EBSD image of the carbide microstructure: The cemented carbide material according to any one of claims 1 to 11, which has a coercive force Hc of a unit.
Hc = 10 × D wc -0.62
室温および約500℃までの高温で約5500MPa超の圧縮強度を有する、請求項1から12までのいずれか1項に記載の超硬合金材料。   The cemented carbide material according to any one of claims 1 to 12, having a compressive strength of greater than about 5500 MPa at room temperature and at elevated temperatures up to about 500 ° C. 前記材料が、ビッカース硬度を有し、300℃における硬度低下が、最大約12%である、請求項13に記載の超硬合金材料。   14. The cemented carbide material according to claim 13, wherein the material has a Vickers hardness and the hardness reduction at 300 ° C is up to about 12%. 前記材料が、ビッカース硬度を有し、500℃における硬度低下が、最大約21%である、請求項1から14までのいずれか1項に記載の超硬合金材料。   The cemented carbide material according to any one of claims 1 to 14, wherein the material has a Vickers hardness and the hardness decrease at 500 ° C is a maximum of about 21%. 前記材料のヤング率が、約700GPa超である、請求項1から15までのいずれか1項に記載の超硬合金材料。   The cemented carbide material according to any one of claims 1-15, wherein the Young's modulus of the material is greater than about 700 GPa. GPa単位のビッカース硬度およびMPa m1/2単位の破壊靭性を乗じることにより計算される硬度−靭性係数が、約190超である、請求項1から16までのいずれか1項に記載の超硬合金材料。 17. The cemented carbide according to claim 1, wherein the hardness-toughness coefficient calculated by multiplying the Vickers hardness in GPa and the fracture toughness in MPa m 1/2 is greater than about 190. Alloy material. 固溶体として、および/または炭化物化合物の形態で少なくとも約0.1質量パーセントから最大約5質量パーセントのV、Cr、Ta、Ti、Mo、Zr、NbおよびHfの1種または複数種を含む結合剤材料を有する結合剤相を含む、請求項1から17までのいずれか1項に記載の超硬合金材料。   Binder comprising at least about 0.1 weight percent up to about 5 weight percent of one or more of V, Cr, Ta, Ti, Mo, Zr, Nb and Hf as a solid solution and / or in the form of a carbide compound 18. The cemented carbide material according to any one of claims 1 to 17, comprising a binder phase with the material. 少なくとも約0.01質量パーセントおよび最大約2質量パーセントのRu、Rh、Pd、Os、IrおよびPtの1種または複数種を含む、請求項1から18までのいずれか1項に記載の超硬合金材料。   The cemented carbide according to any one of the preceding claims, comprising at least about 0.01 weight percent and up to about 2 weight percent of one or more of Ru, Rh, Pd, Os, Ir and Pt. Alloy material. 請求項1から19までのいずれか1項に記載の超硬合金材料を含む基材と、
界面に沿って基材に結合された多結晶性超硬質材料の物体と
を備える、多結晶性超硬質構造物。
A substrate comprising the cemented carbide material according to any one of claims 1 to 19,
A polycrystalline superhard structure comprising an object of polycrystalline superhard material bonded to a substrate along an interface.
多結晶性超硬質材料の物体が、多結晶ダイヤモンド(PCD)材料を含む、請求項20に記載の多結晶性超硬質構造物。   21. The polycrystalline superhard structure of claim 20, wherein the body of polycrystalline superhard material comprises a polycrystalline diamond (PCD) material. 多結晶性超硬質材料の物体が、PCBNを含む、請求項20に記載の多結晶性超硬質構造物。   21. The polycrystalline superhard structure of claim 20, wherein the body of polycrystalline superhard material comprises PCBN. 地面穿孔用の回転ドリルビットに適合された多結晶性超硬質材料の物体に結合された、請求項1から19までのいずれか1項に記載の超硬合金材料を含む基材を備えるカッター。   A cutter comprising a substrate comprising a cemented carbide material according to any one of claims 1 to 19, bonded to an object of polycrystalline superhard material adapted to a rotating drill bit for ground drilling. 地面穿孔用の回転せん断ビット、パーカッション用ドリルビットまたは採鉱もしくはアスファルト分解用のピックのPCD要素であって、請求項1から19までのいずれか1項に記載の超硬合金材料の物体に結合された超硬質多結晶性材料の物体を備えるカッター要素を備えるPCD要素。   20. A rotary shear bit for ground drilling, a drill bit for percussion or a PCD element for picking for mining or asphalt decomposition, which is bonded to an object of cemented carbide material according to any one of claims 1-19. PCD element comprising a cutter element comprising an object of a very hard polycrystalline material. 請求項24に記載のPCD要素を備える、地面穿孔用のドリルビットまたはドリルビットの構成要素。   A drill bit for drilling ground or a component of a drill bit comprising the PCD element according to claim 24. 請求項1から19までのいずれか1項に記載の超硬合金材料を生成する方法であって、
− WCおよび炭素と共に、Re、Co、Niおよび/またはFeを含有し、V、Cr、Ta、Ti、Mo、Zr、NbおよびHfまたはそれらの炭化物の1種または複数種を含む粒子成長阻害剤を含有してもよい超硬合金混合物を粉砕するステップと、
− 混合物から超硬合金物品をプレスするステップと、
− 真空中約1〜10分の間の期間、およびArの圧力下(HIP)で約5〜120分の期間、約1450℃超の温度で物品を焼結するステップと、
− 焼結温度から摂氏約1300度(℃)まで物品を冷却するステップと
を含む方法。
A method for producing a cemented carbide material according to any one of claims 1 to 19, comprising:
A particle growth inhibitor containing Re, Co, Ni and / or Fe, together with WC and carbon, comprising one or more of V, Cr, Ta, Ti, Mo, Zr, Nb and Hf or their carbides Crushing a cemented carbide mixture that may contain:
-Pressing the cemented carbide article from the mixture;
Sintering the article at a temperature above about 1450 ° C. for a period of between about 1-10 minutes in a vacuum and under a pressure of Ar (HIP) for about 5-120 minutes;
Cooling the article from a sintering temperature to about 1300 degrees Celsius (° C.).
物品を冷却するステップが、不活性ガス、窒素、水素またはそれらの混合物の1つまたは複数を含む雰囲気中で、1分当たり約0.2〜2度の冷却速度で物品を冷却するステップを含む、請求項26に記載の方法。   Cooling the article includes cooling the article at a cooling rate of about 0.2 to 2 degrees per minute in an atmosphere containing one or more of an inert gas, nitrogen, hydrogen, or a mixture thereof. 27. The method of claim 26. 物品を冷却するステップが、真空中で、1分当たり約0.2〜2度の冷却速度で物品を冷却するステップを含む、請求項26に記載の方法。   27. The method of claim 26, wherein cooling the article comprises cooling the article in a vacuum at a cooling rate of about 0.2 to 2 degrees per minute. 超硬合金混合物を粉砕するステップが、1種または複数種の炭化物を約0.5〜約8質量%の間のReと共に粉砕して、約0.5〜約8質量%の間のReを含む超硬合金材料を形成するステップを含む、請求項26から28までのいずれか1項に記載の方法。   The step of grinding the cemented carbide mixture comprises grinding one or more carbides with between about 0.5 and about 8% by weight of Re to obtain between about 0.5 and about 8% by weight of Re. 29. A method according to any one of claims 26 to 28, comprising forming a cemented carbide material comprising. 請求項1から19までのいずれか1項に記載の超硬合金材料をリサイクルする方法であって、炭化物材料を保護雰囲気中で液体Znと共に溶融するステップと、Znを蒸発させて最終生成物を形成するステップと、最終生成物を粉砕して生成物からReを回収するステップとを含む方法。   A method for recycling the cemented carbide material according to any one of claims 1 to 19, wherein the carbide material is melted together with liquid Zn in a protective atmosphere, and the final product is obtained by evaporating Zn. A method comprising the steps of forming and grinding the final product to recover Re from the product. 請求項1から19までのいずれか1項に記載の超硬合金材料をリサイクルする方法であって、超硬合金材料を酸浸出混合物に供し、超硬合金材料から結合剤相を除去するステップと、除去された結合剤相からCoおよびReを化学的に回収するステップとを含む方法。   20. A method of recycling the cemented carbide material according to any one of claims 1 to 19, wherein the cemented carbide material is subjected to an acid leaching mixture to remove the binder phase from the cemented carbide material; Chemically recovering Co and Re from the removed binder phase. 請求項1から19までのいずれか1項に記載の超硬合金材料をリサイクルする方法であって、超硬合金材料を酸化して炭化物、ReおよびCoを溶解するステップと、Reを回収するステップとを含む方法。   A method for recycling the cemented carbide material according to any one of claims 1 to 19, wherein the cemented carbide material is oxidized to dissolve carbides, Re and Co, and Re is recovered. And a method comprising. 5GPa超の圧力および1100℃超の温度で行われる、ダイヤモンドもしくはc−BNの合成のための、または多結晶ダイヤモンドもしくはc−BNの製造における高圧構成要素における、超硬合金材料の使用であって、超硬合金材料は、
第二炭化物相の形態の、または材料中の結合剤相に固溶した1種または複数種の金属の炭化物であって、前記1種または複数種の金属は、Ti、V、Cr、Mn、Zr、Nb、Mo、Hfおよび/またはTaを含む、炭化物と、
約0.5〜約8質量%の間のReおよび約3〜約10質量%の間のCoとを含み、
WCに対する超硬合金材料の全炭素当量(ETC)含有率は、約6.3質量%〜約6.9質量%の間であり、
超硬合金材料は、η相および遊離炭素を実質的に含まない、超硬合金材料の使用。
Use of cemented carbide material for the synthesis of diamond or c-BN or in the production of polycrystalline diamond or c-BN in a high pressure component, carried out at a pressure above 5 GPa and a temperature above 1100 ° C. Cemented carbide materials are
A carbide of one or more metals in the form of a second carbide phase or dissolved in a binder phase in the material, wherein the one or more metals are Ti, V, Cr, Mn, Carbides including Zr, Nb, Mo, Hf and / or Ta;
Between about 0.5 and about 8% by weight of Re and between about 3 and about 10% by weight of Co;
The total carbon equivalent (ETC) content of the cemented carbide material relative to WC is between about 6.3 wt% and about 6.9 wt%,
Use of cemented carbide material that is substantially free of η phase and free carbon.
超硬合金材料が、約0.5〜約6質量%の間のReを含む、請求項33に記載の超硬合金材料の使用。   34. Use of the cemented carbide material according to claim 33, wherein the cemented carbide material comprises between about 0.5 and about 6 wt% Re. 材料中のWCが、約0.6μm未満の平均粒径を有する、請求項33または34に記載の超硬合金材料の使用。   35. Use of a cemented carbide material according to claim 33 or 34, wherein the WC in the material has an average particle size of less than about 0.6 [mu] m. 超硬合金材料が、名目上純粋なCoの磁気飽和の少なくとも約40パーセント〜約80パーセントの磁気飽和を有する、請求項33から35までのいずれか1項に記載の超硬合金材料の使用。   36. Use of the cemented carbide material according to any one of claims 33 to 35, wherein the cemented carbide material has a magnetic saturation of at least about 40 percent to about 80 percent of the magnetic saturation of nominally pure Co. 炭化物相が、少なくとも約0.1μm〜最大約10μmの平均粒径を有する炭化物粒で形成される、請求項33から36までのいずれか1項に記載の超硬合金材料の使用。   37. Use of the cemented carbide material according to any one of claims 33 to 36, wherein the carbide phase is formed of carbide grains having an average grain size of at least about 0.1 [mu] m up to about 10 [mu] m. 超硬合金材料が、約2kA/m〜約70kA/mで変動する関連保磁力を有する、請求項33から37までのいずれか1項に記載の超硬合金材料の使用。   38. Use of a cemented carbide material according to any one of claims 33 to 37, wherein the cemented carbide material has an associated coercivity that varies from about 2 kA / m to about 70 kA / m. 炭化物相がWCを含む、請求項33から38までのいずれか1項に記載の超硬合金材料の使用。   Use of the cemented carbide material according to any one of claims 33 to 38, wherein the carbide phase comprises WC. 超硬合金材料が、Co、Re、WおよびCを含む結合剤材料を有する結合剤相を含む、請求項33から39までのいずれか1項に記載の超硬合金材料の使用。   40. Use of a cemented carbide material according to any one of claims 33 to 39, wherein the cemented carbide material comprises a binder phase having a binder material comprising Co, Re, W and C. 超硬合金材料が、結合剤材料を有する結合剤相を含み、結合剤材料が、Re、炭素およびW、ならびにFe、Co、およびNiの1種または複数種の固溶体を含む、請求項33から39までのいずれか1項に記載の超硬合金材料の使用。   The cemented carbide material comprises a binder phase having a binder material, and the binder material comprises Re, carbon and W, and one or more solid solutions of Fe, Co, and Ni. Use of the cemented carbide material according to any one of up to 39. 炭化物相が、WCを含み;超硬合金材料が、炭化物微細構造のEBSD画像に基づき決定されるμm単位のWC平均粒径Dwcの関数として、以下の式により与えられる値以下のkA/m単位の保磁力Hcを有する、請求項33から41までのいずれか1項に記載の超硬合金材料の使用。
Hc=10×Dwc -0.62
The carbide phase contains WC; the cemented carbide material is kA / m below the value given by the following equation as a function of the WC average particle size D wc in μm determined based on the EBSD image of the carbide microstructure: Use of the cemented carbide material according to any one of claims 33 to 41, having a coercivity Hc of units.
Hc = 10 × D wc -0.62
材料が、ビッカース硬度を有し、室温における硬度低下と比較して、300℃における硬度低下が、最大20%である、請求項33から42までのいずれか1項に記載の超硬合金材料の使用。   43. The cemented carbide material according to any one of claims 33 to 42, wherein the material has a Vickers hardness and the hardness reduction at 300 ° C is a maximum of 20% compared to the hardness reduction at room temperature. use. 300℃における硬度低下が、最大17%である、請求項43に記載の超硬合金材料の使用。   44. Use of the cemented carbide material according to claim 43, wherein the decrease in hardness at 300 <0> C is a maximum of 17%. 材料が、ビッカース硬度を有し、500℃における硬度低下が、最大30%である、請求項33から44までのいずれか1項に記載の超硬合金材料の使用。   45. Use of a cemented carbide material according to any one of claims 33 to 44, wherein the material has a Vickers hardness and the hardness reduction at 500 ° C is a maximum of 30%. 500℃における硬度低下が、最大27%である、請求項45に記載の超硬合金材料の使用。   The use of the cemented carbide material according to claim 45, wherein the decrease in hardness at 500 ° C is a maximum of 27%. GPa単位のビッカース硬度およびMPa m1/2単位の破壊靭性を乗じることにより計算される硬度−靭性係数が、150超である、請求項33から46までのいずれか1項に記載の超硬合金材料の使用。 The cemented carbide according to any one of claims 33 to 46, wherein the hardness-toughness coefficient calculated by multiplying the Vickers hardness in GPa by the fracture toughness in MPa m1 / 2 is greater than 150. Use of materials. 材料が、固溶体として、および/または炭化物化合物の形態で少なくとも約0.1質量パーセント〜最大約5質量パーセントのV、Cr、Ta、Ti、Mo、Zr、NbおよびHfの1種または複数種を含む結合剤材料を有する結合剤相を含む、請求項33から47までのいずれか1項に記載の超硬合金材料の使用。   The material comprises at least about 0.1 weight percent up to about 5 weight percent of one or more of V, Cr, Ta, Ti, Mo, Zr, Nb and Hf as a solid solution and / or in the form of a carbide compound. 48. Use of a cemented carbide material according to any one of claims 33 to 47, comprising a binder phase with a binder material comprising. 材料が、少なくとも約0.01質量パーセントおよび最大約2質量パーセントのRu、Rh、Pd、Os、IrおよびPtの1種または複数種を含む、請求項33から48までのいずれか1項に記載の超硬合金材料の使用。   49. A material according to any one of claims 33 to 48, wherein the material comprises at least about 0.01 weight percent and up to about 2 weight percent of one or more of Ru, Rh, Pd, Os, Ir and Pt. Use of cemented carbide material. 任意の1つの実施形態を参照して実質的に上述され、その実施形態は添付の図面に示されている、超硬合金材料。   A cemented carbide material substantially as described above with reference to any one embodiment, the embodiment shown in the accompanying drawings. 任意の1つの実施形態を参照して実質的に上述され、その実施形態は添付の図面に示されている、超硬合金材料を生成する方法。   A method of producing a cemented carbide material substantially as described above with reference to any one embodiment, which embodiment is shown in the accompanying drawings.
JP2015556525A 2013-02-11 2014-02-10 Cemented carbide material and method for producing the same Active JP6275750B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361763343P 2013-02-11 2013-02-11
US61/763,343 2013-02-11
GB1302345.2 2013-02-11
GBGB1302345.2A GB201302345D0 (en) 2013-02-11 2013-02-11 Cemented carbide material and method of making same
PCT/EP2014/052549 WO2014122306A2 (en) 2013-02-11 2014-02-10 Cemented carbide material and method of making same

Publications (2)

Publication Number Publication Date
JP2016513177A true JP2016513177A (en) 2016-05-12
JP6275750B2 JP6275750B2 (en) 2018-02-07

Family

ID=47998901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015556525A Active JP6275750B2 (en) 2013-02-11 2014-02-10 Cemented carbide material and method for producing the same

Country Status (6)

Country Link
US (3) US20150376744A1 (en)
EP (1) EP2954082B1 (en)
JP (1) JP6275750B2 (en)
CN (1) CN105074029B (en)
GB (2) GB201302345D0 (en)
WO (1) WO2014122306A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244429A1 (en) 2018-06-19 2019-12-26 住友電工ハードメタル株式会社 Diamond joined body, and method for manufacturing diamond joined body

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2528272B (en) * 2014-07-15 2017-06-21 Tokamak Energy Ltd Shielding materials for fusion reactors
EP3514124A1 (en) * 2014-09-26 2019-07-24 Diamond Innovations, Inc. Method for making a superabrasive compact
US10161017B2 (en) * 2015-06-08 2018-12-25 Korea Institute Of Geoscience And Mineral Resources Method for crushing hard tungsten carbide scraps
CN105154747B (en) * 2015-09-14 2017-04-12 江西耀升钨业股份有限公司 Composite tungsten carbide hard alloy bar and preparation methods thereof
WO2017051924A1 (en) * 2015-09-26 2017-03-30 京セラ株式会社 Rod-shaped body, and cutting tool
CN108136514B (en) * 2015-09-29 2019-08-09 京瓷株式会社 Clava and cutting element
US10287824B2 (en) 2016-03-04 2019-05-14 Baker Hughes Incorporated Methods of forming polycrystalline diamond
CN105648296B (en) * 2016-03-23 2018-06-19 水利部杭州机械设计研究所 A kind of high temperature resistance tungsten carbide-base metal-ceramic composite powder end, coating and its preparation process containing Re
CN105903955B (en) * 2016-04-27 2018-05-22 石家庄蓝海工具有限公司 A kind of diamond segment production technology based on vacuum cooling equipment
CN106893915B (en) * 2017-01-22 2018-12-04 苏州新锐合金工具股份有限公司 It is a kind of to squeeze the porous effective sintered-carbide die material of microchannel aluminium alloy flat
JP6209300B1 (en) * 2017-04-27 2017-10-04 日本タングステン株式会社 Anvil roll, rotary cutter, and workpiece cutting method
US11396688B2 (en) 2017-05-12 2022-07-26 Baker Hughes Holdings Llc Cutting elements, and related structures and earth-boring tools
US11292750B2 (en) 2017-05-12 2022-04-05 Baker Hughes Holdings Llc Cutting elements and structures
CN107881389B (en) * 2017-11-06 2019-06-25 株洲科力特新材料有限公司 Ti (C, N) based ceramic metal and the preparation method for being used to prepare it
CN108160997B (en) * 2017-12-21 2019-12-13 株洲硬质合金集团有限公司 Low-cobalt hard alloy and method for reducing welding cracks of low-cobalt hard alloy
US11536091B2 (en) 2018-05-30 2022-12-27 Baker Hughes Holding LLC Cutting elements, and related earth-boring tools and methods
KR102167990B1 (en) * 2018-11-30 2020-10-20 한국야금 주식회사 Cutting insert for heat resistant alloy
DE102019110950A1 (en) 2019-04-29 2020-10-29 Kennametal Inc. Hard metal compositions and their applications
JP6972508B2 (en) * 2019-12-19 2021-11-24 株式会社タンガロイ Carbide and coated cemented carbide, and tools with them
GB201919479D0 (en) * 2019-12-31 2020-02-12 Element Six Uk Ltd Polycrystalline diamond constructions & methods of making same
GB201919480D0 (en) * 2019-12-31 2020-02-12 Element Six Uk Ltd Polycrystalline diamond constructions & methods of making same
DE102021111371A1 (en) 2021-05-03 2022-11-03 Betek Gmbh & Co. Kg Cemented Carbide Material
CN115466896B (en) * 2022-07-18 2023-04-07 广东理工学院 Preparation method of rare earth modified superfine WC-Co hard alloy
KR102706141B1 (en) * 2023-12-07 2024-09-12 주식회사 와이지-원 Cermented carbide, manufacturing method thereof and cutting tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007623A (en) * 2007-06-27 2009-01-15 Kyocera Corp Small-sized bar-shaped cemented carbide, cutting tool and miniature drill
JP2011235410A (en) * 2010-05-12 2011-11-24 Mitsubishi Materials Corp Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT348264B (en) * 1976-05-04 1979-02-12 Eurotungstene HARD METALS AND METHOD FOR PRODUCING THEM
SE505425C2 (en) * 1992-12-18 1997-08-25 Sandvik Ab Carbide metal with binder phase enriched surface zone
US5603075A (en) * 1995-03-03 1997-02-11 Kennametal Inc. Corrosion resistant cermet wear parts
RU2105825C1 (en) * 1995-06-06 1998-02-27 Санкт-Петербургский государственный технологический институт Composition of hard-alloy material
SE521488C2 (en) * 2000-12-22 2003-11-04 Seco Tools Ab Coated cutting with iron-nickel-based bonding phase
US6911063B2 (en) * 2003-01-13 2005-06-28 Genius Metal, Inc. Compositions and fabrication methods for hardmetals
RU2351676C1 (en) * 2007-10-02 2009-04-10 Юлия Алексеевна Щепочкина Sintered hard alloy on basis of tungsten carbide
GB0903343D0 (en) * 2009-02-27 2009-04-22 Element Six Holding Gmbh Hard-metal body with graded microstructure
CN102699330A (en) * 2012-04-30 2012-10-03 自贡硬质合金有限责任公司 Method for producing hard-alloy stud assembled on roll surfaces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007623A (en) * 2007-06-27 2009-01-15 Kyocera Corp Small-sized bar-shaped cemented carbide, cutting tool and miniature drill
JP2011235410A (en) * 2010-05-12 2011-11-24 Mitsubishi Materials Corp Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019244429A1 (en) 2018-06-19 2019-12-26 住友電工ハードメタル株式会社 Diamond joined body, and method for manufacturing diamond joined body
KR20210019413A (en) 2018-06-19 2021-02-22 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Diamond bonded body and manufacturing method of diamond bonded body
US12128482B2 (en) 2018-06-19 2024-10-29 Sumitomo Electric Hardmetal Corp. Diamond joined body and method for manufacturing diamond joined body

Also Published As

Publication number Publication date
US20150376744A1 (en) 2015-12-31
EP2954082A2 (en) 2015-12-16
CN105074029A (en) 2015-11-18
WO2014122306A2 (en) 2014-08-14
GB2512983A (en) 2014-10-15
GB201302345D0 (en) 2013-03-27
WO2014122306A3 (en) 2015-04-09
GB201402248D0 (en) 2014-03-26
EP2954082B1 (en) 2020-07-22
CN105074029B (en) 2019-08-06
JP6275750B2 (en) 2018-02-07
US20210222273A1 (en) 2021-07-22
US20190368011A1 (en) 2019-12-05
GB2512983B (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6275750B2 (en) Cemented carbide material and method for producing the same
EP2691198B1 (en) Cemented carbide material
Woydt et al. Potentials of niobium carbide (NbC) as cutting tools and for wear protection
US9970240B2 (en) Polycrystalline diamond composite compact
JP5175933B2 (en) Super hard diamond composite
US20120040183A1 (en) Cemented Carbide Compositions Having Cobalt-Silicon Alloy Binder
US9895789B2 (en) Polycrystalline diamond composite compact elements and methods of making and using same
JP2013504688A (en) Polycrystalline diamond composite compact
JP2013508546A (en) Cemented carbide and method for producing the same
EP3356569A1 (en) Cemented carbide material and related producing method
EP3515636B1 (en) Cemented carbide material and manufacturing method thereof
US20240287655A1 (en) Cemented carbide material, a polycrystalline diamond construction including cemented carbide material and method of making same
Mohrbacher et al. Niobium Carbide–An Innovative and Sustainable High‐Performance Material for Tooling, Friction and Wear Applications
Konyashin et al. International Journal of Refractory Metals & Hard Materials

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180110

R150 Certificate of patent or registration of utility model

Ref document number: 6275750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250