JP2514088B2 - High hardness and high toughness sintered alloy - Google Patents

High hardness and high toughness sintered alloy

Info

Publication number
JP2514088B2
JP2514088B2 JP1006279A JP627989A JP2514088B2 JP 2514088 B2 JP2514088 B2 JP 2514088B2 JP 1006279 A JP1006279 A JP 1006279A JP 627989 A JP627989 A JP 627989A JP 2514088 B2 JP2514088 B2 JP 2514088B2
Authority
JP
Japan
Prior art keywords
cutting
sintered alloy
hardness
alloy
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1006279A
Other languages
Japanese (ja)
Other versions
JPH02185941A (en
Inventor
博喜 近藤
泰朗 谷口
光生 植木
景一 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP1006279A priority Critical patent/JP2514088B2/en
Publication of JPH02185941A publication Critical patent/JPH02185941A/en
Application granted granted Critical
Publication of JP2514088B2 publication Critical patent/JP2514088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、切削工具用材料又は耐摩耗工具用材料とし
て適する焼結合金に関し、具体的には、特に耐熱合金や
Ti合金などの難削材料を切削するための切削工具用材料
として適する焼結合金に関するものである。
TECHNICAL FIELD The present invention relates to a sintered alloy suitable as a material for a cutting tool or a material for an abrasion resistant tool, and more specifically, a heat-resistant alloy or a heat-resistant alloy.
The present invention relates to a sintered alloy suitable as a material for a cutting tool for cutting a difficult-to-cut material such as a Ti alloy.

(従来の技術) WCを主成分とする硬質相とCoを主成分とする結合相と
からなる焼結合金の代表的なものに、JIS B4104の使用
分類記号で分類された超硬合金がある。これらの超硬合
金には、鋼切削用超硬合金とされているWC−TiC−TaC−
Co系超硬合金と鋳物切削用又はダイス,センタ用超硬合
金とされているWC−Co系超硬合金がある。これらの超硬
合金の内、WC−TiC−TaC−Co系超硬合金は、TiC,TaCの
含有により高温における硬さが高く、高温での耐摩耗
性,耐塑性変形性及び耐熱性にすぐれているのに対し、
WC−Co系超硬合金は、強度及び破壊靭性値にすぐれてい
るという傾向がある。
(Prior art) A typical cemented alloy consisting of a hard phase containing WC as the main component and a binder phase containing Co as the main component is a cemented carbide alloy classified according to the JIS B4104 usage classification symbol. . These cemented carbides include WC-TiC-TaC- which is said to be a cemented carbide for steel cutting.
There are Co-based cemented carbides and WC-Co-based cemented carbides that are used for casting cutting or for dies and centers. Among these cemented carbides, the WC-TiC-TaC-Co cemented carbide has high hardness at high temperature due to the inclusion of TiC and TaC, and has excellent wear resistance, plastic deformation resistance and heat resistance at high temperatures. In contrast,
WC-Co based cemented carbide tends to have excellent strength and fracture toughness values.

このWC−TiC−TaC−Co系超硬合金とWC−Co系超硬合金
との両方の長所を兼ね備なえた合金の開発が試みられ、
その代表的なものとして、特開昭51−124607号公報,特
開昭61−195951号公報及び特開昭61−207544号公報で提
案されている。
An attempt has been made to develop an alloy that has both the advantages of this WC-TiC-TaC-Co cemented carbide and WC-Co cemented carbide.
Typical examples thereof are proposed in Japanese Patent Laid-Open Nos. 51-124607, 61-195951 and 61-207544.

(発明が解決しようとする問題点) 特開昭51−124607号公報で、Co4〜13vol%、炭化チタ
ン,炭化タンタル,炭化ニオブ及び炭化バナジウムのう
ちの1種又は2種以上10〜60vol%、炭化タングステン
及び不可避不純物:残り、からなる組成を有する炭化タ
ングステン基超硬合金において、分散相たる炭化タング
ステンは、その平均粒径が3μm以下にして粒径5μm
を越えたものが存在せず、かつ同じく分散相たる固溶体
炭化物は、その平均粒径が0.7μm以下にして粒径1μ
mを越えたものが存在しないことを特徴とする切削工具
用強靭性炭化タングステン基超硬合金が開示されてい
る。この公報に開示されている超硬合金は、本来相反す
る性質である耐摩耗性と、耐衝撃性及び耐熱衝撃性との
両特性を具備せしめたすぐれた合金であるけれども、強
度,特に破壊靭性値から判断した強度不足から、例えば
変形応力が大きく、加工硬化しやすい耐熱合金を切削加
工するための切削工具として使用した場合には切刃に亀
裂が生じ欠損しやすいという問題がある。
(Problems to be Solved by the Invention) In JP-A-51-124607, Co4 to 13 vol%, one or more of titanium carbide, tantalum carbide, niobium carbide and vanadium carbide, 10 to 60 vol%, In a tungsten carbide-based cemented carbide having a composition of tungsten carbide and unavoidable impurities: the balance, tungsten carbide as a dispersed phase has an average particle size of 3 μm or less and a particle size of 5 μm.
The solid solution carbide, which is a dispersed phase, has an average particle size of 0.7 μm or less and a particle size of 1 μm.
Disclosed is a tough tungsten carbide based cemented carbide for a cutting tool, characterized by the fact that nothing exceeding m is present. Although the cemented carbide disclosed in this publication is an excellent alloy having both inherently contradictory properties of wear resistance, impact resistance and thermal shock resistance, it has a high strength, especially a fracture toughness. Due to the insufficient strength judged from the values, there is a problem that the cutting edge is likely to be cracked and chipped when it is used as a cutting tool for cutting a heat-resistant alloy which has a large deformation stress and is easily work hardened.

特開昭61−195951号公報は、炭化タングステンを主成
分とし、硬質相として炭化バナジウム又は窒化ジルコニ
ウムを0.2〜0.8wt%含有し結合相としてコバルト4〜20
wt%とからなる超硬合金において、該炭化タングステン
の粒度が0.6μm以下であり、ロックウエル硬度HRA91以
上でかつ抗折力が350kgf/mm2以上であることを特徴とす
る高靭性超硬合金が開示されている。この公報に開示さ
れている超硬合金は、高硬度でかつ高抗折力にすること
により靭性を高めたというものであるけれども、炭化タ
ングステンの粒度が微細なために高温での硬度が低く、
しかも破壊靭性値も低いことから、例えば鋼や耐熱合金
を切削加工するための切削工具として使用した場合には
耐熱性及びクラック伝播抵抗の不足から短寿命になると
いう問題がある。
JP-A-61-195951 discloses that tungsten carbide is the main component, vanadium carbide or zirconium nitride is contained as a hard phase in an amount of 0.2 to 0.8 wt% and cobalt is used as a binder phase in an amount of 4 to 20%.
In cemented carbide consisting of wt%, the particle size of the carbon tungsten is at 0.6μm or less, high toughness cemented carbide, characterized in that and the Rockwell hardness H R A91 or transverse rupture strength is 350 kgf / mm 2 or more Alloys are disclosed. The cemented carbide disclosed in this publication is said to have high hardness and high toughness by having high transverse rupture strength, but the hardness at high temperature is low due to the fine grain size of tungsten carbide,
Moreover, since the fracture toughness value is also low, when used as a cutting tool for cutting steel or heat-resistant alloy, for example, there is a problem of short life due to lack of heat resistance and crack propagation resistance.

特開昭61−207544号公報は、WCを主成分とする硬質相
93〜97重量%(ただし、TaC,NbCの1種又は2種で0.1〜
5wt%置換可能)をCo及びNiからなる結合相3〜7wt%で
結合し、このCoとNiの比Co/Niを1/9〜9/1にしたことを
特徴とする超硬合金が開示されている。この公報に開示
されている超硬合金は、硬さを下げずに靭性を向上さ
せ、切削工具として用いた場合に機械的,熱的な繰り返
し応力に強い刃先を有するようにしたものであるけれど
も、破壊靭性値が従来の超硬合金と殆ど同じで、かつ高
温における硬度が低いことから鋼や耐熱合金を切削加工
するための切削工具としては使用できないという問題が
ある。
JP 61-207544 A discloses a hard phase containing WC as a main component.
93 to 97% by weight (however, one or two of TaC and NbC should be 0.1 to
Disclosed is a cemented carbide, characterized in that (5 wt% replaceable) is bonded in a binder phase consisting of Co and Ni in an amount of 3 to 7 wt% and the ratio Co / Ni of Co / Ni is set to 1/9 to 9/1. Has been done. Although the cemented carbide disclosed in this publication has improved toughness without lowering hardness, it has a cutting edge that is strong against mechanical and thermal repetitive stress when used as a cutting tool. However, since the fracture toughness value is almost the same as that of the conventional cemented carbide and the hardness at high temperature is low, there is a problem that it cannot be used as a cutting tool for cutting steel or heat-resistant alloy.

本発明は、上記のような問題点を解決したもので、具
体的には、WC−Co系超硬合金の長所の1つである高い破
壊靭性値とWC−TiC−TaC−Co系超硬合金の長所の1つで
ある高温における高硬度という合金特性を兼ね備なえ
て、特に耐熱合金やTi合金などの難削材を切削加工する
ための切削工具として適する焼結合金の提供を目的とす
るものである。
The present invention has solved the above problems, and specifically, has a high fracture toughness value and WC-TiC-TaC-Co cemented carbide which are one of the advantages of WC-Co cemented carbide. The purpose of the present invention is to provide a sintered alloy that has one of the advantages of alloys, that is, high hardness at high temperature, and that is suitable as a cutting tool for cutting difficult-to-cut materials such as heat-resistant alloys and Ti alloys. To do.

(問題点を解決するための手段) 本発明者らは、切削工具でもって、変形応力が大きく
て加工硬化しやすいインコネルなどの耐熱合金を切削加
工する場合、切削時に、切削工具の切刃から刃先部まで
が相当高温になり、そのために他の被削材の場合に比べ
て、切刃の塑性変形及び被削材との溶着などが生じやす
くなるという問題を解決すべく検討していた所、 第1に、切削工具における耐塑性変形性を高めるに
は、例えば超硬合金の場合には、炭化タングステンは粗
粒にし、周期律表の4a,5a,6a族金属の炭化物,炭窒化物
及びこれらの少なくとも1種の立方晶系化合物を含有し
た、所謂WC−TiC−TaC−Co系超硬合金が好ましいこと、
又被削材との耐溶着性を高めるには、立方晶系化合物を
含有させ、Coなどの結合相量を少なくすることが好まし
いこと、これらの耐塑性変形性及び被削材との耐溶着性
を高めるための目安として、高温における硬度が高いこ
とが好ましいという知見を得たものである。
(Means for Solving Problems) When the present invention uses a cutting tool to cut a heat-resistant alloy such as Inconel that has a large deformation stress and is easily work-hardened, the cutting tool of the cutting tool is used during cutting. We have been considering to solve the problem that the temperature up to the cutting edge becomes considerably high, and therefore plastic deformation of the cutting edge and welding with the work material are more likely to occur than in the case of other work materials. Firstly, in order to enhance the plastic deformation resistance of a cutting tool, for example, in the case of cemented carbide, tungsten carbide is made into coarse grains, and carbides and carbonitrides of 4a, 5a, 6a group metals in the periodic table are used. And a so-called WC-TiC-TaC-Co cemented carbide containing at least one of these cubic compounds is preferable,
Further, in order to enhance the welding resistance to the work material, it is preferable to contain a cubic compound and reduce the amount of binder phase such as Co. Plastic deformation resistance and welding resistance to the work material It has been found that a high hardness at a high temperature is preferable as a standard for improving the property.

第2に、耐熱合金などの難削材を切削加工した場合に
おける工具の欠損状態を観察した結果、工具の境界損傷
部に発生した亀裂が徐々に進展して欠損に至るというこ
と、この亀裂の進展を防止するためには破壊靭性値を高
くする必要があること、破壊靭性値を高くするには、例
えば超硬合金の場合には、炭化タングステンは粗粒にす
ることが好ましいが、立方晶系化合物量は少なく、結合
相量は多くすることが好ましいという第1の知見とは相
反する知見を得たものである。
Secondly, as a result of observing the tool loss state when cutting difficult-to-cut materials such as heat-resistant alloys, it is found that the cracks generated at the boundary damage part of the tool gradually progress and lead to the loss. It is necessary to increase the fracture toughness value in order to prevent the progress, and in order to increase the fracture toughness value, for example, in the case of cemented carbide, it is preferable that the tungsten carbide has coarse grains. This finding was contrary to the first finding that it is preferable that the amount of the system compound is small and the amount of the binder phase is large.

この第1及び第2の知見を基に、さらに炭化タングス
テンの粒径,立方晶系化合物量及び結合相量を含めた合
金組織及び組成の最適化を検討することにより、高温に
おける高い硬度と高い破壊靭性値とを有する本発明の合
金を完成するに至ったものである。
Based on these first and second findings, by further optimizing the alloy structure and composition including the grain size of tungsten carbide, the amount of cubic compound and the amount of binder phase, high hardness and high hardness at high temperature were obtained. The present invention has led to the completion of the alloy of the present invention having a fracture toughness value.

すなわち、本発明の高硬度及び高靭性焼結合金は、周
期律表の4a,5a,6a族金属の炭化物,炭窒化物及びこれら
の相互固溶体の中の少なくとも1種の硬質相と、Co及び
/又はNiを主成分とする結合相と不可避不純物とからな
る焼結合金であって、該硬質相が周期律表の4a,5a,6a族
金属の炭化物,炭窒化物及びこれらの相互固溶体の中の
少なくとも1種の立方晶系化合物3〜10VOl%と炭化タ
ングステン78〜89VOl%とでなり、該結合相が8〜12VOl
%でなり、該立方晶系化合物が平均粒径0.5〜1.0μmで
なり、該炭化タングステンが平均粒径1〜25μmでな
り、該焼結合金の破壊靭性値が10.3MN・m−3/2以上
で、かつ1000℃におけるマイロクビッカース硬さが420
以上であることを特徴とするものである。
That is, the high hardness and high toughness sintered alloy of the present invention comprises at least one hard phase in carbides, carbonitrides and mutual solid solutions of 4a, 5a and 6a metals of the periodic table, Co and Co. / Or a sintered alloy consisting of a binder phase containing Ni as a main component and unavoidable impurities, wherein the hard phase is a carbide, a carbonitride of a metal of group 4a, 5a, 6a of the periodic table or a mutual solid solution thereof. 3 to 10 VOl% of at least one cubic compound and 78 to 89 VOl% of tungsten carbide, and the binder phase is 8 to 12 VOl.
% Becomes, the upstanding orthorhombic compound is an average particle diameter of 0.5 to 1.0 [mu] m, carbon, tungsten is an average particle diameter of 1 to 25 m, the fracture toughness of said sintered alloy is 10.3MN · m -3/2 Above, and Miroku Vickers hardness at 1000 ℃ 420
The above is a feature.

本発明の高硬度及び高靭性焼結合金における硬質相
は、具体的には、例えばTiC,ZrC,HfC,VC,NbC,TaC,Cr
3C2,Mo2C,WC,Ti(C,N),Zr(C,N),Hf(C,N),V(C,
N),Nb(C,N),Ta(C,N),(W,Ti)C,(W,Zr)C,(Ta,
Ti)C,(W,Ta,Ti)C,(W,Ta,Nb,Ti)C,(W,Ti)(C,
N),(W,Ta,Ti)(C,N),(W,Ta,Nb,Ti)(C,N)など
を挙げることができる。この硬質相は、WCと、例えばTi
C,ZrC,HfC,VC,NbC,TaC,Ti(C,N),Ta(C,N),(W,Ti)
C,(W,Ta,Ti)C,(W,Ta,Nb,Ti)C,(W,Ta,Ti)(C,N)
などの立方晶の結晶構造を有する立方晶系化合物とから
なる場合が好ましく、特に炭化タングステンが全体の78
〜89vol%で、立方上系化合物が全体の3〜10vol%含有
している場合は、耐熱合金などの難削材の切削工具材料
として好ましいものである。また、この硬質相を構成し
ている炭化タングステンの結晶粒径は、平均粒径1〜2.
5μmで、粒径0.5μm以下の細粒炭化タングステンが炭
化タングステン全体の2%以下で、かつ粒径3.5μm以
上の粗粒炭化タングステンが存在しない均一粒子のもの
が好ましく、立方晶系化合物の結晶粒径は、平均粒径0.
5〜1.0μmで、粒径1.5μmを超える立方晶系化合物の
存在しない均一粒子のものが好ましいのもである。
The hard phase in the high hardness and high toughness sintered alloy of the present invention is specifically, for example, TiC, ZrC, HfC, VC, NbC, TaC, Cr.
3 C 2 , Mo 2 C, WC, Ti (C, N), Zr (C, N), Hf (C, N), V (C,
N), Nb (C, N), Ta (C, N), (W, Ti) C, (W, Zr) C, (Ta,
Ti) C, (W, Ta, Ti) C, (W, Ta, Nb, Ti) C, (W, Ti) (C,
N), (W, Ta, Ti) (C, N), (W, Ta, Nb, Ti) (C, N) and the like. This hard phase is composed of WC and, for example, Ti
C, ZrC, HfC, VC, NbC, TaC, Ti (C, N), Ta (C, N), (W, Ti)
C, (W, Ta, Ti) C, (W, Ta, Nb, Ti) C, (W, Ta, Ti) (C, N)
And a cubic compound having a cubic crystal structure, such as tungsten carbide.
When the cubic compound is contained in an amount of up to 89 vol% and 3 to 10 vol% of the whole, it is preferable as a cutting tool material for difficult-to-cut materials such as heat resistant alloys. Further, the crystal grain size of the tungsten carbide constituting this hard phase has an average grain size of 1-2.
It is preferable that the fine tungsten carbide having a particle size of 0.5 μm or less is 2% or less of the entire tungsten carbide and the coarse tungsten carbide having a particle size of 3.5 μm or more is not present, and that the crystal of the cubic compound is 5 μm. The average particle size is 0.
It is also preferable to use uniform particles having a particle size of 5 to 1.0 μm and a particle size of more than 1.5 μm and no cubic compound.

本発明の高硬度及び高靭性焼結合金における結合相
は、具体的には、例えばCo,Ni,Co−Ni合金又はこれらに
硬質相を構成する4a,5a,6a族金属もしくはFeが微量含有
してなる合金からなり、この結合相量が全体の8〜12vo
l%含有している場合が好ましいものである。
The binder phase in the high-hardness and high-toughness sintered alloy of the present invention specifically includes, for example, Co, Ni, Co-Ni alloys or 4a, 5a, 6a group metals or Fe constituting the hard phase in these alloys and trace amounts of Fe. The total amount of this binder phase is 8-12 vo
It is preferable that the content is 1%.

本発明の高強度及び高靭性焼結合金を作製するには、
出発物質の配合から焼結に至るまでの製造工程を従来の
方式で行うことをができるけれども、特に出発物質の組
成成分と、出発物質の粒径及び粒度分布,並びに出発物
質の混合粉砕工程における粒径の調整とを合せて厳密に
制御することが重要である。例えば、焼結後に、立方晶
系化合物を形成するための粉末と結合相を形成するため
の粉末の所定量を第1次混合粉砕して、立方晶系化合物
を形成するための粉末の平均粒径を0.7〜1.0μmとし、
次いで約2.5μmの平均粒径で、粒径3.5μm以上の粗粒
を含有してない炭化タングステン粉末を追加して短時間
で第2次混合粉砕し、炭化タングステン粉末の粉砕を抑
えると共に均一混合するという方法にすると、本発明の
高硬度及び高靭性焼結合金が容易に得られやすいことか
ら好ましいことである。勿論、本発明の高硬度及び高靭
性焼結合金を作製するには、従来の超硬合金又はサーメ
ットと同様に、含有炭素量,含有窒素量及び不可避不純
物、例えば含有酸素量,CaO量CaS量などの制御を行い、
得られた焼結合金の有孔度も厳密に制御する必要があ
る。
To produce the high strength and high toughness sintered alloy of the present invention,
Although it is possible to perform the manufacturing process from the blending of the starting materials to the sintering in a conventional manner, especially in the composition components of the starting materials, the particle size and particle size distribution of the starting materials, and the mixing and grinding process of the starting materials. Strict control is important together with adjustment of particle size. For example, after sintering, a predetermined amount of powder for forming the cubic compound and a predetermined amount of powder for forming the binder phase are first mixed and pulverized to obtain an average particle size of the powder for forming the cubic compound. The diameter is 0.7-1.0 μm,
Next, add tungsten carbide powder that has an average particle size of approximately 2.5 μm and does not contain coarse particles of 3.5 μm or more, and secondarily mix and pulverize in a short time to suppress the crushing of tungsten carbide powder and uniformly mix it. The above method is preferable because the high hardness and high toughness sintered alloy of the present invention can be easily obtained. Of course, in order to produce a high hardness and high toughness sintered alloy of the present invention, as in the conventional cemented carbide or cermet, the carbon content, the nitrogen content and the unavoidable impurities such as oxygen content, CaO content and CaS content. And control
It is also necessary to strictly control the porosity of the obtained sintered alloy.

(作用) 本発明の高硬度及び高靭性焼結合金は、硬質相が主と
して1000℃における焼結合金の硬さを高める作用をし、
結合相が主として破壊靭性値を高める作用をしているの
であるが、実質的には、焼結合金の組成成分と硬質相の
粒径と硬質相量と結合相量との要因の制御が相反する合
金特性である1000℃における硬さと破壊靭性値とを同時
に高めるという作用を可能にしたものである。
(Operation) In the high hardness and high toughness sintered alloy of the present invention, the hard phase mainly acts to increase the hardness of the sintered alloy at 1000 ° C.,
Although the binder phase mainly acts to increase the fracture toughness value, the control of factors such as the compositional components of the sintered alloy, the grain size of the hard phase, the amount of the hard phase, and the amount of the binder phase is essentially a conflict. It is possible to simultaneously increase the hardness at 1000 ° C. and the fracture toughness value, which are the alloy properties of the alloy.

(実施例) 実施例1 粒径2.5〜3μmの均一なWC粉末(a−WC),粒径1
μm以下のTiC粉末,TaC粉末及びほぼ1μmのCo粉末を
用いて、第1表に示したそれぞれの試料を配合した。こ
れらの配合粉末の内、TiC,TaC及びCo粉末をφ6mmの超硬
合金製ボールとアセトンと共にステンレス製容器に入れ
て48時間の第1次混合粉砕をしたあと、WC粉末を追加し
て、更に15時間の第2次混合粉砕をして混合粉末を得
た。この混合粉末を乾燥後、パラフィンを添加し、金型
を用いて1ton/cm2の圧力で加圧して成形体を得た。この
成形体中のパラフィンを加熱揮散させた後、10-2torrの
真空中,1420℃の温度,1時間保持の条件で焼結して本発
明品1,2,3を得た。
(Example) Example 1 Uniform WC powder (a-WC) having a particle size of 2.5 to 3 m, particle size 1
The respective samples shown in Table 1 were compounded using TiC powder, TaC powder of less than μm and Co powder of about 1 μm. Of these compounded powders, TiC, TaC and Co powders were put into a stainless steel container together with φ6mm cemented carbide balls and acetone, and after 48 hours of primary mixing and grinding, WC powder was added and further Secondary mixing and pulverization for 15 hours was performed to obtain a mixed powder. After drying this mixed powder, paraffin was added and the mixture was pressed at a pressure of 1 ton / cm 2 using a mold to obtain a molded body. The paraffin in the molded body was heated and volatilized, and then sintered under the conditions of a vacuum of 10 -2 torr and a temperature of 1420 ° C. and a holding time of 1 hour to obtain products 1, 2 and 3 of the present invention.

比較として、平均粒径1μmのWC粉末(b−WC),平
均粒径2.8μmのWC粉末(c−WC),平均粒径3.5μmの
WC粉末(d−WC)と、他に上述のTiC,TaC,Coの各粉末を
用いて、第1表に示したそれぞれの試料を配合した。こ
れらの配合粉末をφ6mmの超硬合金製ボールとアセトン
と共にステンレス製容器に入れて63時間混合粉砕して混
合粉末を得た。この混合粉末を上述の本発明品と同様
に、成形,焼結して比較品1〜6を得た。
As a comparison, WC powder (b-WC) with an average particle size of 1 μm, WC powder (c-WC) with an average particle size of 2.8 μm, and an average particle size of 3.5 μm
Each sample shown in Table 1 was compounded using the WC powder (d-WC) and the above-mentioned powders of TiC, TaC, and Co. These compounded powders were put into a stainless steel container together with a cemented carbide ball having a diameter of 6 mm and acetone, and mixed and pulverized for 63 hours to obtain a mixed powder. This mixed powder was molded and sintered in the same manner as the above-described product of the present invention to obtain comparative products 1 to 6.

こうして得た本発明品1,2,3及び比較品1,2,3,4,5,6の
それぞれを金属顕微鏡で硬質相の粒径を観察し、さらに
室温での硬さ,1000℃での硬さ及びビッカース硬度の圧
痕による方法でもって破壊靭性値を求めて、それぞれの
結果を第2表に示した。
Each of the inventive products 1, 2, 3 and the comparative products 1, 2, 3, 4, 5, 6 thus obtained was observed with a metallurgical microscope for the grain size of the hard phase, and the hardness at room temperature was 1000 ° C. The fracture toughness values were obtained by the method of indentation of the hardness and Vickers hardness, and the respective results are shown in Table 2.

実施例2 実施例1で得た本発明品1〜3及び比較品1〜6を用
いて、下記(A)〜(I)の切削条件でもって切削試験
を行い、その結果を第3表に示した。
Example 2 Using the products 1 to 3 of the present invention and the comparative products 1 to 6 obtained in Example 1, a cutting test was conducted under the following cutting conditions (A) to (I), and the results are shown in Table 3. Indicated.

(A)切削条件 被削材 インコネル718(HRC 41.8) チップ形状 CNMG 120408 切削速度 30m/min 切込み量 1.5mm 送り 0.3mm/rev 切削油使用、 評価 平均逃げ面摩耗量VB=0.4mmに達するまで
の切削時間 (B)切削条件 被削材 インコネル718(HRC 41.8) チップ形状 CNMG 120408 切削速度 40m/min 切込み量 1.5mm 送り 0.3mm/rev 切削油使用、 評価 平均逃げ面摩耗量VB=0.4mmに達するまで
の切削時間 (C)切削条件 (断続切削) 被削材 インコネル718(HRC 41.8)4本スロット
入 チップ形状 CNMG 120408 切削速度 20m/min 切込み量 1.0mm 送り 0.1mm/rev 切削油使用、 評価 チッピング又は欠損が生じるまでの衝撃回
数 (D)切削条件 被削材 ナイモニック80A(HRC 37.9) チップ形状 CNMG 120408 切削速度 30m/min 切込み量 1.5mm 送り 0.3mm/rev 評価 平均逃げ面摩耗量VB=0.3mmに達するまで
の切削時間 (E)切削条件 被削材 ナイモニック80A(HRC 37.9) チップ形状 CNMG 120408 切削速度 40m/min 切込み量 1.5mm 送り 0.3mm/rev 評価 平均逃げ面摩耗量VB=0.3mmに達するまで
の切削時間 (F)切削条件 (断続切削) 被削材 ナイモニック80(HRC 37.9)4本スロット
入 チップ形状 CNMG 120408 切削速度 20m/min 切込み量 1.0mm 送り 0.1mm/rev 切削油使用、 評価 チッピング又は欠損が生じるまでの衝撃回
数 (G)切削条件 被削材 Ti−6Al−4V合金 チップ形状 CNMG 120408 切削速度 40m/min 切込み量 1.5mm 送り 0.3mm/rev 切削油使用、 評価 平均逃げ面摩耗量VB=0.4mmに達するまで
の切削時間 (H)切削条件 被削材 Ti−6Al−4V合金 チップ形状 CNMG 120408 切削速度 60m/min 切込み量 1.5mm 送り 0.3mm/rev 切削油使用、 評価 平均逃げ面摩耗量VB=0.4mmに達するまで
の切削時間 (I)切削条件 (断続切削) 被削材 Ti−6Al−4V合金 4本スロット入 チップ形状 CNMG 120408 切削速度 30m/min 切込み量 1.0mm 送り 0.1mm/rev 切削油使用、 評価 チッピング又は欠損が生じるまでの衝撃回
(発明の効果) 以上の結果、本発明の高硬度及び高靭性焼結合金は、
従来の焼結合金においては二律背反的な特性とされてい
た1000℃における硬さと破壊靭性値との両方がバランス
よくすぐれているもので、その結果、難削材料とされて
いるインコネル,ナイモニックなどの耐熱合金やTi合金
を切削するための切削工具材料として用いると、耐摩耗
性及び耐衝撃性がバランスよくすぐれるという効果を発
揮するものである。
(A) Cutting Conditions Workpiece Inconel 718 (H R C 41.8) chip shape CNMG one hundred and twenty thousand four hundred and eight cutting speed 30 m / min Depth of cut 1.5mm Feed 0.3 mm / rev Cutting oil used, the evaluation average flank wear V B = 0.4 mm cutting time to reach (B) cutting conditions workpiece Inconel 718 (H R C 41.8) chip shape CNMG one hundred twenty thousand four hundred and eight cutting speed 40 m / min Depth of cut 1.5mm feed 0.3 mm / rev cutting oil used, evaluate the average flank wear V cutting time to reach the B = 0.4 mm (C) cutting condition (intermittent cutting) workpiece Inconel 718 (H R C 41.8) 4 this slot input chip shape CNMG one hundred twenty thousand four hundred and eight cutting speed 20 m / min Depth of cut 1.0mm feed 0.1mm / rev cutting oil used, evaluate chipping or number of impacts until defect occurs (D) cutting conditions workpiece Naimonikku 80A (H R C 37.9) chip shape CNMG 120 408 cutting speed 30 m / min Depth of cut 1.5mm feed 0.3 mm / rev Evaluation Cutting until reaching average flank wear amount V B = 0.3 mm Time (E) Cutting Conditions Workpiece Naimonikku 80A (H R C 37.9) to reach the chip shape CNMG one hundred twenty thousand four hundred and eight cutting speed 40 m / min Depth of cut 1.5mm Feed 0.3 mm / rev rate Average flank wear V B = 0.3 mm cutting time (F) cutting conditions (intermittent cutting) workpiece Naimonikku 80 (H R C 37.9) 4 this slot input chip shape CNMG one hundred and twenty thousand four hundred and eight cutting speed 20 m / min Depth of cut 1.0mm feed 0.1 mm / rev cutting oil used, evaluate chipping Or the number of impacts before chipping (G) Cutting conditions Work material Ti-6Al-4V alloy Chip shape CNMG 120408 Cutting speed 40m / min Depth of cut 1.5mm Feed 0.3mm / rev Cutting oil used, evaluation Average flank wear Cutting time until reaching V B = 0.4mm (H) Cutting conditions Work material Ti-6Al-4V alloy Chip shape CNMG 120408 Cutting speed 60m / min Depth of cut 1.5mm Feed 0.3mm / rev Using cutting oil, evaluation average clearance surface wear amount V B = cutting time to reach 0.4 mm (I) off Conditions number of impacts until (interrupted cut) Work material Ti-6Al-4V alloy four slots incoming chip shape CNMG one hundred twenty thousand four hundred and eight cutting speed 30 m / min Depth of cut 1.0mm Feed 0.1 mm / rev Cutting oil used, the evaluation chipping or defect occurs (Effect of the invention) As a result of the above, the high hardness and high toughness sintered alloy of the present invention is
Both the hardness and the fracture toughness value at 1000 ° C, which were considered to be antinomy characteristics in the conventional sintered alloy, are excellent in balance, and as a result, Inconel, Nimonic When used as a cutting tool material for cutting a heat-resistant alloy or a Ti alloy, it exerts an effect of excellent wear resistance and impact resistance in a well-balanced manner.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周期律表の4a,5a,6a族金属の炭化物,炭窒
化物及びこれらの相互固溶体の中の少なくとも1種の硬
質相と、Co及び/又はNiを主成分とする結合相と不可避
不純物とからなる焼結合金において、該硬質相が周期律
表の4a,5a,6a族金属の炭化物,炭窒化物及びこれらの相
互固溶体の中の少なくとも1種の立方晶系化合物3〜10
vol%と炭化タングステン78〜89vol%とでなり、該結合
相が8〜12vol%でなり、該立方晶系化合物が平均粒径
0.5〜1.0μmでなり、該炭化タングステンが平均粒径1
〜2.5μmでなり、該焼結合金の破壊靭性値が10.3MN・
−3/2以上で、かつ1000℃におけるマイロクビッカー
ス硬さが420以上であることを特徴とする高硬度及び高
靭性焼結合金。
1. A hard phase of at least one of carbides, carbonitrides, and mutual solid solutions of metals of groups 4a, 5a, and 6a of the periodic table, and a binder phase containing Co and / or Ni as a main component. And a unavoidable impurity in the sintered alloy, wherein the hard phase is at least one cubic compound of carbides, carbonitrides of group 4a, 5a, and 6a metals of the periodic table and their mutual solid solutions. Ten
vol% and 78 to 89 vol% tungsten carbide, the binder phase is 8 to 12 vol%, and the cubic compound has an average particle size.
0.5 to 1.0 μm, and the tungsten carbide has an average particle size of 1
~ 2.5μm, the fracture toughness value of the sintered alloy is 10.3MN ・
A high hardness and high toughness sintered alloy, characterized in that it has m −3/2 or more and a Mylo Vickers hardness at 1000 ° C. of 420 or more.
JP1006279A 1989-01-13 1989-01-13 High hardness and high toughness sintered alloy Expired - Lifetime JP2514088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1006279A JP2514088B2 (en) 1989-01-13 1989-01-13 High hardness and high toughness sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1006279A JP2514088B2 (en) 1989-01-13 1989-01-13 High hardness and high toughness sintered alloy

Publications (2)

Publication Number Publication Date
JPH02185941A JPH02185941A (en) 1990-07-20
JP2514088B2 true JP2514088B2 (en) 1996-07-10

Family

ID=11633962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1006279A Expired - Lifetime JP2514088B2 (en) 1989-01-13 1989-01-13 High hardness and high toughness sintered alloy

Country Status (1)

Country Link
JP (1) JP2514088B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163657B2 (en) 2003-12-03 2007-01-16 Kennametal Inc. Cemented carbide body containing zirconium and niobium and method of making the same
US8834594B2 (en) 2011-12-21 2014-09-16 Kennametal Inc. Cemented carbide body and applications thereof
CN115305403A (en) * 2022-08-18 2022-11-08 中南大学 Super-strong superhard hard alloy with high fracture toughness and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124607A (en) * 1975-04-25 1976-10-30 Mitsubishi Metal Corp A high-toughness-wc-based super alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124607A (en) * 1975-04-25 1976-10-30 Mitsubishi Metal Corp A high-toughness-wc-based super alloy

Also Published As

Publication number Publication date
JPH02185941A (en) 1990-07-20

Similar Documents

Publication Publication Date Title
EP0374358B2 (en) High strength nitrogen-containing cermet and process for preparation thereof
JP4377685B2 (en) Fine grain sintered cemented carbide, its production and use
EP0559901B1 (en) Hard alloy and production thereof
US6843824B2 (en) Method of making a ceramic body of densified tungsten carbide
EP0499223B1 (en) High toughness cermet and process for preparing the same
JP2006513119A (en) Composition for cemented carbide and method for producing cemented carbide
JPH0860201A (en) Carburized carbide powder mixture based on tungsten and carburized carbide product produced therefrom
EP0270509B1 (en) Cemented carbonitride alloy with improved plastic deformation resistance
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
EP0578031B1 (en) Sintered carbonitride alloy and method of its production
GB1571603A (en) Cemented titanium carbide compacts
JP3325957B2 (en) Method for producing titanium-based carbonitride alloy
JP2580168B2 (en) Nitrogen-containing tungsten carbide based sintered alloy
JP2514088B2 (en) High hardness and high toughness sintered alloy
CN113179647B (en) Cemented carbide and cutting tool comprising same as base material
JPS63286550A (en) Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation
JP2006111947A (en) Ultra-fine particle of cermet
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
US5503653A (en) Sintered carbonitride alloy with improved wear resistance
JP2006144089A (en) Hard metal made of superfine particle
JP3612966B2 (en) Cemented carbide, method for producing the same and cemented carbide tool
JP2757469B2 (en) Tungsten carbide based cemented carbide end mill
KR20040044153A (en) Ti(C,N)-(Ti,Nb,W)(C,N)-Co ALLOY FOR MILLING CUTTING TOOL APPLICATIONS
KR102178996B1 (en) Cutting insert for heat resistant alloy
KR102167990B1 (en) Cutting insert for heat resistant alloy

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13