JPS63286550A - Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation - Google Patents

Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation

Info

Publication number
JPS63286550A
JPS63286550A JP12176287A JP12176287A JPS63286550A JP S63286550 A JPS63286550 A JP S63286550A JP 12176287 A JP12176287 A JP 12176287A JP 12176287 A JP12176287 A JP 12176287A JP S63286550 A JPS63286550 A JP S63286550A
Authority
JP
Japan
Prior art keywords
hard phase
carbide
nitrogen
sintered alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12176287A
Other languages
Japanese (ja)
Other versions
JPH0333771B2 (en
Inventor
Takeshi Saito
斉藤 豪
Kozo Kitamura
幸三 北村
Mitsuo Ueki
植木 光生
Keiichi Kobori
小堀 景一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP12176287A priority Critical patent/JPS63286550A/en
Publication of JPS63286550A publication Critical patent/JPS63286550A/en
Publication of JPH0333771B2 publication Critical patent/JPH0333771B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To develop a nitrogen-contg. titanium carbide-base sintered alloy as a cutting tool having excellent strength, wear resistance and resistance to thermal deformation by using a sintered material having a hard phase consisting of TiC as well as TiN, WC, Mo2C, and other carbides and bond phase consisting of Co or Ni as a stock. CONSTITUTION:The sintered alloy made of the compsn. contg. 3-18% Co or Ni as the bond phase metal at the time of sintering, having, by weight %, 7-34% TiN, 4-24.5% WC, 4-12.5% Mo2C, and at least one kinds among HfC, ZrC, NbC, and TaC and consisting of the balance TiC as the hard phase of the balance is used as the material for the cutting tools having the excellent resistance to thermal deformation as well as the high hardness and high strength. The hard phase is formed of 0.4-7vol.% the 1st hard layer which is made of (Ti, W)C as its core part, is made of Ti, W, Mo and the double carbonitride of at least one kind among Hf, Zr, Nb and Ta as its coating layer and has 0.1-1.5mum average grain size and the balance the 2nd hard phase consisting of the TiC core part and the coating of Ti, W, Mo, and the double carbonitride of >=1 kinds among Hf, Zr, Nb, and Ta.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐摩耗工具部品又は切削工具部品に適する強
度、耐摩耗性及び耐熱変形性にすぐれた窒素含有炭化チ
タン基焼結合金に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a nitrogen-containing titanium carbide-based sintered alloy that is suitable for wear-resistant tool parts or cutting tool parts and has excellent strength, wear resistance, and heat deformation resistance. It is.

(従来の技術) 一般に、炭化タングステンに比較して炭化チタンは、鉄
族金属との親和性に乏しく、又酎酸化性にすぐれている
。このらの理由から、特に鉄系材料を切削するための切
削工具部品用には、WC基焼結合金に代り、Ticを主
成分としたTiC基焼結合金が実用化されている。しか
しながら、Tjc2!i焼結合金は、WC基焼結合金に
比較して強度が低く、しかも高温における耐塑性変形性
が劣るという問題がある。これらの問題点の解決法とし
て窒素を含有したTiC基焼結合金が多数提案されてい
る。窒素を含有したTiC基焼結合金の代表例としては
、特開昭51−93711号公報及び特公昭5B−51
201号公報がある。
(Prior Art) In general, titanium carbide has poor affinity with iron group metals and is superior in oxidation properties compared to tungsten carbide. For these reasons, TiC-based sintered alloys containing Tic as a main component have been put into practical use instead of WC-based sintered alloys, especially for cutting tool parts for cutting ferrous materials. However, Tjc2! The i-sintered alloy has a problem in that it has lower strength than the WC-based sintered alloy and also has poor plastic deformation resistance at high temperatures. As a solution to these problems, many nitrogen-containing TiC-based sintered alloys have been proposed. Representative examples of nitrogen-containing TiC-based sintered alloys include JP-A-51-93711 and JP-B-5B-51.
There is a publication No. 201.

(発明が解決しようとする問題点) 特開昭51−93711号公報は、重量%で、炭化タン
グステン10〜60%、炭化チタン5〜40%、炭化タ
ンタル5〜30%、窒化チタン3〜20%、コバルト、
ニッケル、鉄等の鉄族金属5〜20%の成分からなるこ
とを特徴とする切削用超硬合金である。この特開昭51
−93711号公報の合金は、TiCを主成分とする組
成に窒化チタンを添加することにより固溶体粒子の粒成
長を抑制して微細結晶粒にし、その結果、窒素無含有の
TiC基焼結合金に比べて高硬度で、耐摩耗性が向上し
′ているものである。また、窒化チタンは炭化チタンに
比べて熱衝撃抵抗が大きいことから、窒素無含有のTi
C基焼結合金に比較して耐熱衝撃性が改善されているも
のである。しかしながら、特開昭51−93711号公
報の合金は、窒素無含有のTiC基焼結合金と同様に炭
化チタンを核に持つ有核組織であるために結晶粒の微細
化が顕著でなく、しかも高温における#塑性変形性が劣
るという問題がある。
(Problems to be Solved by the Invention) JP-A-51-93711 discloses that tungsten carbide is 10 to 60%, titanium carbide is 5 to 40%, tantalum carbide is 5 to 30%, and titanium nitride is 3 to 20% by weight. %,cobalt,
This is a cemented carbide for cutting, characterized by comprising 5 to 20% of iron group metals such as nickel and iron. This JP-A-51
The alloy of Publication No. 93711 suppresses the grain growth of solid solution particles to form fine crystal grains by adding titanium nitride to a composition whose main component is TiC, and as a result, a nitrogen-free TiC-based sintered alloy is produced. It has higher hardness and improved wear resistance. In addition, since titanium nitride has higher thermal shock resistance than titanium carbide, nitrogen-free Ti
It has improved thermal shock resistance compared to C-based sintered alloys. However, the alloy disclosed in JP-A-51-93711 has a nucleated structure with titanium carbide as the nucleus, similar to the nitrogen-free TiC-based sintered alloy, so the grain refinement is not remarkable. There is a problem of poor plastic deformability at high temperatures.

特公昭5B−51201号公報は、窒素を含有したTi
C基焼結合金で、チタン及び窒素に富む炭窒化物固溶体
と、第6族金属成分に富むが窒素に乏しいもう1つの硬
質相により成る2相混合物であり、2相混合物は微細構
造を形成し、チタン及び窒素に富む炭窒化物相が第6族
金属に富むが窒素に乏しい相に包囲され、結合剤合金と
の主界面を形成していることを特徴とするものである。
Japanese Patent Publication No. 5B-51201 discloses that nitrogen-containing Ti
A C-based sintered alloy, it is a two-phase mixture consisting of a carbonitride solid solution rich in titanium and nitrogen and another hard phase rich in Group 6 metal components but poor in nitrogen, and the two-phase mixture forms a microstructure. However, it is characterized in that a carbonitride phase rich in titanium and nitrogen is surrounded by a phase rich in Group 6 metals but poor in nitrogen, forming the main interface with the binder alloy.

この特公昭5B−51201号公報の合金は、窒素無含
有のTiC基焼結合金と異なり、チタン及び窒素に富む
炭窒化物相を芯部にしたものであることから微細結晶粒
になっており、このために耐摩耗性2強度及び耐熱変形
性などの合金特性がすぐれているものである。しかしな
がら、この特公昭56−51201号公報の合金は、ス
ピノダル領域内に含まれる選択された組成で、スビノダ
ル反応を利用して作製するものであるために、出発原料
粉末、焼結時に用いる焼結炉及び焼結雰囲気などの製造
条件の制御を従来の粉末冶金法と異なり非常に厳しくし
なければ作製できないという問題がある。
Unlike the nitrogen-free TiC-based sintered alloy, the alloy disclosed in Japanese Patent Publication No. 5B-51201 has fine crystal grains because it has a carbonitride phase rich in titanium and nitrogen as its core. Therefore, the alloy has excellent properties such as wear resistance, strength, and heat deformation resistance. However, since the alloy disclosed in Japanese Patent Publication No. 56-51201 has a selected composition within the spinodal region and is produced using the Subinodal reaction, the starting material powder, the sintering agent used during sintering Unlike the conventional powder metallurgy method, there is a problem in that production cannot be performed without extremely strict control of manufacturing conditions such as the furnace and sintering atmosphere.

本発明は、上述のような問題点を解決したもので、具体
的には、TiとWとを含有する炭化物を芯部とし、この
芯部が炭窒化物の外周部で包囲されてなる有芯構造の硬
質相を焼結合金中に形成させたもので、耐摩耗性9強度
及び高温における耐熱変形性のすぐれた窒素含有の炭化
チタン基焼結合金の提供を目的とするものである。
The present invention solves the above-mentioned problems. Specifically, the present invention has a core made of a carbide containing Ti and W, and this core is surrounded by an outer periphery of carbonitride. The purpose of the present invention is to provide a nitrogen-containing titanium carbide-based sintered alloy in which a hard phase with a core structure is formed in a sintered alloy, and which has excellent wear resistance 9 strength and heat deformation resistance at high temperatures.

(問題点を解決するための手段) 木発明者らは、窒素を含有したTiC基焼結合金の基本
系であるTiC−TiN−MO2C−Ni系合金に、他
の各種の炭化物を添加し、その添加炭化物の役割につい
て検討していた所、特に、窒化チタンと炭化モリブデン
との合計量に対する炭化タングステン量を適量添加し、
焼結時の雰囲気制御によっては、低次化物の添加に比較
して合金組織が著しく微細になり、しかも高温硬さが改
良され、高強度で、切削時の耐刃先変形性にすぐれると
いう知見を得たものである。この知見に基づいて、本発
明を完成するに至ったものである。
(Means for solving the problem) The inventors added various other carbides to a TiC-TiN-MO2C-Ni alloy, which is the basic system of a nitrogen-containing TiC-based sintered alloy. While considering the role of the added carbide, in particular, adding an appropriate amount of tungsten carbide to the total amount of titanium nitride and molybdenum carbide,
The knowledge that by controlling the atmosphere during sintering, the alloy structure becomes significantly finer than when low-order compounds are added, and that high-temperature hardness is improved, resulting in high strength and excellent resistance to edge deformation during cutting. This is what I got. Based on this knowledge, we have completed the present invention.

すなわち、本発明の耐熱変形性にすぐれた窒素含有炭化
チタン基焼結合金は、Ni及び/又はCoでなる結合相
3〜18wt%と、残り硬質相と不可避不純物とからな
り、該硬質相は7〜34vt%の窒化チタンと4〜24
.5wt%の炭化タングステンと4〜12.5wt%の
炭化モリブデンと、さらに2wt%以下の炭化ハフニウ
ム、2wt%以下の炭化ジルコニウム、5wt%以下の
炭化ニオブ又は10wt%以下の炭化タンタルの中の少
なくとも1種と、残り炭化チタンとからなる組成であっ
て、かつ該硬質相はTiとWとを含有した複合炭化物の
芯部をTiとWとMoとHf * Z r *Nb、T
aの中の少なくとも1種とをを含有した複合炭窒化物の
外周部で包囲してなる第1硬質相を0.4〜7マon%
含有していることを特徴とするものである。
That is, the nitrogen-containing titanium carbide-based sintered alloy of the present invention, which has excellent heat deformation resistance, consists of a binder phase of 3 to 18 wt% of Ni and/or Co, and the remaining hard phase and unavoidable impurities. 7-34 vt% titanium nitride and 4-24
.. 5 wt% tungsten carbide, 4 to 12.5 wt% molybdenum carbide, and at least one of 2 wt% or less hafnium carbide, 2 wt% or less zirconium carbide, 5 wt% or less niobium carbide, or 10 wt% or less tantalum carbide. The core of the composite carbide, which has a composition consisting of a seed and the remaining titanium carbide, and the hard phase contains Ti and W, is combined with Ti, W, Mo, and Hf*Zr*Nb,T
0.4 to 7 maon% of the first hard phase surrounded by the outer periphery of a composite carbonitride containing at least one of a.
It is characterized by containing.

この本発明の耐熱変形性にすぐれた窒素含有炭化チタン
基焼結合金における硬質相は、具体的には、(Ti、W
)Cの複合炭化物でなる芯部を(Ti 、W、Mo 、
M)(C、N)の複合炭窒化物(以下、MはHf、Zr
、Nb、Taの中の少なくとも1種を表わす、)でなる
外周部で包囲された第1硬質相が0.4〜7vol%含
有しているものである。この第1硬質相を除いた、残り
の硬質相は、例えばTiCの炭化物でなる芯部を(Ti
 、W、Mo 、M)(C、N)の複合炭窒化物でなる
外周部で包囲された第2硬質相、(Ti 、W)(C,
N)の複合炭窒化物でなる芯部を(Ti 、W、Mo 
、M)(C,N)の複合炭窒化物でなる外周部で包囲さ
れた第3硬賀相、TI(C,N)の炭窒化物でなる芯部
を(Ti’、W、Mo 、M)(C、N)の複合炭窒化
物でなる外周部で包囲された第4硬質相、又はTiNの
窒化物でなる芯部を (Ti 、W、Mo 、M)(C、N)の複合炭窒化物
でなる外周部で包囲された第5硬質相などを挙げること
ができる。特に、易焼結性及び焼結合金の耐熱変形性か
ら、硬質相は、第1硬質相と第2硬質相とからなること
が好ましいものである。これらの硬質相を構成している
芯部及び外周部は、化学量論組成又は非化学量論組成で
なっているものである。この硬質相として含有している
第1硬質相の平均粒径が0.1〜1.57zmであると
、強度及び耐熱変形性にすぐれる傾向にあることから、
特に好ましいものである。また、第1硬質相を除いた、
残りの硬質相の平均粒径が3pm以下、好ましくは1.
0Bm以下であると焼結合金の緒特性がすぐれる傾向に
なる。
Specifically, the hard phase in the nitrogen-containing titanium carbide-based sintered alloy with excellent heat deformation resistance of the present invention includes (Ti, W
) A core made of a composite carbide of (Ti, W, Mo,
M) Composite carbonitride of (C, N) (hereinafter, M is Hf, Zr
, Nb, and Ta), which is surrounded by an outer peripheral portion, and contains 0.4 to 7 vol% of the first hard phase. The remaining hard phase except for this first hard phase has a core made of, for example, TiC carbide (Ti
, W, Mo, M) (C, N), a second hard phase surrounded by a composite carbonitride of (Ti, W) (C,
A core made of composite carbonitride of (Ti, W, Mo
. M) The fourth hard phase surrounded by the outer periphery made of composite carbonitride of (C, N), or the core made of nitride of TiN, of (Ti, W, Mo, M) (C, N) Examples include a fifth hard phase surrounded by an outer peripheral portion made of composite carbonitride. In particular, from the viewpoint of easy sinterability and heat deformation resistance of the sintered alloy, it is preferable that the hard phase consists of a first hard phase and a second hard phase. The core and outer peripheral portions constituting these hard phases have a stoichiometric or non-stoichiometric composition. If the average particle size of the first hard phase contained as this hard phase is 0.1 to 1.57 zm, it tends to have excellent strength and heat deformation resistance.
This is particularly preferred. In addition, excluding the first hard phase,
The average particle size of the remaining hard phase is 3 pm or less, preferably 1.
If it is 0 Bm or less, the properties of the sintered alloy tend to be excellent.

本発明の耐熱変形性にすぐれた窒素含有炭化チタン基焼
結合金における結合相は、Ni及び/又はCoでなるも
ので、他に硬質相を構成している元素、特にMOとCが
0.1%以下の不純物程度に固溶している場合もある。
The binder phase in the nitrogen-containing titanium carbide-based sintered alloy with excellent heat deformation resistance of the present invention is composed of Ni and/or Co, and the other elements constituting the hard phase, particularly MO and C, are 0. In some cases, impurities of 1% or less are dissolved in solid solution.

次に、本発明の耐熱変形性にすぐれた窒素含有炭化チタ
ン基焼結合金において、数値限定した理由を以下に述べ
る。
Next, the reasons for limiting the numerical values in the nitrogen-containing titanium carbide-based sintered alloy with excellent heat deformation resistance of the present invention will be described below.

結合相が3wt%未満になると、相対的に硬質相が97
wt%を超えて多くなるために難焼結性になる。このた
めに、緻密で強度の高い合金を得るのが困難になる。逆
に、結合相が18wt%を超えて多くなると、相対的に
硬質相が82wt%2wt%未満めに耐摩耗性が低下す
る。このために、結合相は、3〜18wt%と定めたも
のである。
When the binder phase is less than 3 wt%, the relatively hard phase becomes 97%.
Since the amount exceeds wt%, it becomes difficult to sinter. This makes it difficult to obtain a dense and strong alloy. On the other hand, when the binder phase is increased to more than 18 wt%, the wear resistance is relatively lowered to 82 wt% or less than 2 wt% of the hard phase. For this purpose, the amount of the binder phase is determined to be 3 to 18 wt%.

硬質相中の窒化チタンが7wt%未満になると、硬質相
全体が粗粒化の傾向を示し、耐摩耗性が低下する。逆に
、窒化チタンが34wt%を超えて多くなると、難焼結
性になり、緻密な焼結合金を得るのが困難になる。この
ために、硬質相中の窒化チタンは、7〜34wt%と定
めたものである。
When the content of titanium nitride in the hard phase is less than 7 wt%, the entire hard phase tends to become coarse grained, resulting in decreased wear resistance. On the other hand, if the amount of titanium nitride exceeds 34 wt%, sintering becomes difficult and it becomes difficult to obtain a dense sintered alloy. For this reason, the content of titanium nitride in the hard phase is determined to be 7 to 34 wt%.

硬質相中の炭化タングステンが4wt%未満になると、
(Ti、W)Cを芯部とする第1硬質相が0.4マaf
L%未満となって、硬質相を粗粒化し、耐摩耗性及び耐
塑性変形性の低下となる。逆に、炭化タングステンが2
4.5wt%を超えて多くなると、硬質相中に炭化タン
グステンが析出し、硬質相の微細化を阻害して、強度を
低下する。このために、硬質相中の炭化タングステンは
、4〜24.5wt%と定めたものである。
When tungsten carbide in the hard phase becomes less than 4 wt%,
The first hard phase with (Ti, W)C as the core is 0.4 Maaf
If it becomes less than L%, the hard phase becomes coarse grained, resulting in a decrease in wear resistance and plastic deformation resistance. Conversely, tungsten carbide is 2
When the amount exceeds 4.5 wt%, tungsten carbide precipitates in the hard phase, inhibits refinement of the hard phase, and reduces strength. For this reason, the amount of tungsten carbide in the hard phase is determined to be 4 to 24.5 wt%.

硬質相中の炭化モリブデンが4wt%未満になると、難
焼結性になり、緻密な焼結合金を得るのが困難になる。
When molybdenum carbide in the hard phase is less than 4 wt%, sintering becomes difficult and it becomes difficult to obtain a dense sintered alloy.

逆に、炭化モリブデンが12.5wt%を超えて多くな
ると、硬質相を形成している外周部が粗大化して1強度
低下となる。このために、硬質相中の炭化モリブデンは
、4〜12.5wt%と定めたものである。
On the other hand, if the amount of molybdenum carbide exceeds 12.5 wt%, the outer periphery forming the hard phase becomes coarse and the strength decreases by 1. For this reason, molybdenum carbide in the hard phase is determined to be 4 to 12.5 wt%.

硬質相中に2wt%を超えた炭化ハフニウム。More than 2 wt% hafnium carbide in the hard phase.

2wt%を超えた炭化ジルコニウム、5wt%を超えた
炭化ニオブ、10wt%を超えた炭化タンタルが存在す
ると、外周部が厚くなり、結局硬質相の粗粒化が生じて
強度低下になる。このために、硬質相中には、炭化ハフ
ニウム2wt%以下、炭化ジルコニウム2wt%以下、
炭化ニオブ5wt%以下、炭化タンタル10wt%以下
と定めたものである。
If zirconium carbide exceeds 2 wt%, niobium carbide exceeds 5 wt%, or tantalum carbide exceeds 10 wt%, the outer periphery becomes thicker, and the hard phase eventually becomes coarser, resulting in a decrease in strength. For this purpose, the hard phase contains hafnium carbide 2wt% or less, zirconium carbide 2wt% or less,
Niobium carbide is set at 5 wt% or less, and tantalum carbide is set at 10 wt% or less.

硬質相中の第1硬質相が0.4マo!;L%未満になる
と、硬質相が粗粒化し、強度及び耐熱変形性を低下する
。逆に、第1硬質相が7マan%を超えて多くなると炭
化タングステンが析出し、硬質相の微細化を阻害して強
度及び耐熱変形性を低下する。このために、硬質相中の
第1硬質相は、0.4〜7マ0文%と定めたものである
The first hard phase in the hard phase is 0.4 mao! ; When it is less than L%, the hard phase becomes coarse grained and the strength and heat deformation resistance are reduced. On the other hand, if the first hard phase exceeds 7 maan%, tungsten carbide will precipitate, inhibiting the refinement of the hard phase and reducing the strength and heat deformation resistance. For this reason, the first hard phase in the hard phase is determined to be 0.4 to 7%.

本発明の耐熱変形性にすぐれた窒素含有炭化チタン基焼
結合金を作製するには、出発原料粉末に平均粒径が31
Lm以下のものを用いて、有機溶媒中で湿式混合粉砕し
、この混合粉砕粉末を従来の粉末冶金法における成形方
法でもって成形した後、必要に応じて脱脂処理後、真空
中で1400〜1500℃の温度で保持して焼結すれば
よい。
In order to produce the nitrogen-containing titanium carbide-based sintered alloy of the present invention with excellent heat deformation resistance, the starting material powder must have an average particle size of 31
After wet-mixing and pulverizing the mixed pulverized powder in an organic solvent using Lm or less, molding the mixed pulverized powder using a conventional molding method in powder metallurgy, and after degreasing if necessary, the Sintering can be carried out by holding at a temperature of °C.

特に、焼結合金中に第1硬質相を形成させるために重要
なことは、成形後の圧粉体に付着又は固溶している酸素
量をできるだけ少なくし、焼結時の液相発生までの昇温
中は、N2  + H2Co。
In particular, in order to form the first hard phase in the sintered alloy, it is important to minimize the amount of oxygen attached to or dissolved in the green compact after molding, and to prevent the generation of the liquid phase during sintering. N2 + H2Co during heating.

N2−N2又はN2− Co−N2 の減圧状ガス雰囲
気にし、次いで液相発生から焼結完了までを少し高真空
にするのがよい。
It is preferable to create a reduced pressure gas atmosphere of N2-N2 or N2-Co-N2, and then to create a slightly high vacuum from the generation of the liquid phase to the completion of sintering.

(作用) 本発明の耐熱変形性にすぐれた窒素含有炭化チタン基焼
結合金は、第1硬質相が硬質相全体の結晶を微細にする
作用をし、特に第1硬質相中の芯部に固溶しているWが
第1硬質相の結晶を微細にすると共に、硬質相全体の結
晶を微細にする作用をしているものである。また、硬質
相の外周部中に存在するHf、Zr、Nb、Taの中の
少なくとも1種は、耐酸化性を向上する作用、耐熱変形
性を向上する作用及び強度向上の作用がある。
(Function) In the nitrogen-containing titanium carbide-based sintered alloy of the present invention, which has excellent heat deformation resistance, the first hard phase acts to make the crystals of the entire hard phase finer, especially in the core part of the first hard phase. The W dissolved in the solid solution functions to make the crystals of the first hard phase fine and also to make the crystals of the entire hard phase fine. Furthermore, at least one of Hf, Zr, Nb, and Ta present in the outer peripheral portion of the hard phase has the effect of improving oxidation resistance, heat deformation resistance, and strength.

これらの第1硬質相中の芯部と硬質相の外周部を形成し
ている複合炭窒化物との相互作用により、本発明の焼結
合金は、室温及び高温での硬さの向上2強度の向上並び
に耐摩耗性、#酸化性及び耐熱変形性にすぐれるという
作用をもたらしてるも(実施例) 実施例1 平均粒径1pmのWC粉末、平均粒径1〜3pmの各種
炭化物粉末、窒化物粉末、Nl粉末及びCo粉末を出発
原料として用いて、第1表の各試料を配合した。この第
1表の各試料をステンレス製容器、超硬合金性ボールを
用いてヘキサン溶媒中で40時間混合した後、パラフィ
ン混合、乾燥及び1 ton/c+s2圧力で成形した
0次に、成形圧粉体を真空炉に設置して、  I X 
l O−2Tarrの真空にした後、N2−Coの減圧
ガス中で1350℃まで昇温し、次いで5 X 10−
2Torrの真空中、1400〜1500℃で1時間保
持にて焼結した。こうした得た本発明の焼結合金の室温
での硬さ、1000℃での硬さ、室温での抗折力を測定
し、その結果を第2表に示した。また、各焼結合金をX
線マイクロアナライザー、走査型電子Ill微鏡により
組織観察し、特に第1硬質相の平均粒径及びその含有量
を求めて第2表に併記した。
Due to the interaction between the core in the first hard phase and the composite carbonitride forming the outer periphery of the hard phase, the sintered alloy of the present invention has improved hardness and strength at room and high temperatures. (Example) Example 1 WC powder with an average particle size of 1 pm, various carbide powders with an average particle size of 1 to 3 pm, and nitriding. Each sample in Table 1 was formulated using Co powder, Nl powder, and Co powder as starting materials. Each sample in Table 1 was mixed in a hexane solvent using a stainless steel container and a cemented carbide ball for 40 hours, mixed with paraffin, dried, and molded at a pressure of 1 ton/c+s2. Place the body in a vacuum furnace and
After creating a vacuum of 1 O-2 Tarr, the temperature was raised to 1350 °C in a reduced pressure gas of N2-Co, and then 5 X 10-
Sintering was carried out at 1400 to 1500° C. for 1 hour in a vacuum of 2 Torr. The hardness at room temperature, the hardness at 1000° C., and the transverse rupture strength at room temperature of the obtained sintered alloy of the present invention were measured, and the results are shown in Table 2. Also, each sintered alloy is
The structure was observed using a line microanalyzer and a scanning electronic Ill microscope, and in particular, the average particle size and content of the first hard phase were determined and are also listed in Table 2.

尚、比較品として、焼結条件が5 X 10−2Tar
・rの真空中の他は、上述と同様に行って得た比較品も
第1表及び第2表に併記した。
As a comparative product, the sintering conditions were 5 x 10-2 Tar.
Comparative products obtained in the same manner as above except for being in a vacuum of r are also listed in Tables 1 and 2.

以下 余白 実施例2 実施例1で得た各試料を用いて、下記の条件により切削
試験を行い、その結果を第3表に示した。
Margin Example 2 Cutting tests were conducted under the following conditions using each sample obtained in Example 1, and the results are shown in Table 3.

旋削による切削試験条件 被  削  材  348C(CHe  233  )
φ250X750 切削速度 250  m/win 送り速度 0.3  mm/rev 切り込み量 1.5mm 切削時間  10   sin チップ形状 5PGN 160308 0、I X (−30°)ホーニング付乾式切削 以下余白 第     3     表 (発明の効果) 以上の結果1本発明の#熱変形性にすぐれた窒素含有炭
化チタン基焼結合金は、第1硬質相の存在してない焼結
合金及び本発明から外れた焼結合金等の比較合金に比べ
て、硬さが僅かに向上し、抗折力強度が約20〜60%
向上し、鋼、切削時における逃げ面摩耗量が約215〜
3/4に減少し、鋼切削時における熱変形量が約1/2
〜178に減少するという効果がある。
Cutting test conditions by turning Work material 348C (CHe 233)
φ250X750 Cutting speed 250 m/win Feed rate 0.3 mm/rev Depth of cut 1.5 mm Cutting time 10 sin Chip shape 5PGN 160308 0, I ) Results 1 The nitrogen-containing titanium carbide-based sintered alloy of the present invention with excellent thermal deformability is superior to comparative alloys such as sintered alloys without the first hard phase and sintered alloys other than the present invention. Hardness is slightly improved compared to
Improved flank wear amount when cutting steel, approximately 215 ~
The amount of thermal deformation when cutting steel is reduced by about 1/2.
This has the effect of reducing the number to ~178.

このことから、本発明の焼結合金は、従来の炭化チタン
基焼結合金により用いられている旋削工具領域用の切削
工具部品及びあまり衝撃力が加わらない耐摩耗工具部品
の他に、さらに高速領域又は高送り領域用の切削工具部
品、フライス用切削工具部品、エンドミルやドリル等の
穴あけ工具用の切削工具部品、磁気テープ、紙、金属箔
板等の切断工具部品又はダイヤモンド、CBN。
For this reason, the sintered alloy of the present invention can be used for cutting tool parts for turning tool areas and wear-resistant tool parts that are not subjected to much impact force, which are used with conventional titanium carbide-based sintered alloys, as well as for higher speed cutting tools. Cutting tool parts for areas or high feed areas, cutting tool parts for milling, cutting tool parts for drilling tools such as end mills and drills, cutting tool parts for magnetic tape, paper, metal foil plates, etc., or diamond, CBN.

Tic、TiN、Al103等の被覆層を形成させるた
めの基材としても応用できる産業上有用な材料である。
It is an industrially useful material that can also be used as a base material for forming coating layers such as Tic, TiN, and Al103.

Claims (3)

【特許請求の範囲】[Claims] (1)Ni及び/又はCoでなる結合相3〜18wt%
と、残り硬質相と不可避不純物とからなり、該硬質相は
7〜34wt%の窒化チタンと4〜24.5wt%の炭
化タングステンと4〜12.5wt%の炭化モリブデン
と、さらに2wt%以下の炭化ハフニウム、2wt%以
下の炭化ジルコニウム、5wt%以下の炭化ニオブ又は
10wt%以下の炭化タンタルの中の少なくとも1種と
、残り炭化チタンとからなる組成であって、かつ該硬質
相はTiとWとを含有した複合炭化物の芯部をTiとW
とMoとHf、Zr、Nb、Taの中の少なくとも1種
とを含有した複合炭窒化物の外周部で包囲してなる第1
硬質相を0.4〜7vol%含有していることを特徴と
する耐熱変形性にすぐれた窒素含有炭化チタン基焼結合
金。
(1) 3 to 18 wt% binding phase made of Ni and/or Co
The hard phase consists of 7 to 34 wt% titanium nitride, 4 to 24.5 wt% tungsten carbide, 4 to 12.5 wt% molybdenum carbide, and 2 wt% or less of molybdenum carbide. The composition is composed of at least one of hafnium carbide, 2 wt% or less of zirconium carbide, 5 wt% or less of niobium carbide, or 10 wt% or less of tantalum carbide, and the remainder is titanium carbide, and the hard phase is composed of Ti and W. The core of the composite carbide containing Ti and W
and a first compound surrounded by an outer periphery of a composite carbonitride containing Mo and at least one of Hf, Zr, Nb, and Ta.
A nitrogen-containing titanium carbide-based sintered alloy having excellent heat deformation resistance and containing 0.4 to 7 vol% of a hard phase.
(2)上記硬質相は、上記第1硬質相を0.4〜7vo
l%と、残り炭化チタンの芯部をTiとWとMoとHf
、Zr、Nb、Taの中の少なくとも1種とを含有した
複合炭窒化物の外周部で包囲してなる第2硬質相とから
なることを特徴とする特許請求の範囲第1項記載の耐熱
変形性にすぐれた窒素含有炭化チタン基焼結合金。
(2) The hard phase has a volume of 0.4 to 7 vo of the first hard phase.
1%, and the remaining titanium carbide core is Ti, W, Mo, and Hf.
, a second hard phase surrounded by a composite carbonitride containing at least one of Zr, Nb, and Ta. Nitrogen-containing titanium carbide-based sintered alloy with excellent deformability.
(3)上記第1硬質相は、平均粒径が0.1〜1.5μ
mであることを特徴とする特許請求の範囲第1項又は第
2項記載の耐熱変形性にすぐれた窒素含有炭化チタン基
焼結合金。
(3) The first hard phase has an average particle size of 0.1 to 1.5μ
A nitrogen-containing titanium carbide-based sintered alloy having excellent heat deformation resistance as claimed in claim 1 or 2, characterized in that m.
JP12176287A 1987-05-19 1987-05-19 Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation Granted JPS63286550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12176287A JPS63286550A (en) 1987-05-19 1987-05-19 Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12176287A JPS63286550A (en) 1987-05-19 1987-05-19 Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation

Publications (2)

Publication Number Publication Date
JPS63286550A true JPS63286550A (en) 1988-11-24
JPH0333771B2 JPH0333771B2 (en) 1991-05-20

Family

ID=14819255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12176287A Granted JPS63286550A (en) 1987-05-19 1987-05-19 Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation

Country Status (1)

Country Link
JP (1) JPS63286550A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213599A (en) * 2004-01-29 2005-08-11 Kyocera Corp TiCN-BASED CERMET AND ITS MANUFACTURING METHOD
JP2007136656A (en) * 2005-10-18 2007-06-07 Ngk Spark Plug Co Ltd Cermet-made insert and cutting tool
JP2007231421A (en) * 2007-02-23 2007-09-13 Kyocera Corp TiCN-BASED CERMET
JP2009019276A (en) * 2008-08-25 2009-01-29 Kyocera Corp TiCN-BASED CERMET
CN104630590A (en) * 2015-02-12 2015-05-20 成都邦普合金材料有限公司 Composite hard alloy material and preparation method thereof
WO2015141757A1 (en) * 2014-03-19 2015-09-24 株式会社タンガロイ Cermet tool
JP2016087742A (en) * 2014-11-05 2016-05-23 株式会社タンガロイ Cermet tool and surface-coated cermet tool
CN112513302A (en) * 2018-10-04 2021-03-16 住友电工硬质合金株式会社 Cemented carbide, cutting tool comprising same, and method for producing cemented carbide
WO2021105875A1 (en) * 2019-11-28 2021-06-03 Hyperion Materials & Technologies (Sweden) Ab NbC-BASED CEMENTED CARBIDE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627587A (en) * 1979-08-14 1981-03-17 Mitsubishi Electric Corp Correlative tracking unit
JPS6173857A (en) * 1984-09-19 1986-04-16 Mitsubishi Metal Corp Cermet for cutting tool
JPS6396242A (en) * 1986-10-09 1988-04-27 Toshiba Tungaloy Co Ltd High strength sintered alloy and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627587A (en) * 1979-08-14 1981-03-17 Mitsubishi Electric Corp Correlative tracking unit
JPS6173857A (en) * 1984-09-19 1986-04-16 Mitsubishi Metal Corp Cermet for cutting tool
JPS6396242A (en) * 1986-10-09 1988-04-27 Toshiba Tungaloy Co Ltd High strength sintered alloy and its production

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213599A (en) * 2004-01-29 2005-08-11 Kyocera Corp TiCN-BASED CERMET AND ITS MANUFACTURING METHOD
JP2007136656A (en) * 2005-10-18 2007-06-07 Ngk Spark Plug Co Ltd Cermet-made insert and cutting tool
JP4659682B2 (en) * 2005-10-18 2011-03-30 日本特殊陶業株式会社 Cermet inserts and cutting tools
JP2007231421A (en) * 2007-02-23 2007-09-13 Kyocera Corp TiCN-BASED CERMET
JP2009019276A (en) * 2008-08-25 2009-01-29 Kyocera Corp TiCN-BASED CERMET
WO2015141757A1 (en) * 2014-03-19 2015-09-24 株式会社タンガロイ Cermet tool
CN106068167A (en) * 2014-03-19 2016-11-02 株式会社图格莱 Cermet tool
JPWO2015141757A1 (en) * 2014-03-19 2017-04-13 株式会社タンガロイ Cermet tool
RU2643752C1 (en) * 2014-03-19 2018-02-05 Тунгалой Корпорейшн Cermet tool
US10208365B2 (en) 2014-03-19 2019-02-19 Tungaloy Corporation Cermet tool
JP2016087742A (en) * 2014-11-05 2016-05-23 株式会社タンガロイ Cermet tool and surface-coated cermet tool
CN104630590A (en) * 2015-02-12 2015-05-20 成都邦普合金材料有限公司 Composite hard alloy material and preparation method thereof
CN112513302A (en) * 2018-10-04 2021-03-16 住友电工硬质合金株式会社 Cemented carbide, cutting tool comprising same, and method for producing cemented carbide
WO2021105875A1 (en) * 2019-11-28 2021-06-03 Hyperion Materials & Technologies (Sweden) Ab NbC-BASED CEMENTED CARBIDE
CN114729421A (en) * 2019-11-28 2022-07-08 瑞典海博恩材料与技术有限公司 NbC based hard alloy

Also Published As

Publication number Publication date
JPH0333771B2 (en) 1991-05-20

Similar Documents

Publication Publication Date Title
EP0374358B2 (en) High strength nitrogen-containing cermet and process for preparation thereof
JP5587858B2 (en) Cemented carbide tool and method for producing the same
EP1689898B1 (en) Cemented carbide body containing zirconium and niobium and method of making the same
US5306326A (en) Titanium based carbonitride alloy with binder phase enrichment
JPH0860201A (en) Carburized carbide powder mixture based on tungsten and carburized carbide product produced therefrom
JP6237530B2 (en) Hard material, sintered body, tool using sintered body, method for manufacturing hard material, and method for manufacturing sintered body
US4963321A (en) Surface refined sintered alloy and process for producing the same and coated surface refined sintered alloy comprising rigid film coated on the alloy
JP2007007850A (en) Coated cutting tool insert
JP2004516948A (en) Coated cutting tool insert having an iron-nickel based binder phase
JPH01294842A (en) Method for producing sintered hard metal molding and hard metal molding
EP0515341A2 (en) Sintered carbonitride alloy with highly alloyed binder phase
US20040079191A1 (en) Hard alloy and W-based composite carbide powder used as starting material
JPH07508312A (en) Extremely fine-grained sintered titanium-based carbonitride alloy with improved toughness and/or wear resistance
JPS63286550A (en) Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation
JP3325957B2 (en) Method for producing titanium-based carbonitride alloy
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JP2006144089A (en) Hard metal made of superfine particle
JP2006111947A (en) Ultra-fine particle of cermet
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JPH0450373B2 (en)
JPS644989B2 (en)
JPS6342346A (en) High-strength sintered hard alloy
JP2514088B2 (en) High hardness and high toughness sintered alloy
JP3232599B2 (en) High hardness cemented carbide
JPS6242988B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees