JP2011132057A - Sintered compact - Google Patents

Sintered compact Download PDF

Info

Publication number
JP2011132057A
JP2011132057A JP2009292210A JP2009292210A JP2011132057A JP 2011132057 A JP2011132057 A JP 2011132057A JP 2009292210 A JP2009292210 A JP 2009292210A JP 2009292210 A JP2009292210 A JP 2009292210A JP 2011132057 A JP2011132057 A JP 2011132057A
Authority
JP
Japan
Prior art keywords
sintered body
average particle
powder
hard phase
skeleton structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009292210A
Other languages
Japanese (ja)
Inventor
Shuhei Nonaka
脩平 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009292210A priority Critical patent/JP2011132057A/en
Publication of JP2011132057A publication Critical patent/JP2011132057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered compact having higher hardness without reducing toughness. <P>SOLUTION: In the sintered compact 1 having a skeleton structure 4 where the outer periphery of a hard phase 2 whose main ingredient is TiCN is enclosed by a matrix 3 whose main ingredient is WC, the average particle diameter of the hard phase 2 is 0.3-5 μm and the ratio (Sp/Sb) of the area Sp of the hard phase 2 to the area Sb of the matrix 3 is 0.5-3 in the cross-sectional observation of the skeleton structure 4 of the sintered compact 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はTiCNとWCとを含む焼結体に関する。   The present invention relates to a sintered body containing TiCN and WC.

現在、WCを主成分とする超硬合金やTiCNを主成分とするサーメットが耐摩耗材や切削工具材として広く使われている。かかる材質に対して、さらに耐摩耗性の高い材料を開発すべく、例えば、特許文献1のように、炭化チタンや炭化タングステン、炭化タンタルの微粉末を混合、成形してパルス通電加圧焼結法により緻密化させたバインダレス超硬合金が開示されている。また、特許文献2では、硬質層がTiCNで結合相が金属タングステンからなる焼結体が開示されている。さらに、特許文献3では、サーメット焼結体からなる凝集部の周囲を超硬合金焼結体からなるマトリックス部で取り囲んだ組織の焼結体が開示されている。   Currently, cemented carbides mainly composed of WC and cermets mainly composed of TiCN are widely used as wear-resistant materials and cutting tool materials. In order to develop a material with higher wear resistance for such a material, for example, as in Patent Document 1, a mixture of fine powders of titanium carbide, tungsten carbide, and tantalum carbide is mixed and molded, and then pulsed current pressure sintering A binderless cemented carbide that has been densified by a method is disclosed. Patent Document 2 discloses a sintered body having a hard layer made of TiCN and a binder phase made of metallic tungsten. Further, Patent Document 3 discloses a sintered body having a structure in which a periphery of an agglomerated portion made of a cermet sintered body is surrounded by a matrix portion made of a cemented carbide sintered body.

特開2009−179519号公報JP 2009-179519 A 特開平11−061319号公報Japanese Patent Laid-Open No. 11-061319 特開平10−219385号公報JP-A-10-219385

しかしながら、特許文献1のような炭化チタン粒子や炭化タングステン粒子等が混在した組織では、焼結体にクラックが発生した場合にクラックの進展を抑制する効果が低く、焼結体の靭性は充分とはいえないことが判明した。また、特許文献2のように結合相が金属タングステンからなる焼結体では、焼結体の硬度向上には限界があった。さらに、特許文献3のように鉄族金属からなる結合相で結合したTiCNサーメットからなる凝集部と、鉄族金属からなる結合相で結合した超硬合金からなる周辺部とにて構成される焼結体でも、硬度向上には限界があることがわかった。   However, in a structure in which titanium carbide particles, tungsten carbide particles, and the like are mixed as in Patent Document 1, the effect of suppressing the progress of cracks is low when cracks occur in the sintered body, and the toughness of the sintered body is sufficient. It turned out not to be able to say. Further, in the sintered body in which the binder phase is made of metallic tungsten as in Patent Document 2, there is a limit in improving the hardness of the sintered body. Further, as disclosed in Patent Document 3, a sintered portion composed of an agglomerated portion made of TiCN cermet bonded with a binder phase made of iron group metal and a peripheral portion made of cemented carbide bonded with a binder phase made of iron group metal. It was found that there was a limit to the improvement in hardness even in the knot.

そこで、本発明は上記問題を解決するためのものであり、靭性を低下させることなく更なる硬度の向上が可能な焼結体を提供することである。   Then, this invention is for solving the said problem, and is providing the sintered compact which can improve the hardness further, without reducing toughness.

本発明の焼結体は、TiCNを主成分とする硬質相の間をWCを主成分とするマトリックスが取り囲んだスケルトン組織を有する。ここで、前記スケルトン組織内の前記硬質相は、中心にTiの含有比率の高い芯部が存在し、その外周はTi以外の周期表第4、5、6族金属の含有比率の高い周辺部からなる有芯構造にて構成されていることが望ましい。   The sintered body of the present invention has a skeleton structure in which a matrix mainly composed of WC is surrounded between hard phases mainly composed of TiCN. Here, the hard phase in the skeleton structure has a core portion with a high Ti content ratio in the center, and the outer periphery thereof has a high content ratio of the fourth, fifth, and sixth group metals other than Ti in the periodic table. It is desirable to be constituted by a cored structure made of

なお、前記スケルトン組織部分の断面観察において、前記硬質相の平均粒径が0.3〜5μmであり、前記硬質相の面積Spと前記マトリックスの面積Sbとの比(Sp/Sb)が0.5〜3であることが望ましい。   In the cross-sectional observation of the skeleton structure portion, the average particle size of the hard phase is 0.3 to 5 μm, and the ratio (Sp / Sb) of the area Sp of the hard phase to the area Sb of the matrix is 0. 5 to 3 is desirable.

また、前記焼結体は、鉄族金属を0.5〜15質量%の割合で含有するとともに、前記マトリックス中に前記鉄族金属を主成分とする分散相が分散していることが望ましい。   The sintered body preferably contains an iron group metal in a proportion of 0.5 to 15% by mass, and a dispersed phase containing the iron group metal as a main component is dispersed in the matrix.

さらに、平均直径5〜100μmの前記スケルトン組織が、WC粒子とCoとを含有する超硬合金中に分散した構造からなることが望ましい。   Further, it is desirable that the skeleton structure having an average diameter of 5 to 100 μm has a structure in which it is dispersed in a cemented carbide containing WC particles and Co.

本発明の焼結体によれば、TiCNを主成分とする硬質相の外周をWCを主成分とするマトリックスにて取り囲んだスケルトン組織を有し、このスケルトン組織は従来の超硬合金やサーメットのように結合材が鉄族金属からなるものではなくて結合材がWCを主成分とする炭化物なので硬度が高いものである。特に、硬質相は、中心にTiの含有比率の高い芯部が存在し、その外周はTi以外の周期表第4、5、6族金属の含有比率の高い周辺部からなる有芯構造であることが、焼結体の靭性向上の点で望ましい。   According to the sintered body of the present invention, it has a skeleton structure in which the outer periphery of the hard phase mainly composed of TiCN is surrounded by a matrix mainly composed of WC, and this skeleton structure is made of conventional cemented carbide or cermet. Thus, since the binder is not made of an iron group metal and the binder is a carbide mainly composed of WC, the hardness is high. In particular, the hard phase has a core portion with a high Ti content ratio in the center, and the outer periphery thereof has a cored structure composed of a peripheral portion with a high content ratio of the fourth, fifth, and sixth group metals other than Ti. This is desirable in terms of improving the toughness of the sintered body.

また、焼結体のスケルトン組織部分の断面観察において、硬質相の平均粒径が0.3〜5μmであり、硬質相の面積Spとマトリックスの面積Sbとの比(Sp/Sb)が0.5〜3であることが、高硬度で実用性に耐えうる靭性を有する点で望ましい。   In the cross-sectional observation of the skeleton structure portion of the sintered body, the average particle size of the hard phase is 0.3 to 5 μm, and the ratio (Sp / Sb) of the hard phase area Sp to the matrix area Sb is 0. 5 to 3 is desirable in that it has high hardness and toughness that can withstand practicality.

また、焼結体は鉄族金属を0.5〜15質量%の割合で含有するとともに、前記マトリックス中に前記鉄族金属を主成分とする分散相が分散していることが、焼結体の焼結性を高める点で望ましい。さらに、平均直径5〜100μmの前記スケルトン組織が、WC粒子とCoを含有する超硬合金中に分散した構造からなることが、ホットプレス等の加圧焼結法を用いずに、通常の無加圧焼結法で焼結体を焼成できる点で望ましい。   In addition, the sintered body contains an iron group metal in a proportion of 0.5 to 15% by mass, and that the dispersed phase mainly composed of the iron group metal is dispersed in the matrix. This is desirable in terms of improving the sinterability. Further, the skeleton structure having an average diameter of 5 to 100 μm is composed of a structure dispersed in a cemented carbide containing WC particles and Co, without using a pressure sintering method such as hot pressing. This is desirable in that the sintered body can be fired by the pressure sintering method.

本発明の焼結体の一例を示し、(a)200倍、(b)2000倍、(c)5000倍についての走査型電子顕微鏡写真である。An example of the sintered compact of this invention is shown, It is a scanning electron micrograph about (a) 200 times, (b) 2000 times, (c) 5000 times. 図1の焼結体の要部拡大顕微鏡写真、および特定金属元素のマッピング写真である。It is a principal part enlarged micrograph of the sintered compact of FIG. 1, and a mapping photograph of a specific metal element.

本発明の焼結体の一例について、その断面組織観察における、図1の(a)200倍、(b)2000倍、(c)5000倍についての走査型電子顕微鏡写真を基に説明する。   An example of the sintered body of the present invention will be described on the basis of scanning electron micrographs of (a) 200 times, (b) 2000 times, and (c) 5000 times in FIG.

本発明の焼結体1は、図1(b)(c)および図2に示すように、TiCNを主成分とする硬質相2の外周を、WCを主成分とするマトリックス3にて取り囲んだ構造からなるスケルトン組織4を有する。このスケルトン組織4は、超硬合金、サーメットあるいは従来のバインダレス超硬合金に比べて高い硬度を有する。その結果、焼結体1全体としての硬度も高いことがわかった。   As shown in FIGS. 1B, 1C and 2, the sintered body 1 of the present invention surrounds the outer periphery of the hard phase 2 mainly composed of TiCN with a matrix 3 mainly composed of WC. It has a skeleton structure 4 composed of a structure. This skeleton structure 4 has a hardness higher than that of cemented carbide, cermet or conventional binderless cemented carbide. As a result, it was found that the hardness of the sintered body 1 as a whole was high.

ここで、硬質相2の少なくとも一部は、中心にTiの含有比率の高い芯部2aが存在し、その外周はTi以外の周期表第4、5、6族金属の含有比率の高い周辺部2bからなる有芯構造、すなわち、Tiの含有比率の高い芯部2aの外周をTi以外の周期表第4、5、6族金属の含有比率の高い周辺部2bが取り囲んだ有芯構造組織から構成されていることが、焼結体1の靭性向上の点で望ましい。また、芯部2aの平均粒径は0.1〜2.0μm、周辺部2bを含めた硬質相2全体の平均粒径は0.3〜5.0μmであることが靭性向上の点で望ましい。また、焼結体1の断面の走査型顕微鏡観察において、硬質相2の芯部2aはTiの含有比率が高いので黒色の粒子として観察され、周辺部2bはTi以外の周期表第4、5、6族金属の含有比率の高いので灰白色または白色として存在する。なお、上記灰白色とは、写真撮影の条件によって白色に近い色調に見えることもあり、灰色に近い色調に見えることもあるが、芯部2aと周辺部2bとの相対比較において区別することができる。   Here, at least a part of the hard phase 2 has a core portion 2a having a high Ti content ratio in the center, and an outer periphery thereof is a peripheral portion having a high content ratio of periodic groups 4, 5, and 6 metals other than Ti. From the cored structure composed of 2b, that is, the cored structure having a high Ti content ratio surrounded by the peripheral part 2b having a high content ratio of the fourth, fifth, and sixth group metals other than Ti It is desirable to be configured in terms of improving the toughness of the sintered body 1. The average particle size of the core portion 2a is preferably 0.1 to 2.0 μm, and the average particle size of the entire hard phase 2 including the peripheral portion 2b is preferably 0.3 to 5.0 μm from the viewpoint of improving toughness. . Moreover, in the scanning microscope observation of the cross section of the sintered compact 1, since the core part 2a of the hard phase 2 has high Ti content ratio, it is observed as black particle | grains, and the peripheral part 2b is periodic table 4th, 5th other than Ti. , Because of the high content of Group 6 metal, it exists as gray white or white. The grayish white color may appear to be a color tone close to white or a color tone close to gray depending on photography conditions, but can be distinguished in a relative comparison between the core part 2a and the peripheral part 2b. .

なお、本発明における硬質相2の粒径の測定は、CIS−019D−2005に規定された超硬合金の平均粒径の測定方法に準じて測定する。この時、硬質相2が有芯構造からなる場合については、芯部2aと周辺部2bを含めた周辺部の外縁までを1つの硬質相2としてその粒径を測定する。   In addition, the measurement of the particle size of the hard phase 2 in this invention is measured according to the measuring method of the average particle size of the cemented carbide prescribed | regulated to CIS-019D-2005. At this time, in the case where the hard phase 2 has a cored structure, the particle diameter is measured with the hard phase 2 as a single hard phase 2 up to the outer edge of the peripheral portion including the core portion 2a and the peripheral portion 2b.

ここで、図1(b)(c)に示すように、焼結体1のスケルトン組織4部分の断面観察において、硬質相2の平均粒径が0.3〜5μmであり、硬質相2の面積Spとマトリックス3の面積Sbとの比(Sp/Sb)が0.5〜3であることが、高硬度で実用性に耐えうる靭性を有する点で望ましい。硬質相2の平均粒径の望ましい範囲は1〜3μmであり、比(Sp/Sb)の望ましい範囲は1〜2である。   Here, as shown in FIGS. 1 (b) and 1 (c), in the cross-sectional observation of the skeleton structure 4 portion of the sintered body 1, the average particle diameter of the hard phase 2 is 0.3 to 5 μm. The ratio of the area Sp to the area Sb of the matrix 3 (Sp / Sb) is preferably 0.5 to 3 in terms of having high hardness and toughness that can withstand practicality. A desirable range of the average particle diameter of the hard phase 2 is 1 to 3 μm, and a desirable range of the ratio (Sp / Sb) is 1 to 2.

また、焼結体1には鉄族金属を0.5〜15質量%の割合で含有せしめても良く、図1および図2のCo元素のマッピング図に示すように、スケルトン組織4のマトリックス3中に鉄族金属を主成分とする分散相6が分散していることが、焼結体1の焼結性を高める点で望ましい。   Further, the sintered body 1 may contain an iron group metal in a proportion of 0.5 to 15% by mass, and as shown in the mapping diagrams of the Co element in FIGS. 1 and 2, the matrix 3 of the skeleton structure 4. It is desirable that the disperse phase 6 containing iron group metal as a main component is dispersed therein in terms of enhancing the sinterability of the sintered body 1.

さらに、本実施態様においては図1(a)(b)に示すように、焼結体1は、平均直径10〜100μmのスケルトン組織4が、WC粒子とCoを含有する超硬合金7中に分散した構成からなる。この構成であれば、ホットプレス等の加圧焼結法を用いることなく、通常の無加圧焼結法で本発明の焼結体1を焼成できる。   Further, in the present embodiment, as shown in FIGS. 1A and 1B, the sintered body 1 has a skeleton structure 4 having an average diameter of 10 to 100 μm in a cemented carbide 7 containing WC particles and Co. It consists of a distributed configuration. If it is this structure, the sintered compact 1 of this invention can be baked with a normal pressureless sintering method, without using pressure sintering methods, such as a hot press.

(製造方法)
次に、上述した切削工具の製造方法について説明する。
原料として、2種類の混合原料粉末を準備する。
第1の混合原料粉末は、平均粒径1〜3μm、望ましくは1.5〜2.5μmのTiCN粉末を50〜75質量%、特に50〜70質量%と、平均粒径0.05〜1μmのWC粉末を0〜12質量%、特に7〜10質量%と、平均粒径1〜4.5μmのMoC粉末を0.5〜10質量%、特に1〜10質量%と、平均粒径0.1〜2μmの上述した他の周期表第4、5および6族金属の炭化物粉末、窒化物粉末または炭窒化物粉末のいずれか1種(TiCN、WC、MoC以外)を総量で1〜20質量%、特に10〜15質量%と、平均粒径1.0〜3.0μmのCo粉末を0〜10質量%、特に3〜7質量%と、平均粒径0.3〜0.8μmのNi粉末を0〜10質量%、特に3〜5質量%と、所望により平均粒径0.5〜10μmのMnCO粉末を3質量%以下、特に0.5〜1.0質量%との割合で混合した混合粉末とする。なお、上記第1および第2の原料中にTiC粉末やTiN粉末を添加することもあるが、これらの原料粉末は焼成後のサーメットにおいてTiCNを構成する。
(Production method)
Next, the manufacturing method of the cutting tool mentioned above is demonstrated.
Two kinds of mixed raw material powders are prepared as raw materials.
The first mixed raw material powder has an average particle size of 1 to 3 μm, preferably 1.5 to 2.5 μm of TiCN powder of 50 to 75% by mass, particularly 50 to 70% by mass, and an average particle size of 0.05 to 1 μm. WC powder of 0 to 12% by mass, particularly 7 to 10% by mass, and Mo 2 C powder having an average particle size of 1 to 4.5 μm is 0.5 to 10% by mass, particularly 1 to 10% by mass, and the average particle Total amount of any one of carbide powder, nitride powder, or carbonitride powder (other than TiCN, WC, Mo 2 C) of the above-mentioned other periodic table group 4, 5 and 6 metals having a diameter of 0.1 to 2 μm 1 to 20% by mass, particularly 10 to 15% by mass, and Co powder having an average particle size of 1.0 to 3.0 μm is 0 to 10% by mass, particularly 3 to 7% by mass, and the average particle size is 0.3 to 0.3%. 0.8 μm Ni powder, 0-10% by weight, in particular 3-5% by weight, and optionally M with an average particle size of 0.5-10 μm CO 3 powder 3 wt% or less, especially a mixed powder mixed in a ratio of 0.5 to 1.0 mass%. TiC powder and TiN powder may be added to the first and second raw materials, but these raw material powders constitute TiCN in the cermet after firing.

一方、第2の混合原料粉末は、超硬材料として平均粒径1.0μm以下の炭化タングステン(WC)粉末を79〜95質量%、平均粒径0.3〜1.0μmの炭化バナジウム(VC)粉末を0.1〜0.3質量%、平均粒径0.3〜2.0μmの炭化クロム(Cr)粉末を0.1〜0.3質量%、平均粒径0.2〜0.6μmの金属コバルト(Co)を5〜15質量%、さらには所望により、金属タングステン(W)粉末、あるいはカーボンブラック(C)を混合した混合粉末とする。 On the other hand, the second mixed raw material powder is a cemented carbide material of tungsten carbide (WC) having an average particle size of 1.0 μm or less of 79 to 95% by mass and vanadium carbide (VC) having an average particle size of 0.3 to 1.0 μm. ) 0.1 to 0.3 mass% of powder, 0.1 to 0.3 mass% of chromium carbide (Cr 3 C 2 ) powder having an average particle diameter of 0.3 to 2.0 μm, and an average particle diameter of 0.2 It is set to 5 to 15% by mass of metallic cobalt (Co) of ˜0.6 μm, and further mixed metal powder of metallic tungsten (W) or carbon black (C) as desired.

次に、第1の原料粉末にそれぞれバインダを添加して、成形し、真空雰囲気中にて、1400℃以上で0.2〜1時間焼成熱処理する。このとき、焼成熱処理温度が1400℃よりも低いと、後述する2回目の焼成後の焼結体中にボイドが多く発生しやすくなる傾向にある。引き続いてこれを粉砕し平均粒径1.0〜5.0μmのサーメット粉末および平均粒径0.1〜1.0μmの超硬合金粉末を得た。その後このサーメットと超硬の両粉末を混合し、プレス成形、押出成形、射出成形等の公知の成形方法によって所定形状に成形する。   Next, a binder is added to each of the first raw material powders, molded, and subjected to a firing heat treatment at 1400 ° C. or higher for 0.2 to 1 hour in a vacuum atmosphere. At this time, if the firing heat treatment temperature is lower than 1400 ° C., many voids tend to be generated in the sintered body after the second firing described later. Subsequently, this was pulverized to obtain a cermet powder having an average particle size of 1.0 to 5.0 μm and a cemented carbide powder having an average particle size of 0.1 to 1.0 μm. Thereafter, both the cermet and the cemented carbide powder are mixed and molded into a predetermined shape by a known molding method such as press molding, extrusion molding or injection molding.

そして、この熱処理した第1の原料粉末と、熱処理していない第2の原料粉末とを振動ミル、回転ミル等の湿式条件にて混合し、プレス成形、押出成形、射出成形等の公知の成形方法によって所定形状に成形する。   Then, the heat-treated first raw material powder and the non-heat-treated second raw material powder are mixed under wet conditions such as a vibration mill and a rotary mill, and known molding such as press molding, extrusion molding, injection molding and the like. It is formed into a predetermined shape by a method.

その後、本発明によれば、上記成形体を下記の条件にて焼成することにより、上述した所定組織の焼結体を作製することができる。焼成条件の一例としては、
(a)1050〜1250℃まで昇温し、
(b)窒素(N)等の不活性ガスを30〜2000Pa充填した雰囲気で0.1〜2℃/分の昇温速度で1300〜1450℃まで昇温し、
(c)真空雰囲気で3〜15℃/分の昇温速度で1560〜1600℃まで昇温するとともに、真空雰囲気のまま、または不活性ガスを充填した雰囲気で0.5〜2時間維持し、
(d)6〜15℃/分の冷却速度で冷却する工程にて焼成する。
Then, according to this invention, the sintered compact of the predetermined structure | tissue mentioned above can be produced by baking the said molded object on the following conditions. As an example of firing conditions,
(A) The temperature is raised to 1050 to 1250 ° C.
(B) In an atmosphere filled with an inert gas such as nitrogen (N 2 ) of 30 to 2000 Pa, the temperature is increased to 1300 to 1450 ° C. at a temperature increase rate of 0.1 to 2 ° C./min,
(C) While raising the temperature to 1560-1600 ° C. at a temperature increase rate of 3-15 ° C./min in a vacuum atmosphere, maintaining the vacuum atmosphere or an atmosphere filled with an inert gas for 0.5-2 hours,
(D) Firing is performed at a cooling rate of 6 to 15 ° C./min.

このとき、焼成温度が1560℃よりも低いと第1の原料と第2の原料との間での元素拡散が不十分で、鉄族金属を結合相とするサーメットと鉄族金属を結合相とする超硬合金との混合組織となってしまう。逆に、1600℃を超えると、焼結体が過焼結になって、焼結体の硬度が低下する。   At this time, when the firing temperature is lower than 1560 ° C., element diffusion between the first raw material and the second raw material is insufficient, and the cermet having the iron group metal as the binder phase and the iron group metal as the binder phase. It becomes a mixed structure with the cemented carbide. On the contrary, if it exceeds 1600 degreeC, a sintered compact will be oversintered and the hardness of a sintered compact will fall.

そして、所望により、サーメットの表面に被覆層を成膜する。被覆層の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。   Then, if desired, a coating layer is formed on the surface of the cermet. A physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as the coating layer forming method.

マイクロトラック法による測定で表1に示す平均粒径(d50値)のTiCN粉末、表1に示す平均粒径のWC粉末、表1に示す平均粒径のMoC粉末、平均粒径1.5μmのTiN粉末、平均粒径2μmのTaC粉末、平均粒径1.5μmのNbC粉末、平均粒径1.8μmのZrC粉末、平均粒径1.0μmのVC粉末、平均粒径2.4μmのNi粉末、および平均粒径1.9μmのCo粉末を用いて、表1に示す割合で調整した第1の混合粉末をステンレス製ボールミルと超硬ボールを用いて、イソプロピルアルコール(IPA)を添加して湿式混合し、パラフィンを3質量%添加、混合した後、スプレードライヤにて顆粒としてこれを成形し、さらに表1に示す条件にて熱処理して粉砕した。 TiCN powder having an average particle size (d 50 value) shown in Table 1 as measured by the microtrack method, WC powder having an average particle size shown in Table 1, Mo 2 C powder having an average particle size shown in Table 1, average particle size 1 TiN powder with an average particle size of 2 μm, NbC powder with an average particle size of 1.5 μm, ZrC powder with an average particle size of 1.8 μm, VC powder with an average particle size of 1.0 μm, an average particle size of 2.4 μm Using a Ni powder and a Co powder with an average particle diameter of 1.9 μm, add isopropyl alcohol (IPA) to the first mixed powder adjusted in the ratio shown in Table 1 using a stainless steel ball mill and a carbide ball. Then, the mixture was wet-mixed, and 3% by mass of paraffin was added and mixed, and then formed into granules by a spray dryer, and further heat treated under the conditions shown in Table 1 and pulverized.

同様に、表2に示す平均粒径(d50値)のWC粉末、平均粒径1.5μmのTiC粉末、平均粒径2μmのTaC粉末、平均粒径1.5μmのNbC粉末、平均粒径1.8μmのZrC粉末、平均粒径1.0μmのVC粉末、および平均粒径1.9μmのCo粉末を用いて、表1に示す第2の混合原料粉末を調整し、上記熱処理を行った第1の混合原料粉末と振動ミルにて湿式条件で混合し、さらにバインダを混合して、成形用の混合粉末とした。 Similarly, WC powder having an average particle size (d 50 value) shown in Table 2, TiC powder having an average particle size of 1.5 μm, TaC powder having an average particle size of 2 μm, NbC powder having an average particle size of 1.5 μm, and average particle size Using the 1.8 μm ZrC powder, the VC powder having an average particle size of 1.0 μm, and the Co powder having an average particle size of 1.9 μm, the second mixed raw material powder shown in Table 1 was prepared, and the above heat treatment was performed. The first mixed raw material powder and a vibration mill were mixed under wet conditions, and a binder was further mixed to obtain a mixed powder for molding.

そして、この成形用の混合粉末を用いて、200MPaでCNMG120408の工具形状にプレス成形した。そして、(a)10℃/分の昇温速度で1200℃まで昇温し、(b)窒素(N)を1000Pa充填した雰囲気で0.5℃/分の昇温速度で1400℃まで昇温し、(c)真空雰囲気で7℃/分の昇温速度で表2の焼成温度まで昇温するとともに、その状態で1時間維持し、(d)10℃/分の冷却速度で冷却する工程にて焼成する焼成条件で焼成した。 And using this mixed powder for molding, it was press-molded into a tool shape of CNMG120408 at 200 MPa. Then, (a) the temperature is increased to 1200 ° C. at a temperature increase rate of 10 ° C./min, and (b) the temperature is increased to 1400 ° C. at a temperature increase rate of 0.5 ° C./min in an atmosphere filled with 1000 Pa of nitrogen (N 2 ). (C) The temperature is raised to the firing temperature shown in Table 2 at a rate of 7 ° C./min in a vacuum atmosphere, maintained in that state for 1 hour, and (d) cooled at a cooling rate of 10 ° C./min. Firing was performed under the firing conditions for firing in the process.

得られたサーメットについて、走査型電子顕微鏡(SEM)観察を行い、硬質相が10個以上確認できる任意5箇所について市販の画像解析ソフトを用いて画像解析を行い、スケルトン組織の状態(平均粒径dおよび存在比率)、スケルトン組織における硬質相および有芯構造をなす硬質相については芯部の平均粒径(dおよびd)を確認するとともに、波長分散型分光分析(WDS分析)にて、スケルトン組織およびマトリックス部における各金属元素の分布状態を測定し、各金属元素の存在比率を算出した。結果は表3に示した。 The obtained cermet is observed with a scanning electron microscope (SEM), and image analysis is performed using commercially available image analysis software on any five locations where 10 or more hard phases can be confirmed, and the state of the skeleton structure (average particle size) d i and proportions), as well as confirm the average particle diameter of the core portion (d 1 and d 2) for the hard phase forming the hard phase and cored structure in the skeleton structure, the wavelength dispersive spectroscopy (WDS analysis) Then, the distribution state of each metal element in the skeleton structure and the matrix portion was measured, and the abundance ratio of each metal element was calculated. The results are shown in Table 3.

次に、得られた焼結体に対して、マイクロビッカース硬度計を用いてスケルトン組織部分の硬度を測定するとともに、ビッカース硬度計にて焼結体全体としての硬度を測定した。また、破壊靱性(K1c)を測定した。結果は表3に示した。   Next, with respect to the obtained sintered body, the hardness of the skeleton structure portion was measured using a micro Vickers hardness meter, and the hardness of the entire sintered body was measured using the Vickers hardness meter. In addition, fracture toughness (K1c) was measured. The results are shown in Table 3.

表1〜3より、スケルトン組織を有さない試料No.6〜9は、焼結体の硬度が低く、破壊靱性値も低いものであった。   From Tables 1-3, sample No. which does not have a skeleton structure | tissue is shown. Nos. 6 to 9 had low sintered hardness and low fracture toughness.

これに対し、本発明の範囲内の組織となった焼結体である試料No.1〜5およびNo.10〜12では、優れた耐摩耗性を発揮するとともに耐欠損性も良好であり、工具寿命が長いものであった。   On the other hand, Sample No. which is a sintered body having a structure within the scope of the present invention. 1-5 and no. 10 to 12 exhibited excellent wear resistance, good fracture resistance, and long tool life.

1 焼結体
2 硬質相
2a 芯部
2b 周辺部
3 マトリックス
4 スケルトン組織
6 分散相
7 超硬合金
DESCRIPTION OF SYMBOLS 1 Sintered body 2 Hard phase 2a Core part 2b Peripheral part 3 Matrix 4 Skeleton structure 6 Dispersed phase 7 Cemented carbide

Claims (5)

TiCNを主成分とする硬質相の外周をWCを主成分とするマトリックスにて取り囲んだスケルトン組織を有する焼結体。   A sintered body having a skeleton structure in which the outer periphery of a hard phase mainly composed of TiCN is surrounded by a matrix mainly composed of WC. 前記スケルトン組織内の前記硬質相が、Tiの含有比率の高い芯部の外周をTi以外の周期表第4、5、6族金属の含有比率の高い周辺部が取り囲んだ構造である請求項1記載の焼結体。   The hard phase in the skeleton structure has a structure in which an outer periphery of a core portion having a high Ti content ratio surrounds a peripheral portion having a high content ratio of Group 4, 5, 6 metals other than Ti. The sintered body described. 前記スケルトン組織部分の断面観察において、前記硬質相の平均粒径が0.3〜5μmであり、前記硬質相の面積Spと前記マトリックスの面積Sbとの比(Sp/Sb)が0.5〜3である請求項1または2記載の焼結体。   In the cross-sectional observation of the skeleton structure portion, the average particle diameter of the hard phase is 0.3 to 5 μm, and the ratio (Sp / Sb) of the area Sp of the hard phase to the area Sb of the matrix is 0.5 to 5 μm. The sintered body according to claim 1, wherein the sintered body is 3. 鉄族金属を0.5〜10質量%の割合で含有するとともに、前記マトリックス中に前記鉄族金属を主成分とする分散相が分散している請求項1乃至3のいずれか記載の焼結体。   The sintering according to any one of claims 1 to 3, wherein an iron group metal is contained at a ratio of 0.5 to 10% by mass, and a dispersed phase mainly composed of the iron group metal is dispersed in the matrix. body. 平均直径5〜100μmの前記スケルトン組織が、WC粒子とCoとを含有する超硬合金中に分散した構造である請求項1乃至3のいずれか記載の焼結体。   The sintered body according to any one of claims 1 to 3, wherein the skeleton structure having an average diameter of 5 to 100 µm has a structure dispersed in a cemented carbide containing WC particles and Co.
JP2009292210A 2009-12-24 2009-12-24 Sintered compact Pending JP2011132057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009292210A JP2011132057A (en) 2009-12-24 2009-12-24 Sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292210A JP2011132057A (en) 2009-12-24 2009-12-24 Sintered compact

Publications (1)

Publication Number Publication Date
JP2011132057A true JP2011132057A (en) 2011-07-07

Family

ID=44345232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009292210A Pending JP2011132057A (en) 2009-12-24 2009-12-24 Sintered compact

Country Status (1)

Country Link
JP (1) JP2011132057A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016115581A1 (en) * 2015-01-23 2016-07-28 Ceratizit Austria Gesellschaft M.B.H. Hard metal-cermet composite material and method for the production thereof
WO2018037846A1 (en) * 2016-08-22 2018-03-01 住友電気工業株式会社 Titanium carbonitride powder and method for producing titanium carbonitride powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201750A (en) * 1985-03-05 1986-09-06 Sumitomo Electric Ind Ltd Sintered hard alloy
JPH05850A (en) * 1991-06-21 1993-01-08 Tokyo Tungsten Co Ltd Composite hard ceramic particles
JPH10110233A (en) * 1996-10-04 1998-04-28 Sumitomo Electric Ind Ltd High toughness hard alloy and its production
JPH10219385A (en) * 1997-02-03 1998-08-18 Mitsubishi Materials Corp Cutting tool made of composite cermet, excellent in wear resistance
JPH10237578A (en) * 1996-12-16 1998-09-08 Sumitomo Electric Ind Ltd Cemented carbide, its production, and cemented carbide tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201750A (en) * 1985-03-05 1986-09-06 Sumitomo Electric Ind Ltd Sintered hard alloy
JPH05850A (en) * 1991-06-21 1993-01-08 Tokyo Tungsten Co Ltd Composite hard ceramic particles
JPH10110233A (en) * 1996-10-04 1998-04-28 Sumitomo Electric Ind Ltd High toughness hard alloy and its production
JPH10237578A (en) * 1996-12-16 1998-09-08 Sumitomo Electric Ind Ltd Cemented carbide, its production, and cemented carbide tool
JPH10219385A (en) * 1997-02-03 1998-08-18 Mitsubishi Materials Corp Cutting tool made of composite cermet, excellent in wear resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016115581A1 (en) * 2015-01-23 2016-07-28 Ceratizit Austria Gesellschaft M.B.H. Hard metal-cermet composite material and method for the production thereof
WO2018037846A1 (en) * 2016-08-22 2018-03-01 住友電気工業株式会社 Titanium carbonitride powder and method for producing titanium carbonitride powder
EP3502079A4 (en) * 2016-08-22 2019-09-04 Sumitomo Electric Industries, Ltd. Titanium carbonitride powder and method for producing titanium carbonitride powder
US11225412B2 (en) 2016-08-22 2022-01-18 Sumitomo Electric Industries, Ltd. Titanium carbonitride powder and method for manufacturing titanium carbonitride powder

Similar Documents

Publication Publication Date Title
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
CN104404337B (en) A kind of hard alloy and preparation method thereof
JP5989930B1 (en) Cermet and cutting tools
JP6144763B2 (en) Cermet, manufacturing method thereof and cutting tool
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
WO2010008004A1 (en) Hard powder, method for producing hard powder and sintered hard alloy
JP2010517792A (en) Ti-based cermet
JP6227517B2 (en) Cemented carbide
JP2010031308A (en) Cermet
JP5213326B2 (en) cermet
WO2020090280A1 (en) Cemented carbide alloy, cutting tool, and method for manufacturing cemented carbide alloy
JP5273987B2 (en) Cermet manufacturing method
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP5856752B2 (en) Tungsten carbide-based sintered body and wear-resistant member using the same
JP2012086297A (en) Wc-based cemented carbide cutting tool exercising superior chipping resistance and wear resistance in high speed intermittent cutting
JP7384844B2 (en) Cemented carbide with alternative binders
JP2011132057A (en) Sintered compact
JP5063129B2 (en) cermet
JP2011045954A (en) Cermet sintered body and cutting tool
JP2010274346A (en) Cutting tool
JP5436083B2 (en) Cermet sintered body and cutting tool
JP2010253607A (en) Cutting tool
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP2009006413A (en) Ti based cermet
JP7508155B1 (en) Manufacturing method of lightweight hard alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225