JPH05850A - Composite hard ceramic particles - Google Patents

Composite hard ceramic particles

Info

Publication number
JPH05850A
JPH05850A JP3177536A JP17753691A JPH05850A JP H05850 A JPH05850 A JP H05850A JP 3177536 A JP3177536 A JP 3177536A JP 17753691 A JP17753691 A JP 17753691A JP H05850 A JPH05850 A JP H05850A
Authority
JP
Japan
Prior art keywords
phase
group
dispersed
hard
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3177536A
Other languages
Japanese (ja)
Other versions
JP3143647B2 (en
Inventor
Nobuaki Asada
信昭 浅田
Yasuhiro Shimizu
靖弘 清水
Toshio Nomura
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd, Sumitomo Electric Industries Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP03177536A priority Critical patent/JP3143647B2/en
Publication of JPH05850A publication Critical patent/JPH05850A/en
Application granted granted Critical
Publication of JP3143647B2 publication Critical patent/JP3143647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the balance between the wear resistance and toughness of a sintered hard alloy as a whole. CONSTITUTION:In composite ceramics having two or more kinds of phases, two or more particles (1) of 1-500nm mean particle diameter having a 1st phase are dispersed in each of matrix particles (2) of 0.5-10mum mean particle diameter having a 2nd phase. The occupancy ratio of the 1st phase is 10-70vol.% in terms of volume and has a higher coefft. of thermal expansion than the 2nd phase by 5X10<-7> and both the 1st and 2nd phases have >=1,500 Vickers hardness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は切削工具として利用され
る焼結硬質合金の硬質相原料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard phase raw material for a sintered hard alloy used as a cutting tool.

【0002】[0002]

【従来の技術】切削工具用に使われる焼結硬質合金とし
て超硬合金やサーメットが知られている。超硬合金はW
C、TiC、TaC、NbC等の硬質炭化物をCo、N
i等の鉄族金属で焼結した合金であり、サーメットは硬
質相の主成分をTi系(TiC、TiN、TiCN)と
した合金である。
2. Description of the Related Art Cemented carbide and cermet are known as sintered hard alloys used for cutting tools. Cemented carbide is W
Hard carbides such as C, TiC, TaC and NbC are replaced with Co and N
Cermet is an alloy sintered with an iron group metal such as i, and cermet is an alloy in which the main component of the hard phase is Ti-based (TiC, TiN, TiCN).

【0003】これら焼結硬質合金の硬質相原料としては
単体のWC、TiC、TaC、NbC、TiN、Mo2
C等のセラミック粉末、又はこれらを予め高温で固溶処
理した複合炭化物、複合炭窒化物粉末がある。
As a hard phase raw material for these sintered hard alloys, WC, TiC, TaC, NbC, TiN and Mo 2 are used as a simple substance.
There are ceramic powders such as C, and composite carbide and composite carbonitride powders obtained by subjecting these to solid solution treatment at high temperature in advance.

【0004】[0004]

【発明が解決しようとする課題】焼結硬質合金について
最も重要なことは、耐摩耗性と靱性のバランスをとるこ
とである。一般に耐摩耗性を上げるには硬質相を増やす
ことが効果的である。しかし、硬質相となる上記セラミ
ックス粉末は靱性が低く、多すぎると断続切削等の厳し
い条件では使えなくなるという問題があった。
The most important thing for sintered hard alloys is to balance wear resistance and toughness. In general, it is effective to increase the hard phase in order to improve wear resistance. However, there is a problem that the above-mentioned ceramic powder which becomes a hard phase has low toughness, and if it is too much, it cannot be used under severe conditions such as intermittent cutting.

【0005】[0005]

【課題を解決するための手段】本発明は、上記の課題を
解決するためになされたものであって、2種以上の相を
有する複合セラミックス粒子において、第1相が1nm
以上500nm以下の平均粒径で、平均粒径0.5μm
以上10μm以下の第2相の基地中に少なくとも2個以
上分散した組織を有し、第1相の占める割合が体積換算
で10%以上70%以下、第1相と第2相の熱膨張係数
の差が5×10-7以上で第1相の方が大きく、第1相、
第2相ともビッカース硬さで1500以上を有する複合
硬質セラミックス粒子を提供するものである。
The present invention has been made to solve the above-mentioned problems, and in a composite ceramic particle having two or more kinds of phases, the first phase is 1 nm.
0.5 μm or more in average particle diameter of 500 nm or more
It has a structure in which at least two or more are dispersed in the second-phase matrix of 10 μm or less, and the proportion of the first phase is 10% or more and 70% or less in terms of volume, and the thermal expansion coefficient of the first phase and the second phase. Difference of 5 × 10 -7 or more, the first phase is larger, the first phase,
The second phase also provides composite hard ceramic particles having a Vickers hardness of 1500 or more.

【0006】又、前記複合硬質セラミックス粒子におい
て第1相として、TiC、TiN、TiCN、(Ti
1-uu )(C1-vv )(ここで前記MはTiを除く
IVa族、Va族、VIa族の元素、原子占有率は0.
05≦u≦0.3、0≦v≦1)から選ばれた1種又は
2種以上を分散し、第2相として、WC、Mo2 C、T
aC、TaN、NbC、NbN及びこれらの固溶体、
(Ti1-u ′Mu ′)(C1-v ′Nv ′)(ここで前記
MはTiを除くIVa族、Va族、VIa族の元素、原
子占有率は0.3≦u′≦0.95、0≦v′≦1)か
ら選ばれた1種又は2種以上を基地とすることが好まし
い。
In the composite hard ceramic particles, TiC, TiN, TiCN, (Ti
1-u M u) (C 1-v N v) (IVa group excluding the M is Ti here, Va group, an element of Group VIa, atomic occupancy 0.
05 ≤ u ≤ 0.3, 0 ≤ v ≤ 1) and one or more of them are dispersed, and WC, Mo 2 C, T is used as the second phase.
aC, TaN, NbC, NbN and solid solutions thereof,
(Ti 1-u ′ M u ′) (C 1-v ′ N v ′) (where M is an element of the IVa group, Va group, or VIa group excluding Ti, and the atomic occupancy is 0.3 ≦ u ′. It is preferable to use one type or two or more types selected from ≦ 0.95 and 0 ≦ v ′ ≦ 1) as a base.

【0007】[0007]

【作用】本発明による複合硬質セラミックス粒子ではそ
の構造からセラミックス粒子自身の靱性が大幅に向上し
ている。以下その作用について述べる。
In the composite hard ceramic particles according to the present invention, the toughness of the ceramic particles themselves is significantly improved due to their structure. The operation will be described below.

【0008】まず、大きな特徴は硬質セラミックス相が
2相以上に分離し、第2相の基地中に第1相の粒子が分
散した形態をとっている。しかもこの分散粒子は極めて
微細であるため、基地部が分散強化されている。有効な
分散強化を実現するには、第1相の分散粒子の大きさ
が、1nm以上500nm以下であることが望ましく、
更に好ましくは、20nm以上200nm以下である。
粒子が小さすぎると分散強化にならず、大きすぎると分
散粒子に働く応力が無視できず靱性低下の恐れがある。
First, the major feature is that the hard ceramic phase is separated into two or more phases, and the particles of the first phase are dispersed in the matrix of the second phase. Moreover, since the dispersed particles are extremely fine, the matrix portion is dispersion strengthened. In order to realize effective dispersion strengthening, the size of the dispersed particles of the first phase is preferably 1 nm or more and 500 nm or less,
More preferably, it is 20 nm or more and 200 nm or less.
If the particles are too small, the dispersion cannot be strengthened. If the particles are too large, the stress acting on the dispersed particles cannot be ignored and the toughness may decrease.

【0009】分散する粒子の体積率は10%以上70%
以下で、望ましくは20%以上50%以下である。少な
いと強化が不十分で、多いと粒径にもよるが分散粒子自
身がつながって分散強化にならない。又、分散する粒子
は2個以上で、望ましくは10個以上である。
The volume ratio of dispersed particles is 10% or more and 70% or more.
Below, it is preferably 20% or more and 50% or less. When the amount is small, the strengthening is insufficient, and when the amount is large, the dispersed particles themselves are connected to each other depending on the particle size, but the dispersion cannot be strengthened. The number of dispersed particles is 2 or more, preferably 10 or more.

【0010】次に両相の熱膨張係数であるが、分散粒子
(第1相)の方が大きく、基地(第2相)の方が小さ
い。その差が5×10-7以上であり、より望ましくは1
×10-6以上である。この熱膨張係数の差によって、冷
却時に基地側に残留圧縮応力を生じ、基地はますます強
化される。
Next, regarding the thermal expansion coefficients of both phases, the dispersed particles (first phase) are larger and the matrix (second phase) is smaller. The difference is 5 × 10 −7 or more, more preferably 1
× 10 −6 or more. Due to this difference in thermal expansion coefficient, residual compressive stress is generated on the base side during cooling, and the base is further strengthened.

【0011】このように強化された複合硬質セラミック
スの好ましい実施形態は、第1相として、TiC、Ti
N、TiCN、(Ti1-uu )(C1-vv )(ここ
で前記MはTiを除くIVa族、Va族、VIa族の元
素、原子占有率は0.05≦u≦0.3、0≦v≦1)
から選ばれた1種又は2種以上のセラミックスを分散
し、第2相として、WC、Mo2 C、TaC、TaN、
NbC、NbN及びこれらの固溶体、(Ti1-u ′M
u ′)(C1-v ′Nv ′)(ここで前記MはTiを除く
IVa族、Va族、VIa族の元素、原子占有率は0.
3≦u′≦0.95、0≦v′≦1)から選ばれた1種
又は2種以上のセラミックスを基地とするような複合硬
質セラミックス粒子である。
A preferred embodiment of the composite hard ceramics reinforced in this way has TiC, Ti as the first phase.
N, TiCN, (Ti 1-u Mu ) (C 1-v N v ) (wherein M is an element of IVa group, Va group, VIa group excluding Ti, and atomic occupancy is 0.05 ≦ u ≦ 0.3, 0 ≦ v ≦ 1)
One or more ceramics selected from the following are dispersed, and as the second phase, WC, Mo 2 C, TaC, TaN,
NbC, NbN and their solid solutions, (Ti 1- u'M
u ′) (C 1-v ′ N v ′) (where M is an element of group IVa, Va, or VIa excluding Ti, and the atomic occupancy is 0.
The composite hard ceramic particles are based on one or more ceramics selected from 3 ≦ u ′ ≦ 0.95 and 0 ≦ v ′ ≦ 1).

【0012】内部に分散するTi系セラミックスは耐摩
耗性に優れ、被削材との反応も少ないので硬質相として
好ましい。又、外側に位置する第2相は硬質セラミック
スの中では比較的靱性に優れる。このような複合効果に
加え、熱膨張係数は内部のTi系セラミックスの方が大
きいので粒子自体に残留圧縮応力が生じ、強化されるこ
とになる。
The Ti-based ceramics dispersed in the inside are preferable as a hard phase because they are excellent in wear resistance and have little reaction with the work material. Further, the second phase located on the outer side is relatively excellent in toughness in the hard ceramics. In addition to such a combined effect, the thermal expansion coefficient of the internal Ti-based ceramics is larger, so that residual compressive stress is generated in the particles themselves and they are strengthened.

【0013】内部のTi系セラミックスは単体のTi
C、TiN、TiNC等が使えるし、複合化の過程で外
側の第2相と固溶することを考慮すると、前記のような
複合セラミックスにすることもできる。ただし、この際
前記効果を維持するためには、Tiを所定量に限定する
必要があり、この制約から0.05≦u≦0.3とし
た。
The Ti-based ceramics inside is Ti alone.
Considering that C, TiN, TiNC, etc. can be used and solid-dissolves with the outer second phase in the process of compounding, the compound ceramics as described above can be used. However, at this time, in order to maintain the above effect, it is necessary to limit Ti to a predetermined amount, and due to this constraint, 0.05 ≦ u ≦ 0.3.

【0014】一方、第2相としてはWC、Mo2 C、T
aC、TaN、NbC、NbN及びこれらの固溶体が好
ましいが、同じく複合化の過程で内側の第1相と固溶す
ることを考慮すると、前記のような複合セラミックスと
することもできる。ただし、この際効果を維持するため
にはTiを所定量に限定する必要があり、この制約から
0.3≦u′≦0.95とした。
On the other hand, as the second phase, WC, Mo 2 C, T
Although aC, TaN, NbC, NbN, and solid solutions thereof are preferable, the above-mentioned composite ceramics can be used in consideration of the fact that they also form a solid solution with the inner first phase in the process of compounding. However, in order to maintain the effect at this time, it is necessary to limit Ti to a predetermined amount, and from this constraint, 0.3 ≦ u ′ ≦ 0.95.

【0015】又、第1相、第2相ともVは非金属元素中
のNの割合を表しているが、これは0から1の間の任意
の値をとりうる。しかし、硬質合金の硬質相としての利
用からは第1相で0.25≦v≦0.95、第2相で
0.05≦v′≦0.75程度とするのが好ましい。
Further, in both the first phase and the second phase, V represents the ratio of N in the non-metal element, but it can take any value between 0 and 1. However, it is preferable to use 0.25 ≦ v ≦ 0.95 for the first phase and 0.05 ≦ v ′ ≦ 0.75 for the second phase in order to use the hard alloy as the hard phase.

【0016】尚、組成には不可避的に混入する不純物は
含めていないが、現実に入ってくるものについてはこれ
を排するものではない。特に酸素及び粉砕時に混入する
Fe等の金属元素や他のセラミックスはどうしても避け
られないが、これらが存在するからといって、本発明の
効果に変わりはない。又、複合化により2相混合組織を
作るが、この2相は明確に区別できる場合もあるし、連
続的に組成が変化し、境界が判然としない場合もある。
両相の硬さは硬質合金の硬質相として利用するというこ
とを考慮してビッカース硬さで1500以上とした。
The composition does not include impurities that are inevitably mixed in, but those that actually enter are not excluded. In particular, oxygen and metallic elements such as Fe mixed in at the time of pulverization and other ceramics cannot be avoided, but the presence of these elements does not change the effect of the present invention. In addition, although a two-phase mixed structure is created by compounding, the two phases may be clearly distinguished in some cases, or the composition may change continuously, and the boundaries may not be clear.
The hardness of both phases was set to 1500 or more in Vickers hardness in consideration of being used as a hard phase of a hard alloy.

【0017】[0017]

【実施例】平均粒径100nmの超微粒TiN粉末:
9.4重量%、平均粒径3μmのWO3 粉末:75.0
重量%、平均粒径0.1μmの黒鉛粉末:15.6重量
%を乾式で24時間ボールミル混合し、造粒後、窒素雰
囲気で1700℃にて焼成した。得られた粉末を粉砕し
て平均粒径5μmとし、その組織を観察したところ、W
Cを主成分とするマトリックス(第2相)中に平均粒径
95μmのTiN(第1相)が均一に分散しており、そ
の占有率は30%であった。この粒子の残留応力を測定
したところ、約30Kg/mm2 の圧縮応力が働いてい
ることがわかった。本セラミックス粒子の概念図を図1
に示す。尚、TiNの熱膨張係数は6.3×10-6(室
温)であり、WCのそれは3.7×10-6(室温)であ
る。又、TiNのビッカース硬さは2050、WCのそ
れは1780である。
EXAMPLES Ultrafine TiN powder having an average particle size of 100 nm:
WO 3 powder having 9.4% by weight and an average particle size of 3 μm: 75.0
% By weight and graphite powder having an average particle size of 0.1 μm: 15.6% by weight were dry-milled for 24 hours in a ball mill, granulated, and then fired at 1700 ° C. in a nitrogen atmosphere. The obtained powder was pulverized to an average particle size of 5 μm, and its structure was observed.
TiN (first phase) having an average particle size of 95 μm was uniformly dispersed in the matrix containing C as a main component (second phase), and its occupancy was 30%. When the residual stress of these particles was measured, it was found that a compressive stress of about 30 Kg / mm 2 was working. Figure 1 is a conceptual diagram of the ceramic particles.
Shown in. The thermal expansion coefficient of TiN is 6.3 × 10 −6 (room temperature), and that of WC is 3.7 × 10 −6 (room temperature). The Vickers hardness of TiN is 2050 and that of WC is 1780.

【0018】[0018]

【発明の効果】以上述べてきたように、本発明によると
硬質合金の硬質相自身を強化できる。従って、同じ結合
相量でもその合金全体の靱性を高くでき、合金設計上の
自由度が大きくなる。
As described above, according to the present invention, the hard phase itself of the hard alloy can be strengthened. Therefore, even if the amount of the binder phase is the same, the toughness of the entire alloy can be increased and the degree of freedom in alloy design is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明複合硬質セラミックス粒子の概念図(断
面)である。
FIG. 1 is a conceptual diagram (cross section) of a composite hard ceramic particle of the present invention.

【符号の説明】[Explanation of symbols]

1 分散粒子(第1相) 2 基地(第2相) 1 dispersed particles (first phase) 2 bases (phase 2)

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/58 101 D 8821−4G // C22C 29/00 7217−4K (72)発明者 野村 俊雄 兵庫県伊丹市昆陽北一丁目1番1号住友電 気工業株式会社伊丹製作所内Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C04B 35/58 101 D 8821-4G // C22C 29/00 7217-4K (72) Inventor Toshio Nomura Itami Hyogo Prefecture 1-1-1 Kunyo-Kita, Sumitomo Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 2種以上の相を有する複合セラミックス
粒子において、第1相が1nm以上500nm以下の平
均粒径で、平均粒径0.5μm以上10μm以下の第2
相の基地中に少なくとも2個以上分散した組織を有し、
第1相の占める割合が体積換算で10%以上70%以
下、第1相と第2相の熱膨張係数の差が5×10-7以上
で第1相の方が大きく、第1相、第2相ともビッカース
硬さで1500以上を有することを特徴とする複合硬質
セラミックス粒子。
1. A composite ceramic particle having two or more phases, wherein the first phase has an average particle diameter of 1 nm or more and 500 nm or less and an average particle diameter of 0.5 μm or more and 10 μm or less.
Having a structure in which at least two or more are dispersed in the phase base,
The proportion of the first phase is 10% or more and 70% or less in terms of volume, the difference between the thermal expansion coefficients of the first phase and the second phase is 5 × 10 −7 or more, and the first phase is larger, the first phase, Composite hard ceramic particles characterized in that the second phase also has a Vickers hardness of 1500 or more.
【請求項2】 第1相として、TiC、TiN、TiC
N、(Ti1-uu)(C1-vv )(ここで前記MはT
iを除くIVa族、Va族、VIa族の元素、原子占有
率は0.05≦u≦0.3、0≦v≦1)から選ばれた
1種又は2種以上を分散し、第2相として、WC、Mo
2 C、TaC、TaN、NbC、NbN及びこれらの固
溶体、(Ti1-u ′Mu ′)(C1-v ′Nv′)(ここ
で前記MはTiを除くIVa族、Va族、VIa族の元
素、原子占有率は0.3≦u′≦0.95、0≦v′≦
1)から選ばれた1種又は2種以上を基地とした、請求
項1記載の複合硬質セラミックス粒子。
2. The first phase of TiC, TiN, TiC
N, (Ti 1-u M u ) (C 1-v N v ) (where M is T
An element of IVa group, Va group, VIa group other than i, and atomic occupancy of 0.05 ≤ u ≤ 0.3, 0 ≤ v ≤ 1) are dispersed, or two or more of them are dispersed. As a phase, WC, Mo
2 C, TaC, TaN, NbC, NbN and solid solutions thereof, (Ti 1-u ′ M u ′) (C 1-v ′ N v ′) (where M is Ti, IVa group, Va group, VIa group element, atomic occupancy is 0.3 ≦ u ′ ≦ 0.95, 0 ≦ v ′ ≦
The composite hard ceramic particles according to claim 1, wherein one or more selected from 1) is used as a base.
JP03177536A 1991-06-21 1991-06-21 Composite hard ceramic particles Expired - Fee Related JP3143647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03177536A JP3143647B2 (en) 1991-06-21 1991-06-21 Composite hard ceramic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03177536A JP3143647B2 (en) 1991-06-21 1991-06-21 Composite hard ceramic particles

Publications (2)

Publication Number Publication Date
JPH05850A true JPH05850A (en) 1993-01-08
JP3143647B2 JP3143647B2 (en) 2001-03-07

Family

ID=16032656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03177536A Expired - Fee Related JP3143647B2 (en) 1991-06-21 1991-06-21 Composite hard ceramic particles

Country Status (1)

Country Link
JP (1) JP3143647B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913489A1 (en) * 1996-12-16 1999-05-06 Sumitomo Electric Industries, Limited Cemented carbide, process for the production thereof, and cemented carbide tools
WO2002070762A1 (en) * 2001-03-06 2002-09-12 Kiyohito Ishida Member having separation structure and method for manufacture thereof
JP2011132057A (en) * 2009-12-24 2011-07-07 Kyocera Corp Sintered compact
WO2012147737A1 (en) * 2011-04-26 2012-11-01 日本タングステン株式会社 Tungsten carbide-based sinter and abrasion-resistant members using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0913489A1 (en) * 1996-12-16 1999-05-06 Sumitomo Electric Industries, Limited Cemented carbide, process for the production thereof, and cemented carbide tools
US6299658B1 (en) 1996-12-16 2001-10-09 Sumitomo Electric Industries, Ltd. Cemented carbide, manufacturing method thereof and cemented carbide tool
EP0913489A4 (en) * 1996-12-16 2006-05-17 Sumitomo Electric Industries Cemented carbide, process for the production thereof, and cemented carbide tools
WO2002070762A1 (en) * 2001-03-06 2002-09-12 Kiyohito Ishida Member having separation structure and method for manufacture thereof
JP2011132057A (en) * 2009-12-24 2011-07-07 Kyocera Corp Sintered compact
WO2012147737A1 (en) * 2011-04-26 2012-11-01 日本タングステン株式会社 Tungsten carbide-based sinter and abrasion-resistant members using same
JP2012229138A (en) * 2011-04-26 2012-11-22 Nippon Tungsten Co Ltd Tungsten carbide-based sintered body and abrasion resistant member using the same

Also Published As

Publication number Publication date
JP3143647B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
EP1007751B1 (en) A cermet having a binder with improved plasticity, a method for the manufacture and use therof
US4235630A (en) Wear-resistant molybdenum-iron boride alloy and method of making same
JP5427380B2 (en) Carbide composite material and manufacturing method thereof
AU657753B2 (en) Method of making cemented carbide articles
CN1995427B (en) Hard alloy composition
KR100436327B1 (en) Sintered hard alloy
US4919718A (en) Ductile Ni3 Al alloys as bonding agents for ceramic materials
WO1999010553A1 (en) A CUTTING INSERT OF A CERMET HAVING A Co-Ni-Fe-BINDER
US5918103A (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
EP0759480A1 (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
US5015290A (en) Ductile Ni3 Al alloys as bonding agents for ceramic materials in cutting tools
US20040079191A1 (en) Hard alloy and W-based composite carbide powder used as starting material
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
EP0646186A1 (en) Sintered extremely fine-grained titanium based carbonitride alloy with improved toughness and/or wear resistance
WO2005092543A1 (en) Nano crystalline white cast iron powder having high hardness and nano crystalline white cast iron bulk material having high hardness, high strength and high toughness, and method for production thereof
JP3143647B2 (en) Composite hard ceramic particles
JPS63286550A (en) Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation
JP4282298B2 (en) Super fine cemented carbide
JPH07197180A (en) High strength and high hardness sintered hard alloy excellent in corrosion resistance
JPH073357A (en) High hardness cemented carbide excellent in oxidation resistance
JP3341776B2 (en) Super hard alloy
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
Tiegs et al. Comparison of Sintering Behavior and Properties of Aluminide‐Bonded Ceramics
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JP2502322B2 (en) High toughness cermet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees