JP7157887B1 - Grinding, stirring, mixing, kneading machine parts - Google Patents

Grinding, stirring, mixing, kneading machine parts Download PDF

Info

Publication number
JP7157887B1
JP7157887B1 JP2022035537A JP2022035537A JP7157887B1 JP 7157887 B1 JP7157887 B1 JP 7157887B1 JP 2022035537 A JP2022035537 A JP 2022035537A JP 2022035537 A JP2022035537 A JP 2022035537A JP 7157887 B1 JP7157887 B1 JP 7157887B1
Authority
JP
Japan
Prior art keywords
phase
mixing
stirring
cermet
kneading machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022035537A
Other languages
Japanese (ja)
Other versions
JP2023130938A (en
Inventor
克弥 真島
史哉 黒木
修司 上野
健嗣 大塚
泰範 皆川
祐 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP2022035537A priority Critical patent/JP7157887B1/en
Application granted granted Critical
Publication of JP7157887B1 publication Critical patent/JP7157887B1/en
Priority to CN202211656807.1A priority patent/CN116727671A/en
Priority to KR1020230015819A priority patent/KR20230132366A/en
Priority to DE102023000878.8A priority patent/DE102023000878A1/en
Publication of JP2023130938A publication Critical patent/JP2023130938A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/003Apparatus, e.g. furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

【課題】特許第6922110号公報に開示したサーメットから成る、粉砕・撹拌・混合・混練機部材の耐衝撃性を改善するとともに高い耐食性を付与する。【解決手段】元素ごとの質量比が、Ti:15~40%、Mo:2~29%、Cr:1~15%、C:2~20%、Co:CoとNi合計で30~55%となり、かつCo/Ni比が1超となるように原料を配合し、それらを混合して混合粉を得、この混合粉をプレス成形してプレス体を得、このプレス体を焼結して得られるサーメットから成る、粉砕・撹拌・混合・混練機部材である。このサーメットは、TiCNを主成分とするコア相2と、コア相の周囲を覆うように存在し、(Ti,Mo,Cr)(C,N)を主成分とするリム相3と、金属相4の3相を有し、SEM観察によりMo2C相および炭化クロム相を観察することができない。【選択図】図1The object of the present invention is to improve the impact resistance and impart high corrosion resistance to pulverizing, stirring, mixing and kneading machine members made of the cermet disclosed in Japanese Patent No. 6922110. The mass ratio of each element is Ti: 15 to 40%, Mo: 2 to 29%, Cr: 1 to 15%, C: 2 to 20%, and Co: total of Co and Ni is 30 to 55%. and the raw materials are blended so that the Co / Ni ratio is more than 1, they are mixed to obtain a mixed powder, the mixed powder is press-molded to obtain a pressed body, and the pressed body is sintered. A grinding, stirring, mixing and kneading machine member made of the obtained cermet. This cermet consists of a core phase 2 containing TiCN as a main component, a rim phase 3 covering the core phase and containing (Ti, Mo, Cr) (C, N) as a main component, and a metal phase. 4, and the Mo2C phase and the chromium carbide phase cannot be observed by SEM observation. [Selection drawing] Fig. 1

Description

本発明は、耐衝撃性、耐摩耗性および耐食性に優れたサーメットから成る、粉砕・撹拌・混合・混練機部材に関する。 TECHNICAL FIELD The present invention relates to members for pulverizing, stirring, mixing, and kneading machines made of cermet excellent in impact resistance, wear resistance, and corrosion resistance.

本発明者らは特許文献1において、耐衝撃性および耐摩耗性に優れたサーメットから成る、粉砕・撹拌・混合・混練機部材を開示した。すなわち、この特許文献1の技術によって得られた、磁性を有し、軽量で耐摩耗性、耐衝撃性を大幅に向上させたサーメットにより、損耗の激しい粉砕・撹拌・混合・混練機部材を長寿命化させることが可能となった。 In Patent Document 1, the present inventors disclosed a pulverizing/stirring/mixing/kneading machine member made of cermet with excellent impact resistance and abrasion resistance. That is, the cermet that has magnetism, is lightweight, and has significantly improved abrasion resistance and impact resistance, obtained by the technique of Patent Document 1, can be used for grinding, stirring, mixing, and kneading machine parts that are subject to severe wear for a long time. It has become possible to prolong the life.

特許第6922110号公報Japanese Patent No. 6922110

本発明者らが、特許文献1に開示したサーメットから成る、粉砕・撹拌・混合・混練機部材を試作して試験を重ねたところ、さらなる耐衝撃性の向上が望まれることがわかった。また、用途によっては耐食性の向上も望まれることがわかった。すなわち、リチウムイオン電池の正極材料やプラスチックの難燃剤などの金属腐食性材料を含む材料の混練等に使用する場合、高い耐食性が求められる。 The inventors of the present invention made prototypes of pulverizing, stirring, mixing, and kneading machine members made of the cermet disclosed in Patent Document 1 and repeated tests, and found that further improvement in impact resistance is desired. In addition, it was found that an improvement in corrosion resistance is also desired depending on the application. That is, high corrosion resistance is required when used for kneading materials containing metal corrosive materials such as positive electrode materials for lithium ion batteries and flame retardants for plastics.

そこで本発明は、特許文献1に開示したサーメットから成る、粉砕・撹拌・混合・混練機部材の耐衝撃性を改善するとともに、高い耐食性を付与することを課題とする。 Accordingly, an object of the present invention is to improve the impact resistance and to impart high corrosion resistance to the members of pulverizing, stirring, mixing, and kneading machines made of the cermet disclosed in Patent Document 1.

本発明者らは、上記課題を解決するためにCrを含有させることとし、さらに粉砕・撹拌・混合・混練機部材に求められる、耐摩耗性、磁性等の他の物性とのバランスを考慮して、粉砕・撹拌・混合・混練機部材用にサーメットの組成を再構築した。 The present inventors decided to contain Cr in order to solve the above problems, and also considered the balance with other physical properties such as wear resistance and magnetism required for pulverizing, stirring, mixing, and kneading machine parts. Therefore, we reconstructed the composition of cermet for grinding, stirring, mixing, and kneading machine parts.

すなわち、本発明は元素ごとの質量比が、
Ti:15~40%
Mo:2~29%
Cr:1~15%
C:2~20%
CoとNi合計で30~55%
となり、かつCo/Ni比が1超となるように、TiまたはTi化合物、MoまたはMo化合物、CrまたはCr化合物、CoまたはCo化合物、NiまたはNi化合物、および炭素、炭化物または炭窒化物から任意に選択される粉末を原料とし、それらを湿式または乾式にて混合し、混合粉を得るステップ、混合粉を50~300MPaの圧力でプレス成形してプレス体を得るステップ、プレス体を1300~1700℃、真空、還元、不活性ガス、水素または窒素のいずれかの雰囲気下で焼結するステップを経て得られ、Ti(C,N)(N=0の場合を含む。)を主成分とするコア相と、コア相の周囲を覆うように存在し、(Ti,Mo,Cr)(C,N)(N=0の場合を含む。)を主成分とするリム相と、金属相の3相を有し、SEM観察により、MoC相および炭化クロム相を観察することができない、サーメットから成る、粉砕・撹拌・混合・混練機部材を提供することで、上記課題を解決した。
That is, in the present invention, the mass ratio for each element is
Ti: 15-40%
Mo: 2-29%
Cr: 1-15%
C: 2-20%
Co and Ni total 30-55%
and any of Ti or Ti compounds, Mo or Mo compounds, Cr or Cr compounds, Co or Co compounds, Ni or Ni compounds, and carbon, carbides or carbonitrides such that the Co/Ni ratio is greater than 1 A step of obtaining a mixed powder by using the powder selected as a raw material and mixing them in a wet or dry manner, a step of press-molding the mixed powder at a pressure of 50 to 300 MPa to obtain a pressed body, and a pressed body of 1300 to 1700 °C, vacuum, reduction, inert gas, hydrogen or nitrogen atmosphere, and is mainly composed of Ti(C,N) (including the case where N=0) Three phases: a core phase, a rim phase that exists so as to cover the core phase and is mainly composed of (Ti, Mo, Cr) (C, N) (including the case where N = 0), and a metal phase The above problems have been solved by providing a member for a pulverizer, agitator, mixer, and kneader made of cermet, which has phases and in which the Mo 2 C phase and the chromium carbide phase cannot be observed by SEM observation.

本発明により、特許文献1に開示したサーメットから成る、粉砕・撹拌・混合・混練機部材の耐衝撃性を改善するとともに高い耐食性を付与することが可能となり、粉砕・撹拌・混合・混練機部材をさらに長寿命化させることが可能となった。
粉砕・撹拌・混合・混練機部材としては、具体的には、二軸押出機用のスクリューエレメントやバレル、ピンミル装置の粉砕ピン、混合撹拌機のパドル、ビーズミルなどの粉体処理装置部材などに好適に用いることができる。
According to the present invention, it is possible to improve the impact resistance of the crushing, stirring, mixing, and kneading machine members made of the cermet disclosed in Patent Document 1 and to impart high corrosion resistance. It has become possible to extend the life of the
Specific examples of pulverizing, stirring, mixing, and kneading machine parts include screw elements and barrels for twin-screw extruders, crushing pins for pin mill devices, paddles for mixing stirrers, and powder processing device members for bead mills. It can be used preferably.

本発明の粉砕・撹拌・混合・混練機部材に用いるサーメットの断面組織の模式図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a cross-sectional structure of a cermet used for a pulverizing/stirring/mixing/kneading machine member of the present invention; 本発明の粉砕・撹拌・混合・混練機部材に用いる、リム相に相対的にMoを多く含む相を有するサーメットの断面組織の模式図。FIG. 2 is a schematic diagram of a cross-sectional structure of a cermet having a phase containing relatively more Mo than a rim phase, which is used for the pulverizing/stirring/mixing/kneading machine member of the present invention. 実施例1の粉砕・撹拌・混合・混練機部材に用いるサーメットのSEM観察像。1 is an SEM observation image of a cermet used for a pulverizing/stirring/mixing/kneading machine member of Example 1. FIG.

本発明の粉砕・撹拌・混合・混練機部材は、以下の内容にて実施できる。 The pulverizing/stirring/mixing/kneading member of the present invention can be implemented in the following manner.

まず、元素ごとの質量比が、
Ti:15~40%
Mo:2~29%
Cr:1~15%
C:2~20%
Co:10~50%
CoとNi合計で30~55%
となり、かつCo/Ni比が1超となるように、TiまたはTi化合物、MoまたはMo化合物、CrまたはCr化合物、CoまたはCo化合物、NiまたはNi化合物、および炭素、炭化物または炭窒化物から任意に選択される粉末を原料とする。
例えば、Tiの化合物としてはTiC、TiN、TiCN、(Ti,Mo)(C,N)、(Ti,W)(C,N)のような炭化物、窒化物、炭窒化物、複合炭窒化物のいずれの形態であっても構わない。Mo、Cr、Co、Niについても同様である。また、炭素(C)源としては、炭素、炭化物または炭窒化物を用いることができる。
そして、それらを湿式または乾式にて混合し、混合粉を得、その混合粉を50~300MPaの圧力でプレス成形してプレス体を得、そのプレス体を1300~1700℃、真空、還元、不活性ガス、水素または窒素のいずれかの雰囲気下で焼結することで、サーメットからなる粉砕・撹拌・混合・混練機部材を得る。このサーメットは、コア相とリム相と金属相の3相を有するが、具体的な各相の設計を以下に説明する。なお、以下の説明において元素ごとの質量比は、いずれも原料段階のものである。
First, the mass ratio of each element is
Ti: 15-40%
Mo: 2-29%
Cr: 1-15%
C: 2-20%
Co: 10-50%
Co and Ni total 30-55%
and any of Ti or Ti compounds, Mo or Mo compounds, Cr or Cr compounds, Co or Co compounds, Ni or Ni compounds, and carbon, carbides or carbonitrides such that the Co/Ni ratio is greater than 1 The raw material is the powder selected for
For example, Ti compounds include carbides, nitrides, carbonitrides, composite carbonitrides such as TiC, TiN, TiCN, (Ti, Mo) (C, N), (Ti, W) (C, N) It may be in any form. The same applies to Mo, Cr, Co and Ni. Carbon, carbide or carbonitride can be used as the carbon (C) source.
Then, they are wet- or dry-mixed to obtain a mixed powder, the mixed powder is press-molded at a pressure of 50 to 300 MPa to obtain a pressed body, and the pressed body is heated at 1300 to 1700 ° C. under vacuum, reduction, and non-reduction. By sintering in an atmosphere of either active gas, hydrogen or nitrogen, a pulverizing/stirring/mixing/kneading machine member made of cermet is obtained. This cermet has three phases, a core phase, a rim phase, and a metal phase, and the specific design of each phase will be explained below. In the following explanation, the mass ratio of each element is that of the raw material stage.

(コア相・リム相の設計)
Cが2~20%であることにより、焼結性が改善し微細なコア相とリム相から成る硬質相を形成する。Cが2%未満であると、十分な体積のコア相およびリム相が生成されず耐摩耗性が低下する。一方、Cを20%より多く添加した場合には、遊離炭素相が発生し、機械的特性(強度・硬さ・耐衝撃性)が大幅に低下するとともに耐食性も低下する。
Nは添加しなくてもよいが、Nを添加する場合は、0を超え5%以内の範囲で任意に添加することができる。Nを添加することで、リム相の厚みが小さくなる傾向となり、耐摩耗性および耐衝撃性が向上する。また、Nを5%以下にすることで、焼結中に発生する窒素ガスによる合金中の気孔残存を抑制でき、機械的特性の向上を図ることができる。
さらに、C:N=7:3~10:0であることが望ましい。C:N比率をこの範囲にすることで、金属相と、コア相とリム相から成る硬質相との良い濡れ性が保て、緻密性が向上する。
Moは2~29%の範囲で混合する。コア相を形成するTiCNと、金属相を形成するCo、Niとの濡れ性は悪いが、MoC等を添加することにより生成されるリム相により、コア相とリム相から成る硬質相の濡れ性を改善することができる。これにより材料の焼結性が上がり、機械的特性を向上させることができる。また、Moの添加は耐食性向上の観点からも有効である。一方、Moを29%より多く添加した場合には、耐衝撃性が低下する
Crは1~15%の範囲で混合する。Crが1%未満であると、十分な耐食性が得られない。一方、Crを15%より多く添加した場合には、耐摩耗性や磁性が低下する。
CrとMoとの合計(Cr+Mo)は3~30%とすることが望ましい。(Cr+Mo)が多いほど耐食性は向上するが、30%より多い場合には、異常相が出現して耐衝撃性が低下するおそれがある。
Wは添加しなくてもよいが、Wを添加する場合は、0を超え10%未満の範囲で任意に添加することができる。Wを添加することで耐摩耗性をさらに向上させることができる。これは、コア相とリム相から成る硬質相がW原子により固溶強化され、アブレシブ摩耗時の硬質相の破壊が起こりにくくなるためである。
なお、MoとWを合わせて35%以下にした場合には、WとCo、MoとCo、またはWとMoとCoの合金を形成しなくなり、耐衝撃性がより向上する。
(Design of core phase and rim phase)
When C is 2 to 20%, the sinterability is improved and a hard phase consisting of a fine core phase and a rim phase is formed. If the C content is less than 2%, sufficient volumes of the core phase and the rim phase are not generated, resulting in deterioration of wear resistance. On the other hand, when C is added in an amount of more than 20%, a free carbon phase is generated, and the mechanical properties (strength, hardness, impact resistance) are significantly lowered and the corrosion resistance is also lowered.
N may not be added, but when N is added, it can be added arbitrarily in the range of more than 0 and within 5%. Addition of N tends to reduce the thickness of the rim phase, thereby improving wear resistance and impact resistance. Further, by setting the N content to 5% or less, it is possible to suppress the remaining pores in the alloy due to the nitrogen gas generated during sintering, thereby improving the mechanical properties.
Furthermore, it is desirable that C:N=7:3 to 10:0. By setting the C:N ratio within this range, good wettability between the metal phase and the hard phase composed of the core phase and the rim phase is maintained, and the denseness is improved.
Mo is mixed in the range of 2 to 29%. Although the wettability between TiCN forming the core phase and Co and Ni forming the metal phase is poor, the rim phase generated by adding Mo 2 C or the like allows the formation of a hard phase consisting of a core phase and a rim phase. Wettability can be improved. This increases the sinterability of the material and improves the mechanical properties. Addition of Mo is also effective from the viewpoint of improving corrosion resistance. On the other hand, if more than 29% of Mo is added, the impact resistance is lowered. Cr is mixed in the range of 1 to 15%. If Cr is less than 1%, sufficient corrosion resistance cannot be obtained. On the other hand, when Cr is added by more than 15%, wear resistance and magnetism are lowered.
The sum of Cr and Mo (Cr+Mo) is preferably 3 to 30%. Corrosion resistance improves as the content of (Cr+Mo) increases.
W may not be added, but when W is added, it can be arbitrarily added in a range of more than 0 and less than 10%. Addition of W can further improve wear resistance. This is because the hard phase composed of the core phase and the rim phase is solid-solution strengthened by W atoms, and the hard phase is less likely to break during abrasive wear.
If the total content of Mo and W is 35% or less, alloys of W and Co, Mo and Co, or W, Mo and Co are not formed, and impact resistance is further improved.

(金属相の設計)
CoとNiは合計で30~55%である。この範囲よりも金属量が少ない場合には、耐衝撃性が不十分となる。多い場合には耐摩耗性が低下し、粉砕・撹拌・混合・混練機部材の損耗が激しくなる。
また、Co/Ni比は1超とする。Niよりも優れた機械的特性(硬さ、耐摩耗性)を持つCoを多く添加することで、粉砕・撹拌・混合・混練機部材の機械的特性を向上させることができる。そして、CrおよびMoの添加による耐食性向上の効果と相まって粉砕・撹拌・混合・混練機部材を長寿命化することができる。
さらに、CoとNiを合計で30%以上含むサーメットは、磁選に必要とされる十分な磁性を有する。磁選は粉砕・撹拌・混合・混練機装置において、部材のチッピングなどによる材料中の異物検出時に使用される。
(Design of metallic phase)
Co and Ni are 30-55% in total. If the amount of metal is less than this range, the impact resistance will be insufficient. If the amount is large, the abrasion resistance is lowered, and the wear of pulverizing, stirring, mixing, and kneading machine parts becomes severe.
Also, the Co/Ni ratio should be greater than one. By adding a large amount of Co, which has better mechanical properties (hardness and wear resistance) than Ni, the mechanical properties of the members of the pulverizing, stirring, mixing, and kneading machines can be improved. In combination with the effect of improving the corrosion resistance due to the addition of Cr and Mo, it is possible to prolong the life of the pulverizing, stirring, mixing and kneading machine members.
Furthermore, a cermet containing 30% or more of Co and Ni in total has sufficient magnetism required for magnetic separation. Magnetic separation is used for detection of foreign matter in materials due to chipping of parts in grinding, stirring, mixing, and kneading equipment.

本発明の粉砕・撹拌・混合・混練機部材は、一例として以下の製造方法で製造できる。
(製造方法)
本発明の粉砕・撹拌・混合・混練機部材を製造する場合には、次のステップ(工程)を含む。
すなわち、元素ごとの質量比が、
Ti:15~40%
Mo:2~29%
Cr:1~15%
C:2~20%
CoとNi合計で30~55%
となり、かつCo/Ni比が1超となるように、TiまたはTi化合物、MoまたはMo化合物、CrまたはCr化合物、CoまたはCo化合物、NiまたはNi化合物、および炭素、炭化物または炭窒化物から任意に選択される粉末を原料とし、
それらを湿式または乾式にて混合し、混合粉を得るステップと、
混合粉を50~300MPaの圧力でプレス成形してプレス体を得るステップと、
プレス体を1300~1700℃、真空、還元、不活性ガス、水素または窒素のいずれかの雰囲気下で焼結するステップである。
湿式混合の場合には、溶媒としてエタノールのような揮発性溶剤を使用し、スラリーは、真空静置乾燥、あるいは噴霧乾燥などにより乾燥させる。このとき、原料混合後のコア相およびリム相を形成する粒子の粒径(以下「焼結前の粒径」という。)は、焼結後の硬質相の平均粒径の目標値に応じて適宜調整する。例えば焼結後の硬質相の平均粒径の目標値が3μm未満の場合、焼結前の粒径は、2.0μm以下であってもよく、好ましくは1.5μm以下、より好ましくは1.0μm以下、さらに好ましくは0.6μm以下であるとよい。一般に、焼結により粒子は粒成長するが、焼結前の粒径が2.0μm以下であれば、粗大な硬質粒子の発生を抑制することができ、1.5μm以下である場合には、焼結後の硬質相の平均粒径を容易に3μm未満とすることができる。1.0μm以下であれば、焼結後の硬質相の平均粒径はより小さくなり、耐摩耗性が向上する。さらに0.6μm以下であれば、より低温で焼結することが可能となり、さらに耐摩耗性を向上させることができる。
一方、焼結後の硬質相の平均粒径を3μm以上とする場合、コア相を構成する原料粉末として大きいものを使用する、あるいは原料粉末の粉砕をしないか、短時間とすればよく、例えば、焼結前の粒径を2μm以上とすればよい。
得られた原料混合粉末に、成形バインダーとなる樹脂成分を混合し造粒を行う。造粒にはスプレードライを用いてもよい。
造粒した粉末は、金型プレス機、または静水圧プレス機により50~300MPaでプレス成形を行う。成形後、必要に応じて中間加工を入れてもよい。
焼結条件は、1300~1700℃の真空またはガス雰囲気中で本焼結を行う。本焼結前には脱脂・仮焼結工程を入れてもよく、脱脂後、仮焼結後それぞれの段階で必要に応じて中間加工を入れてもよい。脱脂と仮焼結の工程を連続して行ってもよく、脱脂および仮焼結の工程と、本焼結も連続して行ってよい。脱脂および仮焼結を行う場合は、600~1000℃の真空またはガス雰囲気中で行う。さらに、必要に応じて熱間水圧プレスを行うことができる。
最後に、機械加工、あるいは電気加工により最終形状に仕上げ、目的とする粉砕・撹拌・混合・混練機部材を得る。
The pulverizing/stirring/mixing/kneading member of the present invention can be manufactured by the following manufacturing method as an example.
(Production method)
The following steps (processes) are included in manufacturing the pulverizing/stirring/mixing/kneading machine member of the present invention.
That is, the mass ratio for each element is
Ti: 15-40%
Mo: 2-29%
Cr: 1-15%
C: 2-20%
Co and Ni total 30-55%
and any of Ti or Ti compounds, Mo or Mo compounds, Cr or Cr compounds, Co or Co compounds, Ni or Ni compounds, and carbon, carbides or carbonitrides such that the Co/Ni ratio is greater than 1 The raw material is the powder selected for
a step of wet or dry mixing them to obtain a mixed powder;
A step of press molding the mixed powder at a pressure of 50 to 300 MPa to obtain a pressed body;
A step of sintering the pressed body at 1300 to 1700° C. under an atmosphere of vacuum, reduction, inert gas, hydrogen or nitrogen.
In the case of wet mixing, a volatile solvent such as ethanol is used as the solvent, and the slurry is dried by vacuum static drying or spray drying. At this time, the particle size of the particles forming the core phase and the rim phase after mixing the raw materials (hereinafter referred to as "particle size before sintering") depends on the target value of the average particle size of the hard phase after sintering. Adjust accordingly. For example, when the target value of the average grain size of the hard phase after sintering is less than 3 μm, the grain size before sintering may be 2.0 μm or less, preferably 1.5 μm or less, more preferably 1.5 μm or less. It is preferably 0 μm or less, more preferably 0.6 μm or less. In general, particles grow by sintering, but if the particle size before sintering is 2.0 μm or less, the generation of coarse hard particles can be suppressed, and if it is 1.5 μm or less, The average grain size of the hard phase after sintering can easily be less than 3 μm. If it is 1.0 μm or less, the average grain size of the hard phase after sintering will be smaller, and the wear resistance will be improved. Furthermore, when the thickness is 0.6 μm or less, sintering can be performed at a lower temperature, and wear resistance can be further improved.
On the other hand, when the average particle size of the hard phase after sintering is 3 μm or more, it is sufficient to use a large raw material powder constituting the core phase, or not to pulverize the raw material powder or to shorten the time. , the grain size before sintering should be 2 μm or more.
The raw material mixed powder thus obtained is mixed with a resin component that serves as a molding binder, and granulated. Spray drying may be used for granulation.
The granulated powder is press-molded at 50 to 300 MPa with a die press or a hydrostatic press. After molding, intermediate processing may be performed as necessary.
As for sintering conditions, main sintering is performed in a vacuum or gas atmosphere at 1300 to 1700°C. A degreasing/temporary sintering process may be added before the main sintering, and an intermediate process may be added at each stage after the degreasing and after the temporary sintering, if necessary. The steps of degreasing and preliminary sintering may be performed continuously, and the steps of degreasing and preliminary sintering may also be performed continuously with the main sintering. Debinding and preliminary sintering are performed in a vacuum or gas atmosphere at 600 to 1000°C. Furthermore, hot hydraulic pressing can be performed as needed.
Finally, the final shape is finished by mechanical processing or electrical processing to obtain the desired pulverizing/stirring/mixing/kneading machine member.

(粉砕・撹拌・混合・混練機部材に用いるサーメットの組織)
本発明に用いるサーメットの組織はSEMによる断面観察で確認される。
上記サーメットは、図1にその断面組織1を模式的に示しているように、Ti(C,N)(N=0の場合を含む。すなわちNを含まない場合はTiCを指す。)を主成分とするコア相2と、コア相2の周囲を覆うように存在し、(Ti,Mo,Cr)(C,N)(N=0の場合を含む。すなわちNを含まない場合は(Ti,Mo,Cr)Cを指す。)を主成分とするリム相3と、金属相4の3相を有し、サーメット中にはMoC相および炭化クロム相は原則的に含まない。MoC相および炭化クロム相がある場合は、SEM(走査型電子顕微鏡)観察において、金属相中にコア相・リム相以外に明度の異なる粒子形状で存在する。判断がつかない場合にはEPMA(電子線マイクロアナライザ)やEDX(エネルギー分散型X線分析)、XRD(X線回折)による分析を行い、MoC相および炭化クロム相の有無について総合的に判断する。イレギュラー的に観察される場合でも、1万倍の観察視野中に1μm以上の粒子が1個以下、同じく0.3μm以上の粒子が5個以下である。なお、本発明において「SEM観察により、MoC相および炭化クロム相を観察することができない」とは、前述の1万倍の観察視野中に1μm以上の粒子が1個以下、同じく0.3μm以上の粒子が5個以下である場合も含むものとする。
上記の構成とすることで、耐衝撃性、耐摩耗性の高い材料が得られる。
(Structure of cermet used for grinding, stirring, mixing, and kneading machine parts)
The structure of the cermet used in the present invention is confirmed by cross-sectional observation by SEM.
The cermet, as schematically shown in its cross-sectional structure 1 in FIG. It exists so as to cover the core phase 2 as a component and the core phase 2, and (Ti, Mo, Cr) (C, N) (including the case where N = 0. That is, when N is not included, (Ti , Mo, Cr)C.) and a metal phase 4. In principle, the cermet does not contain the Mo 2 C phase and the chromium carbide phase. When the Mo 2 C phase and the chromium carbide phase are present, they exist in the form of grains with different brightness in the metallic phase other than the core phase and the rim phase in SEM (scanning electron microscope) observation. If it is not possible to make a judgment, analyzes by EPMA (electron probe microanalyzer), EDX (energy dispersive X-ray analysis), and XRD (X-ray diffraction) are performed to comprehensively determine the presence or absence of Mo 2 C phase and chromium carbide phase. to decide. Even when observed irregularly, the number of particles with a diameter of 1 μm or more is 1 or less, and the number of particles with a diameter of 0.3 μm or more is 5 or less in an observation field of magnification of 10,000. Incidentally, in the present invention, "the Mo 2 C phase and the chromium carbide phase cannot be observed by SEM observation" means that there is no more than one particle of 1 µm or more in the observation field of view of 10,000 times magnification, and 0.0. A case where the number of particles of 3 μm or more is 5 or less is also included.
With the above configuration, a material with high impact resistance and abrasion resistance can be obtained.

また、上記サーメットは以下の特徴を有する。
(コア相)
コア相は、Ti(C,N)(N=0の場合を含む。)を主成分とする硬質相であり、高い硬さを有する。
(リム相)
リム相はコア相の周囲を覆うように存在し、(TiMo,Cr)(C,N)(N=0の場合を含む。)を主成分とする。図2に示すように、リム相には相対的にMo成分が多い相と、相対的にTiが多い相の2相を有していてもよい。2相である場合には、リム相の硬さが向上し、より耐摩耗性が高くなる。
(粒径)
コア相とリム相から成る硬質相の平均粒径は特に限定されないが、硬質相の平均粒径は、サーメットの断面組織をSEM観察し、下記フルマンの式(数1)から算出することができる。
[数1]
=(4/π)×(N/N) (式1)
= n/L (式2)
= n/S (式3)
(式1)中、dは平均粒径、πは円周率、Nは断面組織上の任意の直線によってヒットされる単位長さあたりの粒子数、Nは任意の単位面積内に含まれる粒子の数を表し、(式2)中、nは断面組織上の任意の直線によってヒットされる粒子の数、Lは断面組織上の任意の直線の長さを表し、(式3)中、nは任意の測定面積内に含まれる粒子の数、Sは任意の測定領域の面積を表す。
Moreover, the above cermet has the following characteristics.
(core phase)
The core phase is a hard phase mainly composed of Ti(C,N) (including N=0) and has high hardness.
(rim phase)
The rim phase exists so as to cover the core phase and is mainly composed of (Ti , Mo, Cr) (C, N) (including the case where N=0). As shown in FIG. 2, the rim phase may have two phases, a phase with a relatively large amount of Mo and a phase with a relatively large amount of Ti. In the case of two phases, the hardness of the rim phase is improved, resulting in higher wear resistance.
(Particle size)
The average grain size of the hard phase composed of the core phase and the rim phase is not particularly limited. .
[Number 1]
d m =(4/π)×(N L /N S ) (Formula 1)
N L = n L /L (Formula 2)
NS = ns / S (Formula 3)
In (Equation 1), dm is the average particle diameter, π is the circular constant, NL is the number of particles per unit length hit by an arbitrary straight line on the cross-sectional structure, and NS is the number of particles within an arbitrary unit area. represents the number of particles contained, where n L is the number of particles hit by an arbitrary straight line on the cross-sectional structure, L represents the length of an arbitrary straight line on the cross-sectional structure, and (Equation 3 ), n S represents the number of particles contained in an arbitrary measurement area, and S represents the area of an arbitrary measurement region.

コア相とリム相からなる硬質相の平均粒径は3μm未満にすることができる。硬質相の平均粒径を3μm未満にすることで、硬さが向上し、耐摩耗性が向上する。特に、硬質相の平均粒径を1.5μm以下とすることで、さらに硬さが向上し、耐摩耗性もさらに向上する。
一方、硬質相の平均粒径は3μm以上にすることもできる。硬質相の平均粒径を3μm以上にすることで、破壊靭性が向上する。
このように、硬質相の平均粒径は具体的な用途(必要特性)に応じて適宜決定すればよい。なお、硬質相の平均粒径を硬質相の平均粒径を3μm以上にする場合、その平均粒径の上限値は特に限定されず技術常識の範囲内で決めればよいが、例えば10μm以下とすることができる。なお、焼結後の硬質相の平均粒径を3μm以上10μm以下とする場合、例えば、焼結前の粒径を2μm以上7μm以下とすればよい。
The average particle size of the hard phase consisting of core and rim phases can be less than 3 μm. By setting the average grain size of the hard phase to less than 3 μm, the hardness is improved and the wear resistance is improved. In particular, by setting the average grain size of the hard phase to 1.5 μm or less, the hardness is further improved, and the wear resistance is also further improved.
On the other hand, the average grain size of the hard phase can be 3 μm or more. Fracture toughness is improved by setting the average grain size of the hard phase to 3 μm or more.
Thus, the average particle size of the hard phase may be appropriately determined according to specific uses (required properties). When the average particle size of the hard phase is set to 3 μm or more, the upper limit of the average particle size is not particularly limited and may be determined within the range of common general technical knowledge, for example, 10 μm or less. be able to. When the average grain size of the hard phase after sintering is 3 μm or more and 10 μm or less, for example, the grain size before sintering may be 2 μm or more and 7 μm or less.

(比重)
本実施形態に係る粉砕・撹拌・混合・混練機部材は、比重9以下である。粉砕・撹拌・混合・混練機は、従来、鉄鋼材料製の部材装着を前提とした設計となっているため、部材の比重が9を超えると、回転軸のたわみの発生、駆動装置側への負荷増大などの原因となる。比重が8以下になると、鉄鋼材料と同等の扱いができ、さらに比重が7.5以下になると鉄鋼材料より軽くなり、装置設計の自由度を上げることができる。
(specific gravity)
The pulverization/stirring/mixing/kneading machine member according to the present embodiment has a specific gravity of 9 or less. Conventional pulverizers, agitators, mixers, and kneaders have been designed on the premise that they are equipped with steel materials. It causes load increase. When the specific gravity is 8 or less, it can be handled in the same way as steel materials, and when the specific gravity is 7.5 or less, it becomes lighter than steel materials, and the degree of freedom in device design can be increased.

上記特徴を持つサーメットは、耐摩耗性が超硬合金と同等以上でありながらも、比重が鉄鋼材料と同等であり、さらに磁性と高い耐衝撃性および耐食性を有している。この材料を、粉砕・撹拌・混合・混練機部材として適用することで、部材同士の接触による破損や、使用時の部材の摩耗および腐食を抑制し、部材の長寿命化を達成できる。 The cermet having the above characteristics has wear resistance equal to or higher than that of cemented carbide, has a specific gravity equal to that of steel materials, and has magnetism and high impact resistance and corrosion resistance. By applying this material as a member of a pulverizer, agitator, mixer, or kneader, breakage due to contact between members, wear and corrosion of members during use can be suppressed, and a longer service life of members can be achieved.

まず、表1の実施例1に示す原料粉末を、エタノールを溶媒としてアトライター、またはボールミルにより粉砕混合した。得られたスラリーを真空中で乾燥させ、バインダーとなるパラフィンを混合したのちプレス成形によりプレス体を作製した。
このプレス体を大気圧水素雰囲気下800℃で仮焼結を行い、さらに真空雰囲気にて1400℃にて本焼結を行うことにより、本発明の粉砕・撹拌・混合・混練機部材に用いるサーメットを得た。
実施例1により得られたサーメットは、前述のフルマンの式により算出した平均粒径が1.13μmであった。
実施例2以降の実施例及び比較例は、1300~1500℃の範囲内で最も高い密度が得られる最低温度で焼結した。他の条件は実施例1と同条件である。
また、実施例1~13およびすべての比較例において、コア相とリム相から成る硬質相の平均粒径は1.5μm未満であった。一方、実施例14および実施例15では、コア相とリム相から成る硬質相の平均粒径は約5μmであった。なお、比較例1は、上記特許文献1の表1に示している「実施例1」に対応する。
さらに、SEM観察によりサーメット断面組織の構成成分を観察したところ、すべての実施例において、MoC相、炭化クロム相およびWC相の存在は確認できなかった。また、すべての実施例においてリム相中に、相対的にMo成分が多い相が存在した。
First, raw material powders shown in Example 1 in Table 1 were pulverized and mixed with an attritor or a ball mill using ethanol as a solvent. The obtained slurry was dried in a vacuum, mixed with paraffin as a binder, and then pressed to produce a pressed body.
This pressed body is preliminarily sintered at 800°C in an atmospheric hydrogen atmosphere, and further sintered at 1400°C in a vacuum atmosphere to obtain a cermet for use in the pulverizing, stirring, mixing, and kneading machine members of the present invention. got
The cermet obtained in Example 1 had an average particle size of 1.13 μm calculated by the above-mentioned Furuman's formula.
The examples and comparative examples after Example 2 were sintered at the lowest temperature within the range of 1300 to 1500° C. at which the highest density was obtained. Other conditions are the same as in Example 1.
Moreover, in Examples 1 to 13 and all comparative examples, the average grain size of the hard phase consisting of the core phase and the rim phase was less than 1.5 μm. On the other hand, in Examples 14 and 15, the average grain size of the hard phase consisting of the core phase and the rim phase was about 5 μm. Comparative Example 1 corresponds to "Example 1" shown in Table 1 of Patent Document 1 above.
Furthermore, when the constituent components of the cermet cross-sectional structure were observed by SEM observation, the existence of Mo 2 C phase, chromium carbide phase and WC phase could not be confirmed in all the examples. Moreover, in all the examples, a phase with a relatively large amount of Mo component was present in the rim phase.

サーメット組織全体の元素組成比率は、原料組成との乖離が大きく、また原料組成と焼結後のサーメットの成分比率の決定係数が低く、正確に定量することができなかった。この理由としては上記特許文献1でも説明したように、各構成元素同士の固溶体形成による格子状態の変化が影響していることが考えられる。すなわち、上記特許文献1で引用した非特許文献1(河端,藤村,千徳「粉体および粉末冶金」第29巻第1号(1980),30-34)にあるように、過去の研究においてもサーメット材料の合金組成の定量化が困難なことが知られており、正確な定量は難しい。
このように本発明において、当該物をその構造または特性により直接特定することは不可能であるか、またはおよそ非実際的であり、本発明には、いわゆる「不可能・非実際的事情」が存在する。
The elemental composition ratio of the entire cermet structure has a large deviation from the raw material composition, and the coefficient of determination between the raw material composition and the composition ratio of the cermet after sintering is low, so it could not be determined accurately. As explained in Patent Document 1, the reason for this is thought to be the influence of changes in the lattice state due to the formation of a solid solution between the respective constituent elements. That is, as described in Non-Patent Document 1 (Kawabata, Fujimura, Chitoku, "Powder and Powder Metallurgy", Vol. 29, No. 1 (1980), 30-34) cited in Patent Document 1 above, even in past research It is known that the alloy composition of cermet materials is difficult to quantify, and accurate quantification is difficult.
As described above, in the present invention, it is impossible or almost impractical to directly specify the object by its structure or characteristics. exist.

Figure 0007157887000002
Figure 0007157887000002

Figure 0007157887000003
Figure 0007157887000003

続いて作製したサーメットの特性の評価を以下に示す測定方法により実施した。
*比重・・・アルキメデス法(規格:JIS Z 8807)
*硬さ・・・ビッカース硬さ試験(規格:JIS Z 2244)
*耐摩耗性・・・ラバーホイール試験(規格:ASTM G65)
*耐衝撃性・・・10Rノッチ有試験片によるシャルピー衝撃試験
(規格:JIS Z 2242)
*破壊靭性値・・・JIS R 1607(IF法)
*磁性・・・飽和磁化測定
*耐食性・・・酸系溶液中に室温、24時間の浸漬試験を実施し、試験前後の重量減少量と試験片の形状および比重から腐食が進行した深さを算出
Subsequently, the properties of the produced cermet were evaluated by the following measurement methods.
* Specific gravity: Archimedes method (standard: JIS Z 8807)
*Hardness: Vickers hardness test (standard: JIS Z 2244)
*Abrasion resistance: rubber wheel test (standard: ASTM G65)
*Impact resistance: Charpy impact test with 10R notched test piece
(Standard: JIS Z2242)
* Fracture toughness value: JIS R 1607 (IF method)
*Magnetism: Saturation magnetization measurement *Corrosion resistance: Performed immersion test at room temperature for 24 hours in an acid solution. calculation

本発明の実施例および比較例におけるサーメットの特性を表3に示す。
ここで、耐衝撃性(シャルピー衝撃値)および耐食性の評価基準は、上記特許文献1に開示したサーメットである「比較例1」を上回ることを合格レベルとした。また、耐摩耗性および磁性の評価基準は、超硬合金(JIS分類:V40相当材)と同等以上を合格レベルとした。
Table 3 shows the properties of the cermets in Examples of the present invention and Comparative Examples.
Here, for the evaluation criteria of impact resistance (Charpy impact value) and corrosion resistance, exceeding the cermet "Comparative Example 1" disclosed in Patent Document 1 was taken as a passing level. In terms of wear resistance and magnetism evaluation criteria, a level equal to or higher than cemented carbide (JIS classification: material corresponding to V40) was taken as a passing level.

Figure 0007157887000004
Figure 0007157887000004

すべての実施例において耐衝撃性および耐食性は、上記特許文献1に開示したサーメットである「比較例1」を上回り、優れた耐衝撃性および耐食性を示した。また、比重は目標の9以下に抑えられ、いずれもSKDの比重(7.7)よりも低かった。また、耐摩耗性に関しても超硬合金(JIS分類:V40相当材)と同等以上であった。
なお、Wの添加量が10%以上である実施例5では、他の実施例に比べて耐衝撃性の改善効果が低くなっている。また、Wの添加量が6%以上である実施例3,4でも、他の実施例に比べて耐衝撃性の改善効果が若干低くなっている。このことより、Wを添加する場合、その添加量は10%未満とすることが好ましく、6%未満とすることがより好ましいことがわかる。なお、実施例12,13で実証されているように、本発明のサーメットにおいてWは添加しなくてもよい。さらに、実施例14,15で実証されているように、硬質相の平均粒径を3μm以上にすることで、破壊靭性が向上することがわかる。
The impact resistance and corrosion resistance of all the examples exceeded that of the cermet disclosed in Patent Document 1, "Comparative Example 1," showing excellent impact resistance and corrosion resistance. In addition, the specific gravity was suppressed to the target of 9 or less, which was lower than the specific gravity of SKD (7.7). In addition, the wear resistance was equal to or higher than that of cemented carbide (JIS classification: V40 equivalent material).
In addition, in Example 5 in which the amount of W added is 10% or more, the effect of improving the impact resistance is lower than in the other examples. Also, in Examples 3 and 4 in which the amount of W added is 6% or more, the effect of improving the impact resistance is slightly lower than in the other examples. From this, it can be seen that when W is added, the amount added is preferably less than 10%, more preferably less than 6%. As demonstrated in Examples 12 and 13, W does not have to be added to the cermet of the present invention. Furthermore, as demonstrated in Examples 14 and 15, it can be seen that the fracture toughness is improved by setting the average grain size of the hard phase to 3 μm or more.

比較例1は、上記特許文献1に開示したサーメットであり、耐衝撃性および耐食性が不十分であった。
比較例2では、Crが添加量が少ないため、耐食性が低下した。
比較例3では、Crの添加量が多いため、耐摩耗性および飽和磁化が低下した。
比較例4では、Moの添加量が少ないため、耐摩耗性および飽和磁化が低下した。
比較例5では、Moの添加量が多いため、耐衝撃性が低下した。
比較例6では、Co/Ni比が1以下であるため、耐摩耗性および飽和磁化が低下した。
比較例7では、金属相量(Co+Ni)が多いため、耐摩耗性が低下した。
比較例8では、金属相量(Co+Ni)が少ないため、耐衝撃性が低下した。
Comparative Example 1 is the cermet disclosed in Patent Document 1, which is insufficient in impact resistance and corrosion resistance.
In Comparative Example 2, since the added amount of Cr was small, the corrosion resistance was lowered.
In Comparative Example 3, since the amount of Cr added was large, the wear resistance and saturation magnetization were lowered.
In Comparative Example 4, since the amount of Mo added was small, wear resistance and saturation magnetization were lowered.
In Comparative Example 5, since the added amount of Mo was large, the impact resistance was lowered.
In Comparative Example 6, since the Co/Ni ratio was 1 or less, wear resistance and saturation magnetization were lowered.
In Comparative Example 7, since the amount of metal phase (Co+Ni) was large, the wear resistance was lowered.
In Comparative Example 8, since the amount of metal phase (Co+Ni) was small, the impact resistance was lowered.

図3に、実施例1のサーメットのSEM観察像を示している。最も色の濃い部分がコア相であり、次に色の濃い部分がリム相であり、最も色の薄い部分が金属相である。 FIG. 3 shows an SEM observation image of the cermet of Example 1. As shown in FIG. The darkest part is the core phase, the next darkest part is the rim phase, and the lightest part is the metal phase.

1 サーメットの断面組織
2 コア相
3 リム相
4 金属相
5 相対的にMoが多い相
1 Cross-sectional structure of cermet 2 Core phase 3 Rim phase 4 Metallic phase 5 Relatively Mo-rich phase

Claims (3)

元素ごとの質量比が、
Ti:15~40%
Mo:2~29%
Cr:1~15%
C:2~20%
CoとNi合計で30~55%
となり、かつCo/Ni比が1超となるように、TiまたはTi化合物、MoまたはMo化合物、CrまたはCr化合物、CoまたはCo化合物、NiまたはNi化合物、および炭素、炭化物または炭窒化物から任意に選択される粉末を原料とし、
それらを湿式または乾式にて混合し、混合粉を得るステップ、
混合粉を50~300MPaの圧力でプレス成形してプレス体を得るステップ、
プレス体を1300~1700℃、真空、還元、不活性ガス、水素または窒素のいずれかの雰囲気下で焼結するステップを経て得られるサーメットから成る、粉砕・撹拌・混合・混練機部材であって、
Ti(C,N)(N=0の場合を含む。)を主成分とするコア相と、コア相の周囲を覆うように存在し、(Ti,Mo,Cr)(C,N)(N=0の場合を含む。)を主成分とするリム相と、金属相の3相を有し、
SEM観察により、MoC相および炭化クロム相を観察することができない、サーメットから成る、粉砕・撹拌・混合・混練機部材。
The mass ratio for each element is
Ti: 15-40%
Mo: 2-29%
Cr: 1-15%
C: 2-20%
Co and Ni total 30-55%
and any of Ti or Ti compounds, Mo or Mo compounds, Cr or Cr compounds, Co or Co compounds, Ni or Ni compounds, and carbon, carbides or carbonitrides such that the Co/Ni ratio is greater than 1 The raw material is the powder selected for
mixing them wet or dry to obtain a mixed powder;
A step of press molding the mixed powder at a pressure of 50 to 300 MPa to obtain a pressed body;
A grinding/stirring/mixing/kneading machine member made of a cermet obtained through a step of sintering a pressed body at 1300 to 1700° C. under an atmosphere of vacuum, reduction, inert gas, hydrogen or nitrogen, ,
A core phase mainly composed of Ti (C, N) (including the case where N = 0) exists so as to cover the periphery of the core phase, and (Ti, Mo, Cr) (C, N) (N = 0.) has a rim phase and a metal phase as the main component,
A grinding/stirring/mixing/kneading member made of cermet in which no Mo 2 C phase and chromium carbide phase can be observed by SEM observation.
原料中のCrとMoの質量比が合計で3~30%である、請求項1に記載のサーメットからなる粉砕・撹拌・混合・混練機部材。 A pulverizing, stirring, mixing and kneading machine member made of the cermet according to claim 1, wherein the total mass ratio of Cr and Mo in the raw material is 3 to 30%. 原料中のCoとNiの質量比の合計(Co+Ni)に対する原料中のCrとMoの質量比の合計(Cr+Mo)の比((Co+Ni)/(Cr+Mo))が0.24~1である、請求項1または請求項2に記載のサーメットからなる粉砕・撹拌・混合・混練機部材。 The ratio ((Co + Ni)/(Cr + Mo)) of the sum of the mass ratios of Cr and Mo in the raw material (Cr + Mo) to the sum of the mass ratios of Co and Ni in the raw material (Co + Ni) is 0.24 to 1. A pulverizing/stirring/mixing/kneading machine member made of the cermet according to claim 1 or claim 2.
JP2022035537A 2022-03-08 2022-03-08 Grinding, stirring, mixing, kneading machine parts Active JP7157887B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022035537A JP7157887B1 (en) 2022-03-08 2022-03-08 Grinding, stirring, mixing, kneading machine parts
CN202211656807.1A CN116727671A (en) 2022-03-08 2022-12-22 Pulverizing, stirring, mixing and pugging machine component
KR1020230015819A KR20230132366A (en) 2022-03-08 2023-02-06 Pulverizing/stirring/mixing/kneading machine component
DE102023000878.8A DE102023000878A1 (en) 2022-03-08 2023-03-08 POWDERIZING/STIRRING/MIXING/KNEADING MACHINE COMPONENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022035537A JP7157887B1 (en) 2022-03-08 2022-03-08 Grinding, stirring, mixing, kneading machine parts

Publications (2)

Publication Number Publication Date
JP7157887B1 true JP7157887B1 (en) 2022-10-20
JP2023130938A JP2023130938A (en) 2023-09-21

Family

ID=83691002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022035537A Active JP7157887B1 (en) 2022-03-08 2022-03-08 Grinding, stirring, mixing, kneading machine parts

Country Status (4)

Country Link
JP (1) JP7157887B1 (en)
KR (1) KR20230132366A (en)
CN (1) CN116727671A (en)
DE (1) DE102023000878A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024096134A1 (en) * 2022-11-03 2024-05-10 冨士ダイス株式会社 Lightweight hard alloy and lightweight hard alloy member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111947A (en) 2004-10-18 2006-04-27 Tungaloy Corp Ultra-fine particle of cermet
JP2010031308A (en) 2008-07-25 2010-02-12 Sumitomo Electric Ind Ltd Cermet
WO2011002008A1 (en) 2009-06-30 2011-01-06 株式会社タンガロイ Cermet and coated cermet
JP2016068224A (en) 2014-09-30 2016-05-09 三菱マテリアル株式会社 Cutting insert made of titanium carbonitride-based cermet excellent in finished surface processing
JP2016135906A (en) 2015-01-16 2016-07-28 住友電気工業株式会社 Cermet, cutting tool and manufacturing method of cermet
JP6922110B1 (en) 2020-10-09 2021-08-18 日本タングステン株式会社 Crushing / stirring / mixing / kneading machine parts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246090A (en) * 1995-03-02 1996-09-24 Mitsubishi Materials Corp Titanium carbon nitride base cermet excellent in toughness

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111947A (en) 2004-10-18 2006-04-27 Tungaloy Corp Ultra-fine particle of cermet
JP2010031308A (en) 2008-07-25 2010-02-12 Sumitomo Electric Ind Ltd Cermet
WO2011002008A1 (en) 2009-06-30 2011-01-06 株式会社タンガロイ Cermet and coated cermet
JP2016068224A (en) 2014-09-30 2016-05-09 三菱マテリアル株式会社 Cutting insert made of titanium carbonitride-based cermet excellent in finished surface processing
JP2016135906A (en) 2015-01-16 2016-07-28 住友電気工業株式会社 Cermet, cutting tool and manufacturing method of cermet
JP6922110B1 (en) 2020-10-09 2021-08-18 日本タングステン株式会社 Crushing / stirring / mixing / kneading machine parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024096134A1 (en) * 2022-11-03 2024-05-10 冨士ダイス株式会社 Lightweight hard alloy and lightweight hard alloy member
JP7508155B1 (en) 2022-11-03 2024-07-01 冨士ダイス株式会社 Manufacturing method of lightweight hard alloys

Also Published As

Publication number Publication date
DE102023000878A1 (en) 2023-09-14
JP2023130938A (en) 2023-09-21
CN116727671A (en) 2023-09-12
KR20230132366A (en) 2023-09-15

Similar Documents

Publication Publication Date Title
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
US5482670A (en) Cemented carbide
Li et al. Effect of Mo addition mode on the microstructure and mechanical properties of TiC–high Mn steel cermets
JP2019516860A (en) Sintered carbide having a structure that increases toughness
WO2010008004A1 (en) Hard powder, method for producing hard powder and sintered hard alloy
CN114786843A (en) Ultrafine cemented carbide, and cutting tool or wear-resistant tool using same
CN112680646B (en) Preparation method of TiC-based metal ceramic with high-entropy alloy binder phase
CN111386355A (en) Cemented carbide, cutting tool, and method for producing cemented carbide
JP7157887B1 (en) Grinding, stirring, mixing, kneading machine parts
WO2022074904A1 (en) Pulverizing, stirring, mixing, and kneading machine members
US11313017B2 (en) Hard sintered body
WO2008018752A1 (en) Mixed powder including solid-solution powder and sintered body using the mixed powder, mixed cermet powder including solid-solution powder and cermet using the mixed cermet powder, and fabrication methods thereof
EP3814542B1 (en) Cemented carbide with alternative binder
US10493529B2 (en) High temperature oxidation resistant rare metal-free hard sintered body and method of manufacturing the same
CN117102474A (en) Multicomponent alloy powder and preparation method, pressed compact and application thereof
Sui et al. Microstructure and mechanical properties of WC-Co-Ti (C0. 5, N0. 5)-Mo cemented carbides
JP7508155B1 (en) Manufacturing method of lightweight hard alloys
CN115044815B (en) Cobalt-free titanium-based metal ceramic with multi-hard phase structure and preparation method thereof
JP7490222B2 (en) High strength cemented carbide using Fe alloy as binder phase and manufacturing method thereof
JP2011132057A (en) Sintered compact
CN118127395A (en) Chromium-based nano hard alloy and preparation method thereof
CN117467907A (en) Composite material, preparation method thereof, part, rotating shaft, folding screen and electronic equipment
Chol et al. Microstructure and Property of Sintered M4 High Speed Steels with regard to Evolution of Carbides and Carbonitrides
KR20240061146A (en) High-entropy carbide and manufacturing method thereof
Budin et al. Microstructure and mechanical properties of high speed steel with addition of ferrophosphorus on sintering temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220711

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221007

R150 Certificate of patent or registration of utility model

Ref document number: 7157887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150