JP2010031308A - Cermet - Google Patents

Cermet Download PDF

Info

Publication number
JP2010031308A
JP2010031308A JP2008192781A JP2008192781A JP2010031308A JP 2010031308 A JP2010031308 A JP 2010031308A JP 2008192781 A JP2008192781 A JP 2008192781A JP 2008192781 A JP2008192781 A JP 2008192781A JP 2010031308 A JP2010031308 A JP 2010031308A
Authority
JP
Japan
Prior art keywords
cermet
powder
core
boundary
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008192781A
Other languages
Japanese (ja)
Inventor
Kazuomi Matsuda
一臣 松田
Kazuhiro Hirose
和弘 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Hardmetal Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2008192781A priority Critical patent/JP2010031308A/en
Publication of JP2010031308A publication Critical patent/JP2010031308A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cermet excellent in defect resistance and abrasion resistance, a cutting tool using the cermet, and a manufacturing method of the cermet. <P>SOLUTION: The cermet has a constitution where hard phases, which each include a cored particle 10a composed of a core part 11 essentially comprising TiCN and a peripheral part 12 surrounding the core part 11 and comprises a titanium composite compound, are bound to each other via a binder phase 20 essentially composed of an iron group metal such as Co. A W-enriched phase containing a large amount of W exists in a region near the core part, i.e. within 200 nm from a boundary 13 between the core part 11 and the peripheral part 12. The cermet is excellent in abrasion resistance due to the presence of cored particle 10a and is excellent in toughness because propagation of cracks formed near the boundary 13 can be suppressed due to the presence of the W-enriched phase near the boundary 13. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、硬質相に有芯構造の粒子を含むサーメット、及びその製造方法、並びにこのサーメットを基材とする切削工具に関する。特に、耐欠損性及び耐摩耗性に優れる切削工具を製造することができるサーメットに関するものである。   The present invention relates to a cermet containing cored particles in a hard phase, a method for producing the same, and a cutting tool based on the cermet. In particular, the present invention relates to a cermet capable of producing a cutting tool having excellent fracture resistance and wear resistance.

従来、切削工具の基材材料として、炭化チタン(TiC)や炭窒化チタン(TiCN)を主たる硬質相とし、コバルト(Co),ニッケル(Ni)といった鉄族元素で結合したサーメットが利用されている。上記硬質相として、TiC(N)相(芯部)の周辺を(Ti,W)CNといった複合固溶体相(周辺部)が取り囲んだ二重構造の有芯粒子を含むものが知られている(特許文献1の0004)。   Conventionally, cermets with titanium carbide (TiC) and titanium carbonitride (TiCN) as the main hard phase and bonded with iron group elements such as cobalt (Co) and nickel (Ni) have been used as base materials for cutting tools. . As the hard phase, those containing cored particles having a double structure in which the periphery of the TiC (N) phase (core part) is surrounded by a composite solid solution phase (peripheral part) such as (Ti, W) CN are known ( Patent Document 1 0004).

サーメットを基材とするサーメット工具は、炭化タングステン(WC)を主たる硬質相とする超硬合金からなる超硬工具と比較して、1.耐摩耗性に優れる、2.鋼加工における仕上げ面が美麗である、3.高速切削が可能である、4.軽量である、5.原材が豊富で安価であるといった利点を有する。   The cermet tool based on cermet is superior in wear resistance compared to cemented carbide tools made of cemented carbide with tungsten carbide (WC) as the main hard phase. It has the advantages of being beautiful, 3. capable of high-speed cutting, 4. lightweight, 5. abundant raw materials and inexpensive.

特開2006-131975号公報Japanese Unexamined Patent Publication No. 2006-131975

しかし、TiC(N)がWCと比較して破壊靱性に劣ることから、サーメット工具は、一般に、靱性が低く、耐欠損性に劣る。そのため、従来のサーメット工具は、機械的負荷の高い切削加工、例えば、断続切削加工に不向きとされており、靭性の改善が望まれている。   However, since TiC (N) is inferior in fracture toughness compared to WC, cermet tools generally have low toughness and inferior fracture resistance. Therefore, the conventional cermet tool is not suitable for cutting with high mechanical load, for example, intermittent cutting, and improvement of toughness is desired.

そこで、本発明の目的は、耐摩耗性に優れていながら、靭性(耐欠損性)にも優れる切削工具の素材に適したサーメットを提供することにある。また、本発明の他の目的は、上記サーメットの製造方法を提供することにある。更に、本発明の他の目的は、上記サーメットを基材とした、耐摩耗性及び靭性の双方に優れる切削工具を提供することにある。   Accordingly, an object of the present invention is to provide a cermet suitable for a cutting tool material that is excellent in wear resistance but also in toughness (breakage resistance). Moreover, the other object of this invention is to provide the manufacturing method of the said cermet. Furthermore, the other object of this invention is to provide the cutting tool which was excellent in both abrasion resistance and toughness using the said cermet as a base material.

本発明者らは、有芯粒子を主たる硬質相とするサーメット工具を用いて切削試験を行い、欠けが発生した工具を観察したところ、芯部と周辺部との境界近傍に亀裂が入り易い傾向があるとの知見を得た。この知見に基づき、本発明は、有芯粒子を硬質相に存在させると共に、芯部と周辺部との境界近傍に亀裂の進展を抑制し易い相、具体的にはWに富む相を存在させた構成とし、靭性の更なる向上を図る。   The present inventors conducted a cutting test using a cermet tool having cored particles as a main hard phase, and observed a tool in which chipping occurred, and the crack tends to be easily formed near the boundary between the core and the peripheral part. I got the knowledge that there is. Based on this knowledge, the present invention allows the cored particles to be present in the hard phase, and causes a phase that easily suppresses the progress of cracks in the vicinity of the boundary between the core portion and the peripheral portion, specifically, a phase rich in W to exist. To improve the toughness.

本発明サーメットは、周期表4,5,6族金属から選ばれる少なくとも1種の元素と、炭素(C)及び窒素(N)の少なくとも1種の元素との化合物を含む硬質相が鉄族金属を主成分とする結合相により結合されてなるサーメットに係るものである。上記硬質相は、炭窒化チタン(TiCN)を主成分とする芯部と、この芯部の周囲に存在し、チタン複合化合物からなる周辺部とを有する有芯粒子を含む。上記チタン複合化合物は、チタン(Ti)と、タングステン(W)と、C及びNの少なくとも1種の元素とを含む固溶体である。そして、上記周辺部において、芯部と周辺部との境界から200nm以内の領域を芯部近傍領域、上記境界から200nm超における領域を外側領域とするとき、この芯部近傍領域に、外側領域におけるWの平均含有量(原子%)の1.6倍以上のWを含有するWリッチ相を有する。   The cermet of the present invention has a hard phase containing a compound of at least one element selected from Group 4, 5, 6 metals of the periodic table and at least one element of carbon (C) and nitrogen (N) as an iron group metal. This relates to a cermet that is bonded by a bonded phase containing as a main component. The hard phase includes cored particles having a core part mainly composed of titanium carbonitride (TiCN) and a peripheral part which is present around the core part and is made of a titanium composite compound. The titanium composite compound is a solid solution containing titanium (Ti), tungsten (W), and at least one element of C and N. In the peripheral portion, when the region within 200 nm from the boundary between the core portion and the peripheral portion is the core vicinity region, and the region more than 200 nm from the boundary is the outer region, It has a W-rich phase containing 1.6 times or more of the average W content (atomic%).

本発明サーメットは、TiCNを芯部とする有芯粒子を硬質相に含有することで、耐摩耗性に優れると共に、高靭性であり、耐欠損性に優れる。特に、本発明サーメット中の上記有芯粒子は、芯部と周辺部との境界近くにWが多く存在する。この構成により、例えば硬質相粒子を超微粒にしなくても、芯部と周辺部との境界近傍における亀裂の進展を抑制することができる。従って、亀裂の進展による欠損を抑制することができる。そのため、本発明サーメットを基材とする切削工具は、有芯粒子を存在させることで耐摩耗性を確保することができ、高い耐摩耗性を維持したまま、Wリッチ相を存在させることで靭性(耐欠損性)を更に向上することができ、工具の長寿命化を図ることができる。以下、本発明をより詳細に説明する。   The cermet of the present invention contains cored particles having TiCN as a core in the hard phase, so that it has excellent wear resistance, high toughness, and excellent fracture resistance. In particular, the cored particles in the cermet of the present invention have a large amount of W near the boundary between the core part and the peripheral part. According to this configuration, for example, the progress of cracks in the vicinity of the boundary between the core portion and the peripheral portion can be suppressed without making the hard phase particles ultrafine. Therefore, the defect | deletion by the progress of a crack can be suppressed. Therefore, the cutting tool based on the cermet of the present invention can ensure wear resistance by the presence of cored particles, and toughness can be achieved by the presence of a W-rich phase while maintaining high wear resistance. (Fracture resistance) can be further improved, and the tool life can be extended. Hereinafter, the present invention will be described in more detail.

<サーメット>
《硬質相》
硬質相は、周期表4,5,6族金属から選ばれる少なくとも1種の金属元素とC及びNの少なくとも1種の元素との化合物、即ち、上記金属元素の炭化物、窒化物、炭窒化物を含む。代表的には、硬質相は、上記化合物により実質的に構成される。更に、原料に含有したり、製造工程で混入したりする、酸素やppmオーダーの金属元素を不可避不純物として含む場合がある。
<Cermet>
《Hard phase》
The hard phase is a compound of at least one metal element selected from Group 4,5,6 metals of the periodic table and at least one element of C and N, that is, carbide, nitride, carbonitride of the above metal element including. Typically, the hard phase is substantially constituted by the above compound. Furthermore, oxygen or metal elements in the order of ppm, which are contained in the raw materials or mixed in the manufacturing process, may be included as inevitable impurities.

《有芯粒子》
特に、硬質相は、TiCNを主成分(原子割合で芯部全体の95%以上を占める)とする芯部と、この芯部の周囲に存在する周辺部とを有する有芯粒子を含む。硬質相全体に対して有芯粒子を質量割合で60%以上、好ましくは80%以上含有すると、耐摩耗性に更に優れる。
<Cored particles>
In particular, the hard phase includes cored particles having a core part mainly composed of TiCN (atomic ratio occupies 95% or more of the whole core part) and a peripheral part existing around the core part. When the cored particles are contained in the hard phase in an amount of 60% or more, preferably 80% or more, the wear resistance is further improved.

上記周辺部は、Tiと、Wと、C及びNの少なくとも1種の元素とを含む固溶体、即ち、TiとWとの炭化物、TiとWとの窒化物、及びTiとWとの炭窒化物の少なくとも1種から構成される。この周辺部は、更に、周期表4,5,6族金属(但し、Ti及びWを除く)から選択される少なくとも1種の金属を含んでいてもよい。即ち、周辺部は、TiとWと上記金属との炭化物、TiとWと上記金属との窒化物、TiとWと上記金属との炭窒化物の少なくとも1種から構成される他、上記炭化物、窒化物、炭窒化物にCoやNiといった結合相の構成元素を含有することを許容する。周辺部の具体的な組成は、例えば、(Ti,W)CN、(Ti,W,Mo)CN、(Ti,W,Nb)CN、(Ti,W,Mo,Ni)CNが挙げられる。   The peripheral portion is a solid solution containing Ti, W, and at least one element of C and N, that is, a carbide of Ti and W, a nitride of Ti and W, and a carbonitriding of Ti and W Consists of at least one kind. This peripheral part may further contain at least one metal selected from Group 4, 5, 6 metals (except Ti and W) of the periodic table. That is, the peripheral portion is composed of at least one of carbides of Ti, W and the above metals, nitrides of Ti, W and the above metals, carbonitrides of Ti, W and the above metals, and the above carbides. In addition, it is allowed to contain a constituent element of a binder phase such as Co and Ni in nitride and carbonitride. Specific compositions of the peripheral part include, for example, (Ti, W) CN, (Ti, W, Mo) CN, (Ti, W, Nb) CN, and (Ti, W, Mo, Ni) CN.

そして、上記芯部と周辺部との境界近傍にWリッチ相が存在する。上述のように芯部は、実質的にTiCNにより構成されることから、Wの含有量が微量であり、周辺部は、Wを必須元素とする。従って、上記境界は、Wの含有量が急激に変化する箇所とする。周辺部においてこの境界から200nm以内の環状の領域を芯部近傍領域、芯部近傍領域よりも外側の領域、即ち、上記境界から200nm超の領域を外側領域とするとき、Wリッチ相は、芯部近傍領域において、外側領域のWの平均含有量(原子%)の1.6倍以上のWを含有する領域とする。このWリッチ相は、芯部の周囲に沿って、その一部に存在していてもよいが、芯部の全周を覆うように連続して存在すると、上述した境界近傍における亀裂の進展を更に抑制し易い。また、外側領域のWの平均含有量の1.8倍以上のWを含有するWリッチ相が存在すると、靭性に更に優れる。   A W-rich phase exists in the vicinity of the boundary between the core portion and the peripheral portion. As described above, the core portion is substantially composed of TiCN, so the content of W is very small, and the peripheral portion uses W as an essential element. Therefore, the boundary is a portion where the W content changes abruptly. When the annular region within 200 nm from the boundary in the peripheral portion is the core vicinity region, and the region outside the core vicinity region, that is, the region more than 200 nm from the boundary is the outer region, the W-rich phase is In the region in the vicinity of the part, the region contains W that is 1.6 times or more the average W content (atomic%) in the outer region. This W-rich phase may be present in a part along the periphery of the core, but if it continuously exists so as to cover the entire circumference of the core, the growth of cracks in the vicinity of the boundary described above is caused. Furthermore, it is easy to suppress. In addition, if a W-rich phase containing 1.8 times or more of the average W content in the outer region is present, the toughness is further improved.

芯部と周辺部との境界上の任意の点を通る接線の垂線をとり、この垂線方向をWリッチ相の幅方向とするとき、上記Wリッチ相の幅Lは、5nm以上50nm以下であると、靭性及び耐摩耗性の双方に優れて好ましい。Wリッチ相の幅Lが小さ過ぎるとWリッチ相が存在することによる亀裂の進展の抑制効果を十分に得られず、Wリッチ相の幅Lが大き過ぎるとWリッチ相が多過ぎて、耐摩耗性が低下し易い。Wリッチ相のより好ましい幅Lは、10nm以上30nm以下である。   When the perpendicular line of a tangent line passing through an arbitrary point on the boundary between the core part and the peripheral part is taken, and the perpendicular direction is the width direction of the W-rich phase, the width L of the W-rich phase is not less than 5 nm and not more than 50 nm. And excellent in both toughness and wear resistance. If the width L of the W-rich phase is too small, the effect of suppressing the crack growth due to the presence of the W-rich phase cannot be obtained sufficiently, and if the width L of the W-rich phase is too large, the W-rich phase is too much, Abrasion tends to decrease. A more preferable width L of the W-rich phase is 10 nm or more and 30 nm or less.

有芯粒子の大きさは、特に限定しないが、平均粒径が0.3μm以上1.0μm以下であると、耐摩耗性及び靭性に優れて好ましい。上記平均粒径の測定は、SEM、EBSDを利用して、取得した画像を市販の画像解析ソフトを用いて解析することで容易に行える。有芯粒子の粒径は、周辺部を含めたものとする。   The size of the cored particle is not particularly limited, but it is preferable that the average particle size is 0.3 μm or more and 1.0 μm or less because of excellent wear resistance and toughness. The average particle size can be easily measured by analyzing the acquired image using commercially available image analysis software using SEM and EBSD. The particle diameter of the cored particles includes the peripheral part.

《結合相》
結合相の含有量は、多いほど靭性や焼結性が高くなる傾向にあり、少ないと強度や耐摩耗性が低下し難いことから、サーメット全体に対して15質量%以上25質量%以下が好ましい。この結合相は、Co,Niといった鉄族金属を主成分(質量割合で、結合相全体の65%以上であり、結合相中において鉄族金属の元素が最も多い)とする。特に、鉄族金属は、サーメット全体に対して10質量%以上含有されることが好ましい。なお、結合相は、鉄族金属の他に原料粉末に起因すると考えられる他の元素が含有(固溶)されることを許容する。
<< Binder Phase >>
The content of the binder phase tends to increase toughness and sinterability as the content increases, and if the content is small, the strength and wear resistance are less likely to decrease. Therefore, the content is preferably 15% by mass to 25% by mass with respect to the entire cermet. . The binder phase is mainly composed of an iron group metal such as Co and Ni (mass ratio is 65% or more of the whole binder phase, and the iron group metal element is the most in the binder phase). In particular, the iron group metal is preferably contained in an amount of 10% by mass or more based on the entire cermet. In addition, the binder phase allows inclusion (solid solution) of other elements considered to be caused by the raw material powder in addition to the iron group metal.

《その他の元素や化合物》
本発明サーメットは、モリブデン(Mo)を含んでいると、硬質相と結合相、特にTi化合物とNiとの濡れ性を高められることから、硬質相粒子の周囲に結合相の構成成分が十分に存在することができ、靭性を向上できる。特に、周辺部の外側領域におけるMoの平均含有量(原子%)をα、外側領域におけるWの平均含有量(原子%)をβとするとき、MoとWとの含有比α/βが0.5<(α/β)<1.5を満たすと、Wリッチ相を有する組成を変化させ難く、Wリッチ相が存在することによる亀裂の進展の抑制効果、及びMoが存在することによる濡れ性の向上効果の双方による靭性向上効果が得られる。
《Other elements and compounds》
When the cermet of the present invention contains molybdenum (Mo), the wet phase between the hard phase and the binder phase, in particular, the Ti compound and Ni can be improved, so that the constituent components of the binder phase are sufficiently around the hard phase particles. Can exist and can improve toughness. In particular, when the average content (atomic%) of Mo in the outer region of the peripheral portion is α and the average content (atomic percent) of W in the outer region is β, the content ratio α / β of Mo and W is 0.5. When <(α / β) <1.5 is satisfied, it is difficult to change the composition having the W-rich phase, the effect of suppressing the progress of cracks due to the presence of the W-rich phase, and the effect of improving wettability due to the presence of Mo The toughness improvement effect by both of these is obtained.

<切削工具>
上記構成を具える本発明サーメットは、耐摩耗性に優れ、かつ亀裂が進展し難い有芯粒子を有するため、耐摩耗性及び耐欠損性の双方に優れることが望まれる切削工具の基材材料に好適に利用することができる。特に、本発明サーメットを用いた本発明切削工具は、鋼と反応し難いことから、鋼加工用に好適に利用することができる。
<Cutting tools>
The cermet of the present invention having the above-described configuration has core particles that are excellent in wear resistance and difficult to progress in cracks, and therefore are desired to be excellent in both wear resistance and fracture resistance. Can be suitably used. In particular, the cutting tool of the present invention using the cermet of the present invention hardly reacts with steel and can be suitably used for steel processing.

<硬質膜>
上記基材は、その表面の少なくとも一部に被覆される硬質膜を具えてもよい。硬質膜は、少なくとも刃先及びその近傍に具えることが好ましく、基材表面の全面に亘って具えていてもよい。硬質膜は、1層でも多層でもよく、合計厚さは1〜20μmが好ましい。硬質膜の形成方法は、熱CVD法といった化学手蒸着法(CVD法)、カソードアークイオンプレーティング法といった物理蒸着法(PVD法)のいずれも利用できる。
<Hard film>
The base material may include a hard film coated on at least a part of the surface thereof. The hard film is preferably provided at least at the blade edge and in the vicinity thereof, and may be provided over the entire surface of the substrate. The hard film may be a single layer or multiple layers, and the total thickness is preferably 1 to 20 μm. As a method for forming the hard film, either a chemical manual vapor deposition method (CVD method) such as a thermal CVD method or a physical vapor deposition method (PVD method) such as a cathode arc ion plating method can be used.

硬質膜は、周期表4,5,6族の金属,Al,Si及びBからなる群から選択される1種以上の元素と、炭素、窒素、酸素及び硼素からなる群から選択される1種以上の元素との化合物からなる化合物膜を有することが好ましい。具体的な膜質は、TiCN,Al2O3,TiAlN,TiN,AlCrNなどが挙げられる。 The hard film is one or more elements selected from the group consisting of metals of Group 4, 5, 6 of the periodic table, Al, Si and B, and one type selected from the group consisting of carbon, nitrogen, oxygen and boron It is preferable to have a compound film made of a compound with the above elements. Specific film quality includes TiCN, Al 2 O 3 , TiAlN, TiN, AlCrN and the like.

<サーメットの製造方法>
サーメットは、一般に、原料の準備→原料の粉砕及び混合→成形→焼結という工程で製造される。原料には、周期表4,5,6族金属から選ばれる少なくとも1種の元素と、炭素(C)及び窒素(N)の少なくとも1種の元素との化合物からなる化合物粉末と、鉄族金属粉末とを用いる。本発明サーメットの製造方法は、特に、原料に特徴がある。具体的には、本発明サーメットの製造方法は、上記化合物粉末と、上記鉄族金属粉末とを用いて、上記化合物を含む硬質相が上記鉄族金属を主成分とする結合相により結合されてなるサーメットを製造する方法に係るものであり、原料粉末を準備する工程と、原料粉末を混合して成形した後、得られた成形体を焼結する工程とを具える。そして、上記原料粉末に、炭化タングステン(WC)粉末と、炭素粉末と、タングステン(W)粉末とを用いる。
<Method for producing cermet>
The cermet is generally produced by a process of raw material preparation → grinding and mixing of raw materials → molding → sintering. The raw material includes a compound powder composed of a compound of at least one element selected from Group 4, 5, 6 metals of the periodic table and at least one element of carbon (C) and nitrogen (N), and an iron group metal. Powder is used. The method for producing the cermet of the present invention is particularly characterized by raw materials. Specifically, in the method for producing the cermet of the present invention, the compound powder and the iron group metal powder are used, and the hard phase containing the compound is bound by the binder phase mainly composed of the iron group metal. This method relates to a method for producing a cermet, and includes a step of preparing raw material powder and a step of sintering the obtained molded body after mixing and forming the raw material powder. Then, tungsten carbide (WC) powder, carbon powder, and tungsten (W) powder are used as the raw material powder.

サーメットの硬質相にWを含有する粒子を存在させる場合、通常、原料にWC粉末を用いる。本発明者らは、このWC粉末の一部を炭素粉末(例えば、カーボンブラック)、及びW粉末に置換したところ、芯部の周縁を覆うように、即ち、芯部と周辺部との境界に沿ってWが析出し易く、かつWが上記境界近傍に存在することで、境界近傍における亀裂の進展を抑制することができる、との知見を得た。この知見により、本発明製造方法では、WC粉末に加えて、炭素粉末及びW粉末(以下、組合せ粉末と呼ぶ)を用いる。本発明製造方法によれば、芯部の周縁のほぼ全周を覆うようにWリッチ相が存在する有芯粒子が得られる。また、本発明製造方法によれば、有芯粒子の多くが上記Wリッチ相を有する傾向にある。   When particles containing W are present in the hard phase of the cermet, WC powder is usually used as a raw material. The present inventors replaced a part of this WC powder with carbon powder (e.g., carbon black) and W powder so as to cover the periphery of the core part, that is, at the boundary between the core part and the peripheral part. As a result, it was found that W is likely to precipitate along the boundary and that W is present in the vicinity of the boundary, thereby suppressing the progress of cracks in the vicinity of the boundary. Based on this finding, the production method of the present invention uses carbon powder and W powder (hereinafter referred to as combination powder) in addition to WC powder. According to the production method of the present invention, cored particles in which a W-rich phase exists so as to cover almost the entire periphery of the periphery of the core part can be obtained. Further, according to the production method of the present invention, many of the cored particles tend to have the W-rich phase.

上記組合せ粉末は、WC粉末と炭素粉末とW粉末との合計量に対して、炭素粉末とW粉末との合計量が、質量割合で15%以上60%未満となるように添加することが好ましい。組合せ粉末が少な過ぎると、WC粉末が相対的に多くなり、WC粒子が成長してWリッチ相として存在し難くなり、多過ぎてもWリッチ相を生成することが難しい。また、組合せ粉末は、WとCとの元素比が1:1(質量比が183.8:12.01)となるように配合することが好ましい。このような配合調整を行った組合せ粉末を用いることで、芯部近傍領域に、外側領域におけるWの平均含有量の1.6倍以上のWを含有するWリッチ相を有する本発明サーメットを製造することができる。   The combined powder is preferably added so that the total amount of the carbon powder and the W powder is 15% or more and less than 60% by mass relative to the total amount of the WC powder, the carbon powder, and the W powder. . If the combination powder is too small, the WC powder becomes relatively large, and WC particles grow and hardly exist as a W-rich phase, and if it is too much, it is difficult to generate a W-rich phase. The combination powder is preferably blended so that the elemental ratio of W and C is 1: 1 (mass ratio is 183.8: 12.01). By using a combination powder that has been subjected to such blending adjustment, the cermet of the present invention having a W-rich phase containing W that is 1.6 times or more the average content of W in the outer region in the region near the core is produced. Can do.

上記製造工程:粉砕・混合、成形、焼結などは、一般的な条件を利用することができる。例えば、焼結は、窒素雰囲気で1400〜1550℃に0.5〜1.5時間保持することで行う。特に、焼結工程において、上記所定の温度を所定の時間保持して加熱した成形体を冷却する際、1000℃以上1400℃以下の温度域の冷却速度を1.0℃/min以上3.0℃/min以下とすることが好ましい。冷却の際、1400〜1000℃といった高温領域の冷却速度を比較的遅くすることで、Wを積極的に析出させることができる。この高温領域の冷却速度が遅過ぎると、Wリッチ相の幅が厚くなり、耐摩耗性が低下し易く、速過ぎるとWが析出し難くなり、Wリッチ相を十分に生成できない。好ましくは、2℃/min以上3℃/min以下にする。   General conditions can be used for the above production process: pulverization / mixing, molding, sintering and the like. For example, sintering is performed by holding at 1400 to 1550 ° C. for 0.5 to 1.5 hours in a nitrogen atmosphere. In particular, in the sintering step, when cooling the molded body that is heated while maintaining the predetermined temperature for a predetermined time, the cooling rate in the temperature range of 1000 ° C to 1400 ° C is 1.0 ° C / min to 3.0 ° C / min. It is preferable that During cooling, W can be positively precipitated by relatively slowing the cooling rate in the high temperature region of 1400 to 1000 ° C. If the cooling rate in this high-temperature region is too slow, the width of the W-rich phase becomes thick and the wear resistance tends to decrease. If it is too fast, W is difficult to precipitate, and the W-rich phase cannot be sufficiently produced. Preferably, it is 2 ° C./min or more and 3 ° C./min or less.

本発明サーメットは、耐摩耗性及び耐欠損性(靭性)の双方をバランスよく具える。上記本発明サーメットを基材とする本発明切削工具は、耐摩耗性及び耐欠損性に優れることから、工具寿命の延命を図ることができる。本発明サーメットの製造方法は、上記サーメットを生産性よく製造することができる。   The cermet of the present invention has a good balance of both wear resistance and fracture resistance (toughness). Since the cutting tool of the present invention based on the cermet of the present invention is excellent in wear resistance and fracture resistance, the tool life can be extended. The cermet production method of the present invention can produce the cermet with high productivity.

(試験例1)
TiCNを含有する粒子を主たる硬質相とするTiCN基サーメットからなる基材を具える切削工具を作製し、サーメットの組織及び切削性能(耐欠損性)を調べた。
(Test Example 1)
A cutting tool including a base material composed of a TiCN-based cermet containing TiCN-containing particles as a main hard phase was prepared, and the structure and cutting performance (fracture resistance) of the cermet were investigated.

基材は、以下のように作製した。原料粉末として、WC、W、カーボンブラック(C)、TiC、TiCN、NbC、TaC、Mo2C、Ni、Coの各粉末を、表1に示す配合組成となるように準備した。この試験では、WC粉末の一部をW粉末及びカーボンブラックに置換した試料、WC粉末のみを用いた試料、WC粉末の全てをW粉末及びカーボンブラックに置換した試料を用意した。表2にWC粉末、W粉末、カーボンブラックの合計量wtotalに対するW粉末及びカーボンブラックの合計量w(W+C)の配合割合(質量比)を示す。例えば、配合割合60%の場合、組成Iであれば、3つの粉末の合計量wtotal:20質量%に対して、2つの粉末の合計量w(W+C)は、20質量%×60%=12質量%である。粉末はいずれも市販のものを用いた。 The base material was produced as follows. As raw material powders, powders of WC, W, carbon black (C), TiC, TiCN, NbC, TaC, Mo 2 C, Ni, and Co were prepared so as to have the composition shown in Table 1. In this test, a sample in which a part of the WC powder was replaced with W powder and carbon black, a sample using only the WC powder, and a sample in which all of the WC powder was replaced with W powder and carbon black were prepared. Table 2 shows the blending ratio (mass ratio) of the total amount w (W + C) of W powder and carbon black to the total amount w total of WC powder, W powder, and carbon black. For example, when the blending ratio is 60%, if the composition is I, the total amount w total of the three powders w total : 20% by mass, and the total amount w (W + C) of the two powders is 20% by mass × 60 % = 12% by mass. Commercially available powders were used.

用意した粉末を粉砕・湿式混合した後、乾燥してからプレス成形を行い、圧粉成形体を得た。この圧粉成形体を焼結して(10Torr(約1333Pa)、窒素雰囲気、1500℃×1時間)、焼結体を得た。なお、焼結工程において、上記温度に加熱した圧粉成形体を冷却する際、1400〜1000℃の温度域の冷却速度を2.5℃/minとした。   The prepared powder was pulverized and wet mixed, then dried and press-molded to obtain a green compact. The compacted body was sintered (10 Torr (about 1333 Pa), nitrogen atmosphere, 1500 ° C. × 1 hour) to obtain a sintered body. In the sintering process, when the green compact heated to the above temperature was cooled, the cooling rate in the temperature range of 140 to 1000 ° C. was set to 2.5 ° C./min.

得られた各焼結体について、断面を透過型電子顕微鏡(10,000〜30,000倍)で観察した。図1は、観察像の模式図であり、(A)は全体図、(B)は有芯粒子を示し、図2は、試料No.4を30,000倍で観察した透過型電子顕微鏡写真を示す。図1,2に示すように、各試料は、硬質相を構成する化合物の粒子10a,10b,10cが結合相20により結合された組織を有している。特に、硬質相は、TiCNを主成分とする芯部11と、この芯部11の周囲に存在し、チタン複合化合物からなる周辺部12とを有する多層構造の有芯粒子10aを含む。図2に示す顕微鏡写真において、白っぽく見える背景部分が結合相20であり、背景中に分散した灰色又は黒っぽく(濃灰色に)見える粒子が硬質相粒子である。チタン複合化合物が灰色に見え、TiCNを主成分とする化合物が黒っぽく見える。灰色の粒子の中に黒っぽい粒子を具える多層構造の粒子が有芯粒子である。   About each obtained sintered compact, the cross section was observed with the transmission electron microscope (10,000-30,000 times). FIG. 1 is a schematic diagram of an observed image, (A) is an overall view, (B) shows cored particles, and FIG. 2 shows a transmission electron micrograph of sample No. 4 observed at 30,000 times. . As shown in FIGS. 1 and 2, each sample has a structure in which particles 10a, 10b, and 10c of a compound constituting a hard phase are bonded by a bonding phase 20. In particular, the hard phase includes cored particles 10a having a multilayer structure having a core part 11 mainly composed of TiCN and a peripheral part 12 present around the core part 11 and made of a titanium composite compound. In the micrograph shown in FIG. 2, the background portion that appears whitish is the binder phase 20, and the particles that appear gray or blackish (dark gray) dispersed in the background are hard phase particles. The titanium composite compound appears gray, and the compound mainly composed of TiCN appears dark. A multi-layered particle having dark particles in a gray particle is a cored particle.

各試料の硬質相において、任意の有芯粒子10aを選択し、芯部11と周辺部12との境界13上の任意の点をとり、この点の接線に直交し、かつこの点が概ね中心に位置するように接線を横断する垂線xy(長さ:450nm)をとり、この垂線xy上に沿ってEDX分析を行った。より具体的には、一つの断面(10,000倍)において任意の10箇所を選択し、各箇所において1視野(50〜100μm2)中に有芯粒子(多層構造の粒子)が10個以上存在するか否かを確認する。有芯粒子が10個以上観察できない場合、測定箇所を取り直す。10個以上の有芯粒子が存在する10視野(10箇所)において、各視野から任意の1個の有芯粒子を選択する。そして、選択した各有芯粒子について、30,000倍でTEM-EDX分析を行う。黒っぽく見える部分と灰色に見える部分との境界を芯部と周辺部との仮境界として、垂線xyをとり、ライン分析を行う。 In the hard phase of each sample, select an arbitrary cored particle 10a, take an arbitrary point on the boundary 13 between the core part 11 and the peripheral part 12, orthogonal to the tangent line of this point, and this point is almost the center A vertical line xy (length: 450 nm) crossing the tangent line was taken so as to be located at E, and EDX analysis was performed along this vertical line xy. More specifically, arbitrary 10 locations are selected in one cross section (10,000 times), and there are 10 or more cored particles (multilayered particles) in one field of view (50 to 100 μm 2 ) at each location. Check whether or not. If 10 or more cored particles cannot be observed, remeasure the measurement location. Arbitrary one cored particle is selected from each field in 10 fields (10 places) where 10 or more cored particles exist. Then, each selected cored particle is subjected to TEM-EDX analysis at 30,000 times. Line analysis is performed by taking a perpendicular line xy with the boundary between the portion that appears dark and the portion that appears gray as a temporary boundary between the core and the peripheral portion.

図3は、試料No.4のライン分析の結果を示し、上段が芯部と周辺部との境界近傍を示す顕微鏡写真、中段が組成全体のライン分析グラフ、下段が微少含有元素のライン分析グラフである。図3に示すように、黒っぽい部分は、Ti,C,Nが多く、実質的にTiCNで構成されていることが分かる。灰色部分は、Ti,C,Nに加えて、W,Nb,Ta,Moなどの元素を微量に含み、Ti,W及びその他の元素を含む複合炭窒化物(固溶体)で構成されていることが分かる。また、黒っぽい部分と灰色部分との間に白い部分が見え、この白い部分は、Wの含有量が比較的大きく変化している(図3下段参照)。具体的には、灰色の周辺部において黒っぽい芯部の近く、即ち、芯部と周辺部との境界近くにWの含有量のピークがあり、境界から芯部に入ると直ぐにWの含有量が急激に低下する。このWが低下した部分を芯部と周辺部との真の境界として境界を取り直し、周辺部において取り直した境界から200nm以内の領域を芯部近傍領域、200nmを超える領域を外側領域とする。そして、芯部近傍領域におけるWの最大含有量(ピークの頂点部分の含有量、原子%)、及び外側領域におけるWの平均含有量(原子%、ライン上の分析量を平均した量)を測定する。更に、各有芯粒子について、芯部近傍領域におけるWの最大含有量Wmaxが、外側領域のWの平均含有量Waveの何倍かを求める。このWmax/Waveをその有芯粒子のWピーク高さとし、10個の有芯粒子のWピーク高さを求め、更に10個の平均値(平均Wピーク高さ)を求めた。その結果を表2に示す。 Fig. 3 shows the results of line analysis of sample No. 4, with the upper part being a micrograph showing the vicinity of the boundary between the core part and the peripheral part, the middle part being a line analysis graph of the entire composition, and the lower part being a line analysis graph of trace elements It is. As shown in FIG. 3, it can be seen that the dark portion has a large amount of Ti, C, N and is substantially composed of TiCN. The gray part contains a small amount of elements such as W, Nb, Ta, and Mo in addition to Ti, C, and N, and is composed of a composite carbonitride (solid solution) containing Ti, W, and other elements. I understand. In addition, a white portion is seen between the dark portion and the gray portion, and the W content changes relatively greatly in this white portion (see the lower part of FIG. 3). Specifically, there is a peak of W content near the dark core in the gray periphery, that is, near the boundary between the core and the periphery, and the W content immediately enters the core from the boundary. Decreases rapidly. The portion where W is reduced is taken as a true boundary between the core portion and the peripheral portion, and the boundary is re-established. Then, the maximum W content in the region near the core (the peak peak content, atomic%) and the average W content in the outer region (atomic%, average amount of analysis on the line) are measured. To do. Further, for each cored particle, the maximum W content W max in the core vicinity region is determined to be several times the average W content W ave in the outer region. W peak height Satoshi of W max / W ave the cored particles, determine the W peak height of ten cored particles, obtained further ten average value (average W peak height). The results are shown in Table 2.

上述のようにして、JIS規格形状SNGN120408の焼結体(チップ)を作製し、このチップを用いて、耐欠損性試験を行った。その結果を表2に示す。試験には、焼結体のままのチップ(膜無し)と、チップの表面にアークイオンプレーティング法によりTiAlN膜(厚さ4μm)を形成した被覆チップ(膜有り)とを用意した。試験の条件(フライス切削)は、被削材:SCM435(3枚重ね)、切削速度:174m/min、切り込み:1.5mm、送り:0.3mm/刃、Dry、とした。耐欠損性は、チップが欠損に至るまでの平均切削長を測定して評価した。   A sintered body (chip) of JIS standard shape SNGN120408 was produced as described above, and a chipping resistance test was performed using this chip. The results are shown in Table 2. For the test, a chip (with no film) as a sintered body and a coated chip (with a film) in which a TiAlN film (thickness 4 μm) was formed on the surface of the chip by an arc ion plating method were prepared. The test conditions (milling) were as follows: work material: SCM435 (3 sheets stacked), cutting speed: 174 m / min, cutting: 1.5 mm, feed: 0.3 mm / blade, Dry. The chipping resistance was evaluated by measuring the average cutting length until the chip reached the chipping.

表2に示すように、WC粉末、W粉末、カーボンブラックの合計量wtotalに対するW粉末及びカーボンブラックの合計量w(W+C)の配合割合が15%以上60%未満である場合、芯部近傍領域に、周辺部の平均W含有量の1.6倍以上のWを含有する部分(Wリッチ相)が存在する有芯粒子を硬質相に具えるサーメットが得られることが分かる。そして、Wリッチ相を有する有芯粒子を具えたサーメットを切削工具に利用した場合、耐欠損性に優れることが分かる。 As shown in Table 2, when the blending ratio of the total amount w (W + C) of W powder and carbon black to the total amount w total of WC powder, W powder and carbon black is 15% or more and less than 60%, the core It can be seen that a cermet having a hard phase with cored particles in which a portion (W rich phase) containing 1.6 times or more of the average W content in the peripheral portion is present in the vicinity of the portion is obtained. And when the cermet provided with the cored particle which has a W rich phase is utilized for a cutting tool, it turns out that it is excellent in fracture resistance.

なお、Wリッチ相を有する有芯粒子を更に調べたところ、芯部の実質的に全周を覆うようにWリッチ相が存在していた。また、Wリッチ相を有する試料について、上記断面を更に測定したところ、各視野に存在する実質的に全ての有芯粒子がWリッチ相を有していた(硬質相全体に対して有芯粒子が60質量%以上存在)。更に、硬質相は、原料粉末を構成する元素から実質的に構成される化合物で構成され、結合相は、実質的にCo及びNiで構成されていた。成分分析は、TEM-EDX分析以外にもEPMA,蛍光X線,IPC-AESなどを用いて行うことができる。   When the cored particles having the W-rich phase were further examined, the W-rich phase was present so as to cover substantially the entire circumference of the core. Further, when the cross section was further measured for the sample having the W-rich phase, substantially all the cored particles present in each visual field had the W-rich phase (the cored particles with respect to the entire hard phase). Is more than 60% by mass). Furthermore, the hard phase was composed of a compound substantially composed of elements constituting the raw material powder, and the binder phase was composed substantially of Co and Ni. Component analysis can be performed using EPMA, X-ray fluorescence, IPC-AES, etc. in addition to TEM-EDX analysis.

(試験例2)
焼結条件(冷却速度)を変化させてTiCN基サーメットからなる切削工具用基材を作製し、サーメットの組織及び切削性能(耐摩耗性)を調べた。
(Test Example 2)
A cutting tool base material made of TiCN-based cermet was prepared by changing the sintering conditions (cooling rate), and the structure and cutting performance (wear resistance) of the cermet were investigated.

この試験では、試験例1で用いた試料No.4と同じ原料粉末(組成I)を用意し、試験例1と同様に粉砕・湿式混合を行った後、プレス成形を行って圧粉成形体を作製し、試験例1と同じ条件で焼結を行った。特に、この試験では、焼結工程において、所定の温度に加熱した成形体を冷却する際、1400〜1000℃の温度域の冷却速度を表3に示すように変化させた。   In this test, the same raw material powder (Composition I) as Sample No. 4 used in Test Example 1 was prepared, and after pulverization and wet mixing as in Test Example 1, press molding was performed to form a green compact. Was sintered under the same conditions as in Test Example 1. In particular, in this test, when the molded body heated to a predetermined temperature was cooled in the sintering process, the cooling rate in the temperature range of 1400 to 1000 ° C. was changed as shown in Table 3.

得られた各焼結体について、試験例1と同様に、断面を透過型電子顕微鏡で観察したところ、いずれの試料も有芯粒子が確認された。次に、試験例1と同様に有芯粒子について、芯部と周辺部との境界近傍に垂線xyをとり(長さ:450nm)、TEM-EDX分析によるライン分析を行った。そして、各有芯粒子の芯部近傍領域において、Wの含有量(原子%)が、外側領域におけるWの平均含有量(原子%)の1.6倍以上となっている箇所の幅(Wピーク幅L)を測定し、10個の有芯粒子の平均(平均Wピーク幅Lave)を求めた。その結果を表3に示す。Wピーク幅Lは、ライン分析に用いた垂線xy方向の長さとする。 For each of the obtained sintered bodies, the cross section was observed with a transmission electron microscope in the same manner as in Test Example 1. As a result, cored particles were confirmed in all the samples. Next, in the same manner as in Test Example 1, with respect to the cored particles, a perpendicular line xy was drawn near the boundary between the core part and the peripheral part (length: 450 nm), and line analysis was performed by TEM-EDX analysis. And the width (W peak width) where the W content (atomic%) is 1.6 times or more of the average W content (atomic%) in the outer area in the area near the core of each cored particle L) was measured, and the average of 10 cored particles (average W peak width L ave ) was determined. The results are shown in Table 3. The W peak width L is the length in the perpendicular xy direction used for the line analysis.

また、上述のように冷却速度を異ならせた以外の点は、試験例1と同様にして、JIS規格形状SNGN120408の焼結体(チップ)を作製し、このチップ(膜無し)を用いて、耐摩耗性試験を行った。その結果を表3に示す。試験条件(フライス切削)は、被削材:SCM435(角材)、切削速度:200m/min、切り込み:2.0mm、送り:0.22mm/刃、Dry、1パスの切削長:300mmとした。耐摩耗性は、1パスごとに逃げ面摩耗量(mm)を測定し、5パスの切削を行った後の平均を求めて評価した。   In addition, except for changing the cooling rate as described above, in the same manner as in Test Example 1, a sintered body (chip) of JIS standard shape SNGN120408 was produced, and using this chip (without film), A wear resistance test was conducted. The results are shown in Table 3. The test conditions (milling) were as follows: Work material: SCM435 (Square material), Cutting speed: 200 m / min, Cutting: 2.0 mm, Feeding: 0.22 mm / tooth, Dry, Cutting length of 1 pass: 300 mm. The wear resistance was evaluated by measuring the flank wear amount (mm) for each pass and calculating the average after cutting 5 passes.

表3に示すように、同じ組成の原料粉末を用いた場合、焼結工程における冷却速度が3.0℃/minを超える急冷を行うと、Wリッチ相を有するサーメットが得られないことが分かる。Wリッチ相を有していない試料No.24を調べたところ、芯部と周辺部との境界近傍に亀裂が進展したことによる欠損が生じており、この欠損に起因して摩耗量が増加したと考えられる。一方、上記冷却速度が遅いほど、Wリッチ相の幅が厚くなるが、耐摩耗性が低下し易い傾向にある。耐摩耗性及び耐欠損性を考慮すると、Wリッチ相の幅Lは、5〜50nmが好ましいと考えられる。   As shown in Table 3, it is understood that when raw material powder having the same composition is used, cermets having a W-rich phase cannot be obtained when the cooling rate in the sintering step exceeds 3.0 ° C./min. Examination of sample No. 24 that does not have a W-rich phase revealed that a crack was generated near the boundary between the core and the peripheral part, and the amount of wear increased due to this defect. it is conceivable that. On the other hand, the slower the cooling rate, the thicker the W-rich phase, but the wear resistance tends to decrease. Considering the wear resistance and fracture resistance, it is considered that the width L of the W-rich phase is preferably 5 to 50 nm.

(試験例3)
Mo2C粉末の添加量を異ならせることで、サーメット中のMoの含有量を変化させたTiCN基サーメットからなる切削工具用基材を作製し、サーメットの組織及び切削性能(耐欠損性)を調べた。
(Test Example 3)
By varying the amount of Mo 2 C powder added, a cutting tool substrate made of TiCN-based cermet with varying Mo content in the cermet was prepared, and the structure and cutting performance (fracture resistance) of the cermet were improved. Examined.

この試験では、試験例1で用いた試料No.4の組成(組成I)を基本とし、表4に示すように、Mo2C粉末の添加量を異ならせた原料粉末を用意した。原料粉末におけるMo2C粉末の増減分は、WC粉末を増減させた。用意した原料粉末を試験例1と同様に粉砕・湿式混合を行った後、プレス成形を行って圧粉成形体を作製し、試験例1と同じ条件で焼結を行った(1400〜1000℃の温度域の冷却速度:2.5℃/min)。 In this test, raw material powders based on the composition of Sample No. 4 (Composition I) used in Test Example 1 and different amounts of addition of Mo 2 C powder were prepared as shown in Table 4. The amount of increase / decrease in Mo 2 C powder in the raw material powder was increased or decreased in WC powder. The prepared raw material powder was pulverized and wet-mixed in the same manner as in Test Example 1 and then press-molded to produce a compacted body, and sintered under the same conditions as in Test Example 1 (1400 to 1000 ° C. Cooling rate in the temperature range: 2.5 ° C / min).

得られた各焼結体について、試験例1と同様に、断面を透過型電子顕微鏡で観察したところ、いずれの試料も有芯粒子が確認された。次に、試験例1と同様に有芯粒子について、芯部と周辺部との境界近傍に垂線xyをとり(長さ:450nm)、TEM-EDX分析によるライン分析を行った。そして、各有芯粒子の芯部近傍領域において、Wの含有量(原子%)が、外側領域におけるWの平均含有量(原子%)の1.6倍以上となっている箇所(Wリッチ相)を調べたところ、いずれの試料もWリッチ相が確認された。次に、試験例1と同様に選択した10個の有芯粒子についてそれぞれ、周辺部の外側領域の平均Mo含有量α(原子%)と、外側領域の平均W含有量β(原子%)とを測定し(いずれもライン上の分析量を平均した量)、MoとWとの含有比α/βを求め、更に10個の平均含有比(α/β)aveを求めた。その結果を表4に示す。 For each of the obtained sintered bodies, the cross section was observed with a transmission electron microscope in the same manner as in Test Example 1. As a result, cored particles were confirmed in all the samples. Next, in the same manner as in Test Example 1, with respect to the cored particles, a perpendicular line xy was drawn near the boundary between the core part and the peripheral part (length: 450 nm), and line analysis was performed by TEM-EDX analysis. And in the region near the core of each cored particle, the location where the W content (atomic%) is 1.6 times or more of the average W content (atomic percent) in the outer region (W rich phase) When examined, the W-rich phase was confirmed in all the samples. Next, for each of the 10 cored particles selected in the same manner as in Test Example 1, the average Mo content α (atomic%) in the outer region of the peripheral part and the average W content β (atomic%) in the outer region (Both were the average of the analytical amounts on the line), the content ratio α / β of Mo and W was determined, and the average content ratio (α / β) ave of 10 was determined. The results are shown in Table 4.

また、上述のようにMo2C粉末の添加量が異なる原料粉末を用いた以外の点は、試験例1と同様にして、JIS規格形状SNGN120408の焼結体(チップ)を作製し、このチップ(膜無し)を用いて、耐欠損性試験を行った。その結果を表4に示す。切削条件及び耐欠損性の評価方法は、試験例1と同様である。 Further, except for the points that the addition amount of Mo 2 C powder as described above using different raw material powder, in the same manner as in Test Example 1 to prepare a sintered body of JIS standard shape SNGN120408 (the chip), the chip Using (without film), a fracture resistance test was performed. The results are shown in Table 4. The cutting conditions and fracture resistance evaluation methods are the same as in Test Example 1.

表4に示すように、Mo2Cの添加量を多くして、サーメット中のMoの含有量を多くした試料ほど、含有比α/βが大きくなっている。そして、含有比α/βが0.5以上1.5以下であると、耐欠損性に優れることが分かる。 As shown in Table 4, as the amount of Mo 2 C added is increased and the content of Mo in the cermet is increased, the content ratio α / β is increased. It can be seen that when the content ratio α / β is 0.5 or more and 1.5 or less, the chipping resistance is excellent.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、原料粉末の組成、被覆膜の組成や厚さを適宜変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the composition of the raw material powder and the composition and thickness of the coating film can be appropriately changed.

本発明サーメットは、切削工具の素材に好適に利用することができる。本発明切削工具は、フライス切削加工、特に、鋼と反応し難いことから鋼の切削に好適に利用することができる。本発明サーメットの製造方法は、上記サーメットの製造に好適に利用することができる。   The cermet of the present invention can be suitably used as a cutting tool material. The cutting tool of the present invention can be suitably used for milling, particularly for cutting steel because it hardly reacts with steel. The method for producing the cermet of the present invention can be suitably used for producing the cermet.

Wリッチ相を有する有芯粒子を硬質相に含有するサーメットの模式図であり、(A)は、全体図、(B)は、有芯粒子を示す。2 is a schematic diagram of a cermet containing cored particles having a W-rich phase in a hard phase, (A) is an overall view, and (B) shows cored particles. FIG. 試料No.4の透過型電子顕微鏡写真である。It is a transmission electron micrograph of sample No. 4. 試料No.4のTEM-EDX分析結果を示す説明図であり、上段が芯部と周辺部との境界近傍を示す顕微鏡写真、中段が組成全体のライン分析グラフ、下段が微少含有元素のライン分析グラフである。It is explanatory drawing which shows the TEM-EDX analysis result of sample No. 4, the upper part is a micrograph showing the vicinity of the boundary between the core part and the peripheral part, the middle part is a line analysis graph of the whole composition, and the lower part is a line analysis of trace elements It is a graph.

符号の説明Explanation of symbols

10a 有芯粒子 10b,10c 化合物粒子 11 芯部 12 周辺部 13 境界
20 結合相
10a Core particles 10b, 10c Compound particles 11 Core 12 Peripheral 13 Boundary
20 bonded phase

Claims (9)

周期表4,5,6族金属から選ばれる少なくとも1種の元素と、炭素(C)及び窒素(N)の少なくとも1種の元素との化合物を含む硬質相が鉄族金属を主成分とする結合相により結合されてなるサーメットであって、
前記硬質相は、炭窒化チタン(TiCN)を主成分とする芯部と、この芯部の周囲に存在し、チタン複合化合物からなる周辺部とを有する有芯粒子を含んでおり、
前記チタン複合化合物は、チタン(Ti)と、タングステン(W)と、C及びNの少なくとも1種の元素とを含む固溶体であり、
前記周辺部において、前記芯部と周辺部との境界から200nm以内の領域を芯部近傍領域、前記境界から200nm超の領域を外側領域とするとき、前記芯部近傍領域に、前記外側領域におけるWの平均含有量(原子%)の1.6倍以上のWを含有するWリッチ相を有することを特徴とするサーメット。
A hard phase containing a compound of at least one element selected from Group 4, 5, 6 metals and at least one element of carbon (C) and nitrogen (N) is mainly composed of an iron group metal. A cermet bonded by a binder phase,
The hard phase includes cored particles having a core mainly composed of titanium carbonitride (TiCN) and a peripheral part that is present around the core and is made of a titanium composite compound.
The titanium composite compound is a solid solution containing titanium (Ti), tungsten (W), and at least one element of C and N,
In the peripheral portion, when a region within 200 nm from the boundary between the core portion and the peripheral portion is a core portion vicinity region, and a region more than 200 nm from the boundary is an outer region, the core portion vicinity region is in the outer region A cermet having a W-rich phase containing 1.6 times or more of the average W content (atomic%).
前記チタン複合化合物は、更に、周期表4,5,6族金属(但し、Ti及びWを除く)から選択される少なくとも1種の元素を含むことを特徴とする請求項1に記載のサーメット。   2. The cermet according to claim 1, wherein the titanium composite compound further contains at least one element selected from metals of Group 4, 5, 6 (excluding Ti and W) of the periodic table. 前記Wリッチ相の幅Lは、5nm≦L≦50nmを満たすことを特徴とする請求項1又は2に記載のサーメット。   3. The cermet according to claim 1, wherein the width L of the W-rich phase satisfies 5 nm ≦ L ≦ 50 nm. 前記サーメットは、モリブデン(Mo)を含んでおり、
前記外側領域におけるMoの平均含有量(原子%)をα、Wの平均含有量(原子%)をβとするとき、
MoとWとの含有比α/βは、0.5<(α/β)<1.5を満たすことを特徴とする請求項1〜3のいずれか1項に記載のサーメット。
The cermet contains molybdenum (Mo),
When the average content (atomic%) of Mo in the outer region is α and the average content (atomic%) of W is β,
4. The cermet according to claim 1, wherein the content ratio α / β of Mo and W satisfies 0.5 <(α / β) <1.5.
請求項1〜4のいずれか1項に記載のサーメットからなる基材を具えることを特徴とする切削工具。   A cutting tool comprising a base material comprising the cermet according to any one of claims 1 to 4. 更に、前記基材表面に被覆される硬質膜を具えることを特徴とする請求項5に記載の切削工具。   6. The cutting tool according to claim 5, further comprising a hard film coated on the surface of the base material. 原料粉末として、周期表4,5,6族金属から選ばれる少なくとも1種の元素と炭素(C)及び窒素(N)の少なくとも1種の元素との化合物からなる化合物粉末と、鉄族金属粉末とを用いて、前記化合物を含む硬質相が前記鉄族金属を主成分とする結合相により結合されてなるサーメットを製造するサーメットの製造方法であって、
原料粉末を準備する工程と、
前記原料粉末を混合して成形した後、得られた成形体を焼結する工程とを具え、
前記原料粉末に、炭化タングステン(WC)粉末と、炭素粉末と、タングステン(W)粉末とを用いることを特徴とするサーメットの製造方法。
As a raw material powder, a compound powder comprising a compound of at least one element selected from Group 4, 5, 6 metals of the periodic table and at least one element of carbon (C) and nitrogen (N), and an iron group metal powder And a cermet production method for producing a cermet in which a hard phase containing the compound is bonded by a binder phase mainly composed of the iron group metal,
Preparing a raw material powder;
After mixing and molding the raw material powder, comprising the step of sintering the obtained molded body,
A method for producing a cermet, wherein tungsten carbide (WC) powder, carbon powder, and tungsten (W) powder are used as the raw material powder.
前記WC粉末と前記炭素粉末と前記W粉末との合計量に対して、炭素粉末とW粉末との合計量が質量割合で15%以上60%未満であることを特徴とする請求項7に記載のサーメットの製造方法。   8. The total amount of the carbon powder and the W powder is 15% or more and less than 60% by mass ratio with respect to the total amount of the WC powder, the carbon powder, and the W powder. Cermet manufacturing method. 前記焼結工程において、加熱した成形体を冷却する際、1000℃以上1400℃以下の温度域の冷却速度を1.0℃/min以上3.0℃/min以下とすることを特徴とする請求項7又は8に記載のサーメットの製造方法。   9. In the sintering step, when cooling the heated molded body, a cooling rate in a temperature range of 1000 ° C. or more and 1400 ° C. or less is set to 1.0 ° C./min or more and 3.0 ° C./min or less. The method for producing cermet according to 1.
JP2008192781A 2008-07-25 2008-07-25 Cermet Pending JP2010031308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008192781A JP2010031308A (en) 2008-07-25 2008-07-25 Cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008192781A JP2010031308A (en) 2008-07-25 2008-07-25 Cermet

Publications (1)

Publication Number Publication Date
JP2010031308A true JP2010031308A (en) 2010-02-12

Family

ID=41736133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192781A Pending JP2010031308A (en) 2008-07-25 2008-07-25 Cermet

Country Status (1)

Country Link
JP (1) JP2010031308A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136197A1 (en) * 2010-04-26 2011-11-03 株式会社タンガロイ Cermet and coated cermet
JP2012101288A (en) * 2010-11-08 2012-05-31 Tungaloy Corp Cermet and coated cermet
JP2013014792A (en) * 2011-06-30 2013-01-24 Sumitomo Electric Ind Ltd Hard material as well as manufacturing method thereof, and cutting tool
EP2568055A1 (en) * 2011-03-07 2013-03-13 Sumitomo Electric Hardmetal Corp. Material for decorative part
US8673435B2 (en) 2010-07-06 2014-03-18 Tungaloy Corporation Coated cBN sintered body tool
US8765272B2 (en) 2009-03-10 2014-07-01 Tungaloy Corporation Cermet and coated cermet
US8784977B2 (en) 2009-06-22 2014-07-22 Tungaloy Corporation Coated cubic boron nitride sintered body tool
US8999531B2 (en) 2010-04-16 2015-04-07 Tungaloy Corporation Coated CBN sintered body
KR20160006213A (en) 2014-04-10 2016-01-18 스미토모덴키고교가부시키가이샤 Cermet and cutting tool
KR20160006212A (en) 2013-06-10 2016-01-18 스미토모덴키고교가부시키가이샤 Cermet, method for producing cermet, and cutting tool
JP2019157182A (en) * 2018-03-09 2019-09-19 住友電気工業株式会社 Super hard alloy, cutting tool containing the same, manufacturing method of super hard alloy, and manufacturing method of cutting tool
JP2019181891A (en) * 2018-04-17 2019-10-24 三菱鉛筆株式会社 Writing ball and ball point pen
WO2019220533A1 (en) * 2018-05-15 2019-11-21 住友電気工業株式会社 Cermet, cutting tool containing same, and method for producing cermet
JP7157887B1 (en) 2022-03-08 2022-10-20 日本タングステン株式会社 Grinding, stirring, mixing, kneading machine parts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196352A (en) * 1986-02-20 1987-08-29 Hitachi Metals Ltd Tough cermet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196352A (en) * 1986-02-20 1987-08-29 Hitachi Metals Ltd Tough cermet

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765272B2 (en) 2009-03-10 2014-07-01 Tungaloy Corporation Cermet and coated cermet
US8784977B2 (en) 2009-06-22 2014-07-22 Tungaloy Corporation Coated cubic boron nitride sintered body tool
US8999531B2 (en) 2010-04-16 2015-04-07 Tungaloy Corporation Coated CBN sintered body
WO2011136197A1 (en) * 2010-04-26 2011-11-03 株式会社タンガロイ Cermet and coated cermet
JP5454678B2 (en) * 2010-04-26 2014-03-26 株式会社タンガロイ Cermet and coated cermet
US8673435B2 (en) 2010-07-06 2014-03-18 Tungaloy Corporation Coated cBN sintered body tool
JP2012101288A (en) * 2010-11-08 2012-05-31 Tungaloy Corp Cermet and coated cermet
EP2568055A1 (en) * 2011-03-07 2013-03-13 Sumitomo Electric Hardmetal Corp. Material for decorative part
EP2568055A4 (en) * 2011-03-07 2014-09-03 Sumitomo Elec Hardmetal Corp Material for decorative part
US8992657B2 (en) 2011-03-07 2015-03-31 Sumitomo Electric Hardmetal Corp. Material for decorative parts
JP2013014792A (en) * 2011-06-30 2013-01-24 Sumitomo Electric Ind Ltd Hard material as well as manufacturing method thereof, and cutting tool
KR20160006212A (en) 2013-06-10 2016-01-18 스미토모덴키고교가부시키가이샤 Cermet, method for producing cermet, and cutting tool
US9850558B2 (en) 2013-06-10 2017-12-26 Sumitomo Electric Industries, Ltd. Cermet, method for producing cermet, and cutting tool
KR20160006213A (en) 2014-04-10 2016-01-18 스미토모덴키고교가부시키가이샤 Cermet and cutting tool
US9850557B2 (en) 2014-04-10 2017-12-26 Sumitomo Electric Industries, Ltd. Cermet and cutting tool
JP2019157182A (en) * 2018-03-09 2019-09-19 住友電気工業株式会社 Super hard alloy, cutting tool containing the same, manufacturing method of super hard alloy, and manufacturing method of cutting tool
JP7098969B2 (en) 2018-03-09 2022-07-12 住友電気工業株式会社 Cemented Carbide, Cutting Tools Containing It, Cemented Carbide Manufacturing Method and Cutting Tool Manufacturing Method
JP2019181891A (en) * 2018-04-17 2019-10-24 三菱鉛筆株式会社 Writing ball and ball point pen
JP7126370B2 (en) 2018-04-17 2022-08-26 三菱鉛筆株式会社 Writing ball and ballpoint pen
WO2019220533A1 (en) * 2018-05-15 2019-11-21 住友電気工業株式会社 Cermet, cutting tool containing same, and method for producing cermet
JPWO2019220533A1 (en) * 2018-05-15 2021-05-13 住友電気工業株式会社 Cermet, cutting tools including it and method of manufacturing cermet
JP7020477B2 (en) 2018-05-15 2022-02-16 住友電気工業株式会社 Cermet, cutting tools including it and method of manufacturing cermet
JP7157887B1 (en) 2022-03-08 2022-10-20 日本タングステン株式会社 Grinding, stirring, mixing, kneading machine parts
JP2023130938A (en) * 2022-03-08 2023-09-21 日本タングステン株式会社 Pulverizing, stirring, mixing, and kneading machine members

Similar Documents

Publication Publication Date Title
JP2010031308A (en) Cermet
JP4690475B2 (en) Cermet and coated cermet tools
JP5305056B1 (en) Cutting tool made of cubic boron nitride based sintered body
JP6634647B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP5664795B2 (en) Cubic boron nitride sintered body
JP6439975B2 (en) Cermet manufacturing method
JPWO2011002008A1 (en) Cermet and coated cermet
WO2014156625A1 (en) Method for manufacturing cubic boron nitride sintered body, and cubic boron nitride sintered body
JP5989930B1 (en) Cermet and cutting tools
WO2012053237A1 (en) Wc-based cemented carbide cutting tool having high defect resistance for heat-resistant alloy cutting, and surface-coated wc-based cemented carbide cutting tool
WO2015156005A1 (en) Cermet and cutting tool
JP5559575B2 (en) Cermet and coated cermet
JP5892423B2 (en) CBN sintered compact cutting tool with excellent toughness
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP5273987B2 (en) Cermet manufacturing method
JP2012086297A (en) Wc-based cemented carbide cutting tool exercising superior chipping resistance and wear resistance in high speed intermittent cutting
JP6843096B2 (en) A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body
JP2012041595A (en) Cermet
JP2012086298A (en) Cutting tool made of surface-coated wc-based cemented carbide exhibiting excellent defect resistance in high-speed intermittent cutting of steel
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP2005200668A (en) Cermet and coated cermet, and manufacturing methods for them
JP2011093006A (en) Cermet and coated cermet
JP2013010997A (en) Cermet, method for producing the same, and cutting tool
WO2016114190A1 (en) Cermet, cutting tool, and method for manufacturing cermet
JP6278232B2 (en) cermet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130801