JP2580168B2 - Nitrogen-containing tungsten carbide based sintered alloy - Google Patents

Nitrogen-containing tungsten carbide based sintered alloy

Info

Publication number
JP2580168B2
JP2580168B2 JP13009487A JP13009487A JP2580168B2 JP 2580168 B2 JP2580168 B2 JP 2580168B2 JP 13009487 A JP13009487 A JP 13009487A JP 13009487 A JP13009487 A JP 13009487A JP 2580168 B2 JP2580168 B2 JP 2580168B2
Authority
JP
Japan
Prior art keywords
hard phase
molar ratio
particle size
nitrogen
metal element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13009487A
Other languages
Japanese (ja)
Other versions
JPS63297537A (en
Inventor
敦 府川
豪 斉藤
光生 植木
景一 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP13009487A priority Critical patent/JP2580168B2/en
Publication of JPS63297537A publication Critical patent/JPS63297537A/en
Application granted granted Critical
Publication of JP2580168B2 publication Critical patent/JP2580168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高破壊靭性値を有し、強度,耐摩耗性,耐
熱亀裂性,耐熱衝撃性,耐酸化性及び耐欠損性にすぐれ
た燒結合金で、具体的には、耐摩耗性工具部品又は切削
工具部品に適する窒素含有炭化タングステン基燒結合金
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention has a high fracture toughness value and is excellent in strength, abrasion resistance, heat crack resistance, heat shock resistance, oxidation resistance and fracture resistance. Sintered bonding metal, and more particularly to a nitrogen-containing tungsten carbide based sintered metal suitable for wear-resistant tool parts or cutting tool parts.

(従来の技術) 従来、炭化タングステン基燒結合金は、WC−Co系合金
又はWC−TiC−TaC−Co系合金に代表される窒素無含有の
炭化タングステン基燒結合金が実用化されている。とこ
ろが、市場で高能率化の要求が高まるに従って、機械的
強度及び耐熱疲労性の伴なう用途では窒素無含有の炭化
タングステン基燒結合金が短寿命になるという問題が生
じてきている。この問題点を解決するものとして、窒素
含有炭化タングステン基燒結合金が多数提案されてい
る。
(Prior Art) Conventionally, as a tungsten carbide-based sintered bond, a nitrogen-free tungsten carbide-based bonded metal represented by a WC-Co alloy or a WC-TiC-TaC-Co alloy has been put to practical use. However, as the demand for higher efficiency in the market increases, there arises a problem that the nitrogen-free tungsten carbide-based sintered binder having a short life is used in applications involving mechanical strength and thermal fatigue resistance. To solve this problem, a large number of nitrogen-containing tungsten carbide-based bonded metals have been proposed.

窒素含有の炭化タングステン基燒結合金の代表的なも
のとしては、特公昭59−52951号公報及び特開昭60−264
7号公報がある。
Representative examples of nitrogen-containing tungsten carbide-based bonded gold include Japanese Patent Publication No. 59-52951 and Japanese Patent Application Laid-Open No. 60-264.
There is No. 7 publication.

(発明が解決しようとする問題点) 特公昭59−52951号公報には、WCとTi,W及びTa,Nbから
選ばれた1種又は2種からなる炭窒化物のB1型固溶体か
らなる硬質相とCoを主体とするFe金属からなる結合相で
構成された超硬合金において、硬質相の成分をTi,Wの炭
化物,窒化物として (TiC+TiN)/(TiC+WC+TiN)比率に換算し、容積比
率で0.40〜0.80の範囲にあり、B1型固溶体が TiN/(TiC+TiN)比率又は (TiW)N/(TiW)C+(TiW)N比率に換算し、重量比
率で0.1〜0.6の範囲にあるNを含有し、WCは合金全体で
20〜80重量%、Ta,Nbより選ばれた1種又は2種を合金
全体で2〜20重量%、Coを主体とする結合相が最終合金
全体の7〜20容積%の比率を占めることを特徴とする超
硬合金が開示されており、ここで記載されているB1型固
溶体硬質相が平均粒径2μm以下であることも開示され
ている。
(Problems to be Solved by the Invention) Japanese Patent Publication No. 59-52951 discloses a hard solution composed of a B1 type solid solution of WC and one or two carbon nitrides selected from Ti, W and Ta, Nb. In a cemented carbide composed of a phase and a binder phase composed of Fe metal mainly composed of Co, the components of the hard phase are converted into (TiC + TiN) / (TiC + WC + TiN) ratios as carbides and nitrides of Ti and W, and the volume ratio Is in the range of 0.40 to 0.80, and the B1 type solid solution is converted to TiN / (TiC + TiN) ratio or (TiW) N / (TiW) C + (TiW) N ratio, and N in the weight ratio of 0.1 to 0.6 WC is contained in the whole alloy
20 to 80% by weight, 2 to 20% by weight of one or two selected from Ta and Nb in the total alloy, and 7 to 20% by volume of the binder phase mainly composed of Co in the final alloy And that the B1 type solid solution hard phase described herein has an average particle size of 2 μm or less.

この特公昭59−52951号公報は、WCとB1型固溶体から
なる硬質相中の (TiC+TiN)/(TiC+WC+TiN)比率及びB1型固溶体中
の含有窒素量を或る一定範囲内にすることにより、窒素
無含有の炭化タングステン基燒結合金に比べて高速切削
時における耐摩耗性,靭性,耐熱亀裂性にすぐれるよう
にした超硬合金である。しかしながら、特公昭59−5295
1号公報の合金は、従来からいわれている窒素含有によ
るB1型固溶体の粒成長抑制効果を利用しているために、
サブミクロンでなる極微細なB1型固溶体が多く含有し、
B1型固溶体の粒度分布を均一化かすることができず、そ
のために破壊靭性値が低く、耐欠損性及び耐摩耗性が充
分に発揮できていないという問題がある。
Japanese Patent Publication No. 59-52951 discloses that the nitrogen content in a hard phase composed of WC and a B1 type solid solution is controlled within a certain range by setting the (TiC + TiN) / (TiC + WC + TiN) ratio and the nitrogen content in the B1 type solid solution within a certain range. This is a cemented carbide that is superior in wear resistance, toughness, and heat crack resistance during high-speed cutting compared to tungsten carbide-based bonded metal that does not contain tungsten carbide. However, Japanese Patent Publication No. 59-5295
Because the alloy of No. 1 utilizes the grain growth suppressing effect of the B1 type solid solution by nitrogen content, which is conventionally known,
Contains a lot of submicron ultra-fine B1 type solid solution,
There is a problem that the particle size distribution of the B1 type solid solution cannot be made uniform, so that the fracture toughness value is low, and the fracture resistance and wear resistance cannot be sufficiently exhibited.

特開昭60−110838号公報は、WCとB1型固溶体からなる
硬質相とFe族金属の結合相から構成された超硬合金にお
いて、硬質相の組成(W,Ti,Ta,Nb)(Cx,Ny)と表わし
た時、体積%でWCが55%以上75%以下、TiC15%以上35
%以下、TaC又はTaNbCが5%以上25%以下であり、x+
y≧1、0.005≦y≦0.05であり、結合金属が10体積%
以上18体積%以下である窒素を含有した超硬合金であ
る。この特開昭60−110838号公報の合金は、窒素を含有
させることにより、B1型固溶体を微細化し、なおかつ合
金表面のB1型固溶体が消失するのを防止しているもの
で、このために合金の内部と表面との均一化を達成し、
しかも耐摩耗性及び靭性の向上に成功したものである。
しかしながら、特開昭60−110838号公報の合金は、窒素
含有量が少なすぎるために耐酸化性及び耐溶着性が劣る
のと、またB1型固溶体の粒度分布の均一化が行なわれて
いないために破壊靭性値が低く、耐熱衝撃性にも劣ると
いう問題がある。
JP-A-60-110838 discloses a hard phase composition (W, Ti, Ta, Nb) (Cx) in a cemented carbide composed of a hard phase composed of WC and B1 type solid solution and a binder phase of Fe group metal. , Ny), WC is 55% or more and 75% or less by volume%, and TiC is 15% or more and 35%
% Or less, TaC or TaNbC is 5% or more and 25% or less, and x +
y ≧ 1, 0.005 ≦ y ≦ 0.05, and the binding metal is 10% by volume
This is a cemented carbide containing nitrogen in an amount of 18% by volume or less. The alloy disclosed in Japanese Patent Application Laid-Open No. Sho 60-110838 has a structure in which nitrogen is contained to refine the B1 type solid solution and prevent the B1 type solid solution from disappearing on the surface of the alloy. Achieves uniformity between the inside and the surface of the
In addition, the wear resistance and toughness have been successfully improved.
However, the alloy disclosed in JP-A-60-110838 is inferior in oxidation resistance and welding resistance because the nitrogen content is too small, and because the particle size distribution of the B1 type solid solution has not been made uniform. However, there is a problem that the fracture toughness value is low and the thermal shock resistance is poor.

本発明は、上述のような問題点を解決したもので、具
体的には、炭化タングステンと或る一定組織内にあるB1
型固溶体とCoを主体とする結合相とからなる燒結合金
で、しかも炭化タングステンとB1型固溶体の平均粒径の
制御及びB1型固溶体の粒度分布を均一にした組織の合金
で、特に破壊靭性値,耐熱衝撃性,耐摩耗性及び耐欠損
性にすぐれる窒素含有炭化タングステン基燒結合金の提
供を目的としたものである。
The present invention has solved the above-mentioned problems, and specifically, tungsten carbide and B1 in a certain tissue
Alloy consisting of a sintered solid solution and a binder phase mainly composed of Co, and having a structure in which the average particle size of tungsten carbide and B1 type solid solution is controlled and the particle size distribution of B1 type solid solution is uniform. An object of the present invention is to provide a nitrogen-containing tungsten carbide-based sintered bond having excellent thermal shock resistance, wear resistance and chipping resistance.

(問題点を解決するための手段) 本発明者らは、炭化タングステン基燒結合金に窒素を
含有させた場合の効果について検討していた所、炭化タ
ングステン基燒結合金は窒素含有により微細粒になると
いう従来の効果をそのまま利用したのでは合金の諸特性
及び性能を最大に発揮させることができず、特にB1型固
溶体を或る一定の組成にした場合には炭化タングステン
の粒径,B1型固溶体の粒径及びB1型固溶体の粒度分布の
制御により合金の諸特性及び性能を向上させることがで
きること、及び適量の窒素含有量が炭化タンタルの代用
になるという知見を得たものである。本発明は、この知
見に基づいて完成させるに至ったものである。
(Means for Solving the Problems) The present inventors were examining the effect of adding nitrogen to the tungsten carbide-based sintered binder, and found that the tungsten carbide-based sintered binder became finer due to the inclusion of nitrogen. Using the conventional effect as it is, it is not possible to maximize the properties and performance of the alloy, especially when the B1 type solid solution is made a certain composition, the particle size of tungsten carbide, B1 type solid solution It has been found that various properties and performances of the alloy can be improved by controlling the particle size and the particle size distribution of the B1 type solid solution, and that an appropriate amount of nitrogen can substitute for tantalum carbide. The present invention has been completed based on this finding.

すなわち、本発明の窒素含有炭化タングステン基燒結
合金は、Coを主成分とする結合相5〜20wt%と炭化タン
グステンでなる第1硬質相15〜75wt%と (Tia1,Zra2,Wb1,Crb2,Tac1,Nbc2,Vc3)(C,N)
(A) [ただし、(A)式中a1は金属元素中のチタン(Ti)と
モル比、a2は金属元素中のジルコニウム(Zr)のモル
比、b1は金属元素中のタングステン(W)のモル比、b2
は金属元素中のクロム(Cr)のモル比、c1は金属元素中
のタンタル(Ta)のモル比、c2は金属元素中のニオブ
(Nb)のモル比、c3は金属元素中のバナジュウム(V)
のモル比、xは非金属元素中の炭素(C)のモル比、y
は非金属元素中の窒素(N)のモル比、zは金属元素に
対する非金属元素のモル比を示し、 それぞれは、a1+a2+b1+b2+c1+c2+c3=1、 0.6≧a1+a2≧0.4、0.1≧a2/a1+a2≧0、 0.4≧b1+b2≧0.2、0.1≧b2/b1+b2≧0、 0.4≧c1+c2+c3≧0.1、0.3≧c2/c1+c2+c3≧0、 0.1≧c3/c1+c2+c3≧0、x+y=1、0.3≧y>0、 1.0≧z≧0.75の関係にある。]で表わせるB1型固溶体
でなる第2硬質相15〜80wt%と不可避不純物とからなる
組成であって、かつ前記第1硬質相の平均粒径が1〜3
μm、前記第2硬質相の平均粒径が0.8〜2.5μmで、該
第2硬質相は、0.5μm以下の粒径が20%以下であるこ
とを特徴とするものである。
That is, the nitrogen-containing tungsten carbide-based bonded metal of the present invention comprises 5 to 20% by weight of a binder phase containing Co as a main component and 15 to 75% by weight of a first hard phase made of tungsten carbide (Ti a1 , Zr a2 , W b1 , Cr b2 , Ta c1 , Nb c2 , V c3 ) (C x , N y ) z
(A) [where a1 is the molar ratio of titanium (Ti) in the metal element, a2 is the molar ratio of zirconium (Zr) in the metal element, and b1 is the molar ratio of tungsten (W) in the metal element. Molar ratio, b2
Is the molar ratio of chromium (Cr) in the metal element, c1 is the molar ratio of tantalum (Ta) in the metal element, c2 is the molar ratio of niobium (Nb) in the metal element, and c3 is vanadium (V) in the metal element. )
X is the molar ratio of carbon (C) in the non-metallic element, y
Represents the molar ratio of nitrogen (N) in the nonmetallic element, z represents the molar ratio of the nonmetallic element to the metal element, and a1 + a2 + b1 + b2 + c1 + c2 + c3 = 1, 0.6 ≧ a1 + a2 ≧ 0.4, 0.1 ≧ a2 / a1 + a2 ≧ 0, 0.4 ≧ b1 + b2 ≧ 0.2, 0.1 ≧ b2 / b1 + b2 ≧ 0, 0.4 ≧ c1 + c2 + c3 ≧ 0.1, 0.3 ≧ c2 / c1 + c2 + c3 ≧ 0, 0.1 ≧ c3 / c1 + c2 + c3 ≧ 0, x + y = 1, 0.3 ≧ y> 0, 1.0 ≧ z ≧ 0.75 In a relationship. And a composition comprising 15 to 80 wt% of a second hard phase comprising a B1 type solid solution and unavoidable impurities, wherein the first hard phase has an average particle size of 1 to 3
μm, the average particle size of the second hard phase is 0.8 to 2.5 μm, and the second hard phase has a particle size of 0.5 μm or less and 20% or less.

本発明の窒素含有炭化タングステン基燒結合金におけ
る結合相は、硬質相中の金属元素や非金属元素の炭素が
不純物程度含有したコバルト、又はコバルトにクロム,
バナジウム,ニッケルなどを微量含有させて、耐食性を
考慮したCoを主成分とする合金からなるものである。こ
の結合相は、5wt%未満になると相対的に第1硬質相と
第2硬質相との合計量が95wt%を超えて多くなり、破壊
靭性値及び強度を低下させる。逆に、結合相が20wt%を
超えて多くなると相対的に第1硬質相と第2硬質相との
合計量が80wt%未満となり、耐摩耗性及び耐熱変形性の
低下となる。このために、結合相は、5〜20wt%と定め
たものである。
The binder phase in the nitrogen-containing tungsten carbide-based bonded gold of the present invention is cobalt in which carbon of a metal element or a nonmetal element in the hard phase is contained to an extent of impurity, or chromium,
It is made of an alloy containing Co as a main component in consideration of corrosion resistance by containing a small amount of vanadium, nickel, or the like. When the content of the binder phase is less than 5% by weight, the total amount of the first hard phase and the second hard phase relatively exceeds 95% by weight, and the fracture toughness value and the strength are reduced. Conversely, when the amount of the binder phase exceeds 20 wt%, the total amount of the first hard phase and the second hard phase becomes relatively less than 80 wt%, and the wear resistance and the heat deformation resistance decrease. For this purpose, the binder phase is defined as 5 to 20% by weight.

本発明の窒素含有炭化タングステン基燒結合金におけ
る第1硬質相は、平均粒径が1μm未満のWCの場合には
耐熱衝撃性及び耐熱亀裂性の低下が生じ、逆に平均粒径
が3μmを超えたWCの場合には硬さ及び抗折力などの機
械的性質の低下が生じる。このために第1硬質相の平均
粒径は、1〜3μmと定めたものである。この第1硬質
相は、特に耐熱衝撃性及び耐熱亀裂性を重要視する用途
には平均粒径2〜3μmのWC、耐摩耗性を重要視する用
途、中でも室温の強度又は室温の耐衝撃性を重要視する
耐摩耗性工具部品には平均粒径1〜2μmのWCを選択す
るのが好ましいことである。また、この第1硬質相は、
破壊靭性値及び強度を高めるためには均一は粒度分布に
コントロールすることが好ましいことである。
In the case of WC having an average particle size of less than 1 μm, the first hard phase in the nitrogen-containing tungsten carbide based sintered binder of the present invention has a reduced thermal shock resistance and a reduced thermal crack resistance, and conversely, the average particle size exceeds 3 μm. In the case of WC, mechanical properties such as hardness and bending strength are reduced. For this reason, the average particle size of the first hard phase is determined to be 1 to 3 μm. The first hard phase is used for WC having an average particle size of 2 to 3 μm, especially for applications where importance is placed on thermal shock resistance and thermal crack resistance, applications where importance is placed on wear resistance, especially room temperature strength or room temperature impact resistance. It is preferable to select WC having an average particle size of 1 to 2 μm for wear-resistant tool parts in which the importance is placed on WC. Also, this first hard phase is
In order to increase the fracture toughness value and the strength, it is preferable to control the uniformity to the particle size distribution.

本発明の窒素含有炭化タングステン基燒結合金におけ
る第2硬質相は、平均粒径が0.8μm未満の場合は、破
壊靭性値の低下及び700〜800℃での実用時において結合
相中にW−Coの化合物が析出し易くなって、耐熱亀裂性
を低下させる。逆に、第2硬質相の平均粒径が2.5μm
を超えた場合は、第2硬質相の分散が不均一になり、こ
のために強度及び耐熱衝撃性を低下させる。このことか
ら、第2硬質相の平均粒径は、0.8〜2.5μmと定めたも
のである。この第2硬質相中に0.5μm以下の粒径のも
のが20%を超えて多くなると、合金組織中の第2硬質相
の分散が悪くなり、特に破壊靭性値及び耐欠損性の低下
となる。このために、第2硬質相は、0.5μm以下の粒
径のものを20%以下にする必要がある。この第2硬質相
は、 (Tia1,Zra2,Wb1,Crb2,Tac1,Nbc2,Vc3)(Cx,Ny
表わせる炭窒化物でなるものである。この炭窒化物は、
粒内組成の均一化,粒径の均一化,他の組成からなるB1
型固溶体 [例えば(Ti,W)(C,N)など]の析出阻止並びに合金
の諸特性及び性能の向上から、金属元素中のチタンとジ
ルコニウムが0.6≧a1+a2≧0.4、タングステンとクロム
が0.4≧b1+b2≧0.2、タンタルとニオブとバナジュウム
が0.4≧c1+c2+c3≧0.1及び非金属元素中の窒素が0.3
≧y>0、金属元素に対する非金属元素の比が1≧z≧
0.75(各々モル比を示す)からなるものである。特に、
高能率化を目的とする高速切削又は高送り切削のための
切削工具部品として用いる場合には炭窒化物の金属元素
中に存在するチタンとジルコニウムが0.6≧a1+a2≧0.
5、タングステンとクロムが0.35≧b1+b2≧0.25、タン
タルとニオブとバナジュウムが0.25≧c1+c2+c3≧0.
1、非金属元素中に存在する窒素が0.2≧y≧0.05(各々
モル比を示す)でなることが好ましい。また、この炭窒
化物からなる第2硬質相は、第2硬質相の金属元素中に
存在しているTaに対して、Taと同族であるNb及び/又は
Vで或る程度の量を置換することができ、特に、Taに対
して30モル%のNb及び/又は10モル%のVで置換するこ
とは耐熱亀裂性の向上及び低価格化から好ましいことで
ある。さらに、第2硬質相の金属元素中に存在している
Wに対して、Wと同族であるMo及び/又はCrで或る程度
の量を置換することができ、特に、Wに対して10モル%
のCrで置換することは耐酸化性及び耐溶着性の向上から
好ましいことである。あるいは、第2硬質相の金属元素
中に存在しているTiに対して、Tiと同族であるZr及び/
又はHfで或る程度の量を置換することができ、特に、Ti
に対して10モル%のZrで置換することは高温強度の向上
から好ましいことである。
When the average particle size is less than 0.8 μm, the second hard phase in the nitrogen-containing tungsten carbide-based bonded metal of the present invention has a reduced fracture toughness value and W-Co in the binder phase at the time of practical use at 700 to 800 ° C. Easily precipitates to reduce heat cracking resistance. Conversely, the average particle size of the second hard phase is 2.5 μm
When the ratio exceeds the above range, the dispersion of the second hard phase becomes non-uniform, thereby decreasing the strength and the thermal shock resistance. For this reason, the average particle size of the second hard phase is determined to be 0.8 to 2.5 μm. When the number of particles having a particle size of 0.5 μm or less in the second hard phase exceeds 20%, the dispersion of the second hard phase in the alloy structure becomes poor, and the fracture toughness value and the fracture resistance in particular decrease. . For this reason, it is necessary that the second hard phase having a particle size of 0.5 μm or less be 20% or less. The second hard phase is made by (Ti a1, Zr a2, W b1, Cr b2, Ta c1, Nb c2, V c3) (C x, N y) can be expressed carbonitride in z. This carbonitride is
Uniform intragranular composition, uniform particle size, B1 with other composition
Titanium and zirconium in metal elements are 0.6 ≧ a1 + a2 ≧ 0.4, and tungsten and chromium are 0.4 ≧ due to prevention of precipitation of mold solid solution [eg (Ti, W) (C, N) etc.] and improvement of various properties and performance of alloy. b1 + b2 ≧ 0.2, tantalum, niobium and vanadium 0.4 ≧ c1 + c2 + c3 ≧ 0.1 and nitrogen in nonmetallic elements 0.3
≧ y> 0, the ratio of the nonmetallic element to the metal element is 1 ≧ z ≧
0.75 (each shows a molar ratio). Especially,
When used as a cutting tool part for high-speed cutting or high-feed cutting for the purpose of high efficiency, titanium and zirconium present in the metal element of carbonitride are 0.6 ≧ a1 + a2 ≧ 0.
5.0.35 ≧ b1 + b2 ≧ 0.25 for tungsten and chromium, 0.25 ≧ c1 + c2 + c3 ≧ 0 for tantalum, niobium and vanadium.
1. It is preferable that the nitrogen present in the nonmetallic element satisfies 0.2 ≧ y ≧ 0.05 (each shows a molar ratio). In addition, the second hard phase composed of carbonitride replaces a certain amount of Ta present in the metal element of the second hard phase with Nb and / or V which is a homologous to Ta. In particular, it is preferable to substitute 30 mol% of Nb and / or 10 mol% of V with respect to Ta from the viewpoint of improvement of heat crack resistance and cost reduction. In addition, W present in the metal element of the second hard phase can be replaced with Mo and / or Cr, which is a homologous to W, to a certain extent. Mol%
Is preferred from the viewpoint of improving oxidation resistance and welding resistance. Alternatively, for Ti present in the metal element of the second hard phase, Zr and / or
Or some amount can be replaced with Hf, especially Ti
Substitution with 10 mol% of Zr is preferable from the viewpoint of improvement in high-temperature strength.

本発明の窒素含有炭化タングステン基燒結合金を作製
するには、特に出発原料粉末の粒度分布及び平均粒径の
選定並びにこの出発原料粉末を所定量に配合した後の混
合粉砕工程を重要視する必要がある。
In order to produce the nitrogen-containing tungsten carbide-based bonded metal of the present invention, it is necessary to pay particular attention to the selection of the particle size distribution and the average particle size of the starting material powder and the mixing and pulverization process after blending the starting material powder in a predetermined amount. There is.

まず、出発原料粉末は、燒結が容易になるという点か
らは微細であることが好ましいけれども、含有窒素の、
特に第2硬質相の粒成長抑制効果により微細になりすぎ
ることを防止できるようにしておく必要がある。このた
めに、出発原料粉末は、特に第2硬質相を形成するため
に必要な炭化物,窒化物,炭窒化物でなる各種出発原料
粉末の平均粒径を1μm以上、好ましくは目的の平均粒
径の1.5倍〜3倍程度のものを選定するのがよい。ま
た、これらの出発原料粉末の粒度分布は、特に上述の第
2硬質相を形成するための各種出発原料粉末の粒度分布
は、粉粒体分級装置で処理するなどして出来るだけ均一
な粒度分布のものを選定することが好ましい。
First, the starting material powder is preferably fine in terms of facilitating sintering.
In particular, it is necessary to prevent the second hard phase from becoming too fine due to the effect of suppressing the grain growth. For this purpose, the starting material powder has an average particle size of at least 1 μm, preferably the desired average particle size, of various starting material powders composed of carbides, nitrides, and carbonitrides necessary for forming the second hard phase. It is better to select one that is about 1.5 to 3 times as large as. In addition, the particle size distribution of these starting material powders, particularly the particle size distribution of the various starting material powders for forming the second hard phase described above, is as uniform as possible by, for example, treating with a powder and particle classifier. It is preferable to select one.

次に、混合粉砕工程は、使用する出発原料粉末の平均
粒径及び粒度分布を考慮する必要があり、他に混合粉砕
に用いる容器の材質,形状及び粉砕機構と、この容器に
配合粉末と共に加えるアセトン,ベンゼン,ヘキサンな
どの有機溶媒の種類及び量とボールなどの種類,形状及
び量並びに混合粉砕時間などを充分に抑制する必要があ
る。
Next, in the mixing and pulverizing step, it is necessary to consider the average particle size and the particle size distribution of the starting raw material powder to be used. It is necessary to sufficiently suppress the type and amount of the organic solvent such as acetone, benzene, and hexane, the type, shape and amount of the ball and the like, and the mixing and pulverizing time.

混合粉砕後の乾燥,必要ならば造粒及び篩別,成形並
びに燒結工程は、例えば、減圧窒素雰囲気中又は真空中
など、従来の炭化タングステン基燒結合金で用いられて
いる方法により作製することができる。
The drying, granulation and sieving, forming and sintering steps after mixing and pulverization may be performed by a method used for conventional tungsten carbide-based sintered gold, for example, in a reduced pressure nitrogen atmosphere or in a vacuum. it can.

(作用) 本発明の窒素含有炭化タングステン基燒結合金は、チ
タンとタングステンとタンタルとを含有した炭窒化物の
第2硬質相が最適な粒径で、しかも均一な粒度分布にな
っていること及びこの第2硬質相と第1硬質相との粒計
が殆んど同等の大きさであることにより、第2硬質相と
第1硬質相との相互分散状態がすぐれるという作用をし
ているものである。また、この第1硬質相と第2硬質相
との相互分散状態及びそれぞれの粒径の関係は、本発明
の燒結合金中の結合相が粒界を均一に分布する、すなわ
ちミーンフリパスが均一になるという作用をもたらして
いるものである。これらのことから、本発明の燒結合金
は、合金組織的に欠陥の非常に少ない合金になっている
ものである。
(Action) In the nitrogen-containing tungsten carbide-based bonded metal of the present invention, the second hard phase of the carbonitride containing titanium, tungsten and tantalum has an optimum particle size and a uniform particle size distribution. Since the particle size of the second hard phase and the first hard phase are almost the same size, the second hard phase and the first hard phase have an excellent mutual dispersion state. Things. Further, the relation between the mutual dispersion state of the first hard phase and the second hard phase and the relation of the respective particle diameters is such that the binder phase in the sintered metal of the present invention is uniformly distributed at the grain boundaries, that is, the mean free path is uniform. That is the effect. From these facts, the sintered bonding metal of the present invention is an alloy having very few defects in the alloy structure.

(実施例) 実施例1 平均粒径3.0μmのWC粉末,平均粒径1.5μm,2.5μm,
5.0μmの3種類の(W,Ti)C粉末,平均粒径1.0μmの
TaC粉末,平均粒径1.5μmのTiN粉末,平均粒径1.4μm
のCo粉末を出発原料として用いて、本発明品1,2,3,本発
明品から外れた比較品1,2,3を WC−27%(W,Ti)C−12%TaC−2%TiN−8.5%Co(重
量%)の組成に、窒素無含有の比較品4を WC−27%(W,Ti)C−12%TaC−8%Co(重量%)の組
成に、それぞれ配合した。この配合した各試料をステン
レス製容器,超硬合金製ボールを用いてヘキサン溶媒中
で混合粉砕した後、パラフィン混合,乾燥及び1ton/cm2
圧力で成形し、次いで脱パラフィン処理した。この成形
圧粉体を真空炉に設置して、5×10-2Torrの真空中、13
80℃〜1420℃で1時間保持にて燒結した。この各試料に
用いた出発原料粉末の内、試料により異なっている(W,
Ti)C粉末の種類と粉砕時間及び燒結温度を第1表に示
した。特に、本発明品1,2,3の粉砕方法は、WC粉末を除
いた他の粉末のみを24時間混合粉砕後に、WC粉末を追加
して混合粉砕した合計時間である。こうして得た各焼結
合金の硬さ,抗折力及び破壊靭性値を求めて、その結果
を第2表に示した。また、走査型電子顕微鏡及びX線マ
イクロアナライザーにより組織観察し、各燒結合金中の
第1硬質相の粒径,第2硬質相の粒径及び0.5μm以下
の粒径の含有率を求めて、第2表に併記した。ここで得
た本発明品1,2,3及び比較品1,2,3の第2硬質相は、 (Ti0.53,W0.27,Ta0.20) (C0.90,N0.100.90からなるものであった。
Example 1 Example 1 WC powder having an average particle size of 3.0 μm, average particle sizes of 1.5 μm, 2.5 μm,
5.0μm three kinds of (W, Ti) C powder, average particle size 1.0μm
TaC powder, TiN powder with average particle size 1.5μm, average particle size 1.4μm
WC-27% (W, Ti) C-12% TaC-2% A comparative product 4 containing no nitrogen was mixed with a composition of TiN-8.5% Co (wt%) and a composition of WC-27% (W, Ti) C-12% TaC-8% Co (wt%), respectively. . Each of the blended samples was mixed and pulverized in a hexane solvent using a stainless steel container and a cemented carbide ball, followed by paraffin mixing, drying and 1 ton / cm 2
Molded under pressure and then deparaffinized. The green compact was placed in a vacuum furnace and placed in a vacuum of 5 × 10 -2 Torr,
Sintering was performed at 80 ° C to 1420 ° C for 1 hour. Of the starting raw material powders used for each sample, it differs depending on the sample (W,
Table 1 shows the type of Ti) C powder, the grinding time and the sintering temperature. In particular, the pulverization method for the products 1, 2, and 3 of the present invention is the total time of mixing and pulverizing only powder other than WC powder for 24 hours and then adding and mixing WC powder. The hardness, bending strength and fracture toughness of each sintered alloy obtained in this way were determined, and the results are shown in Table 2. Also, the structure was observed with a scanning electron microscope and an X-ray microanalyzer, and the grain size of the first hard phase, the grain size of the second hard phase, and the content of the grain size of 0.5 μm or less in each sintered metal were obtained. Also shown in Table 2. The second hard phases of the present invention products 1, 2, 3 and comparative products 1, 2, 3 obtained here consist of (Ti 0.53 , W 0.27 , Ta 0.20 ) (C 0.90 , N 0.10 ) 0.90. Was.

実施例2 実施例1で得た各試料を用いて、下記の旋削条件及び
フライス切削条件による切削試験を行ない、その結果を
第3表に示した。
Example 2 Using the respective samples obtained in Example 1, a cutting test was performed under the following turning and milling conditions, and the results are shown in Table 3.

旋削試験条件 被削材 S48C(HB218) チップ形状 SNP432 切削速度 100m/min 送り速度 0.3mm/rev 切込み量 1.5mm 切削時間 5min フライス切削試験条件 被削材 SCM440(HB270) チップ形状 SNP432 切削速度 150m/min 切込み量 2.0mm 一刃当りの送り量 0.2mm/刃 寿命判定 欠損までの切削長さ 実施例3 平均粒径1.5μm,3.0μm,5.0μmのWC粉末,平均粒径
1.5μm,3.0μmの(W,Ti,Ta,Nb)C粉末,平均粒径1.5
μmのTiN粉末,平均粒径1.4μmのCo粉末を出発原料と
して用いて、本発明品4,5,6,7及び本発明から外れた比
較品5,6,7を WC−60%(W,Ti,Ta,Nb)C−3%TiN−8%Co(重量
%)の組成に、窒素無含有の比較品8を WC−60%(W,Ti,Ta,Nb)C−8%Co(重量%)の組成
に、それぞれ配合した。この配合した各試料を実施例1
と同様の工程を経て燒決した。この各試料に用いた出発
原料粉末の内、試料により異なっているWC粉末の種類と
(W,Ti,Ta,Nb)C粉末の種類と粉砕時間及び燒結時間と
を第4表に示した。こうして得た各焼結合金の硬さ,抗
折力及び破壊靭性値を求めて、その結果を第5表に示し
た。また、走査型電子顕微鏡及びX線マイクロアナライ
ザーにより組織観察し、各燒結合金中の第1硬質相の粒
径,第2硬質相の粒径及び0.5μm以下の粒径の含有率
を求めて、第5表に併記した。ここで得た本発明品5,6,
7及び比較品5,6,7の第2硬質相は、 [Ti0.55,W0.33,(Ta・Nb)0.12] (C0.87,N0.130.95からなるものであった。この第2
硬質相中のNbは、 Nb/Ta+Nb=10mol%のものであった。
Turning Test conditions Workpiece S48C (H B 218) chip shape SNP432 Cutting speed 100 m / min Feed rate 0.3 mm / rev Depth of cut 1.5mm Cutting time 5min milling cutting test conditions Workpiece SCM440 (H B 270) chip shape SNP432 cutting Speed 150m / min Depth of cut 2.0mm Feed amount per tooth 0.2mm / tooth Life judgment Cutting length to chipping Example 3 WC powder with average particle size of 1.5 μm, 3.0 μm, 5.0 μm, average particle size
1.5 μm, 3.0 μm (W, Ti, Ta, Nb) C powder, average particle size 1.5
μm TiN powder and Co powder having an average particle diameter of 1.4 μm were used as starting materials, and the products 4, 5, 6, 7 of the present invention and the comparative products 5, 6, 7 out of the present invention were subjected to WC-60% (W , Ti, Ta, Nb) C-3% TiN-8% Co (wt%) and nitrogen-free comparative product 8 with WC-60% (W, Ti, Ta, Nb) C-8% Co (% By weight). Each of the blended samples was used in Example 1
It was burned through the same process as above. Table 4 shows the types of WC powder and the types of (W, Ti, Ta, Nb) C powder, and the pulverization time and sintering time which differ among the starting material powders used for each sample. The hardness, bending strength, and fracture toughness of each of the sintered alloys thus obtained were determined, and the results are shown in Table 5. Also, the structure was observed with a scanning electron microscope and an X-ray microanalyzer, and the grain size of the first hard phase, the grain size of the second hard phase, and the content of the grain size of 0.5 μm or less in each sintered metal were obtained. Also shown in Table 5. The product of the present invention obtained here 5, 6,
The second hard phase of No. 7 and Comparative Products 5, 6, 7 consisted of [Ti 0.55 , W 0.33 , (Ta · Nb) 0.12 ] (C 0.87 , N 0.13 ) 0.95 . This second
Nb in the hard phase was Nb / Ta + Nb = 10 mol%.

実施例4 実施例3で得た各試料を用いて、下記の旋削条件及び
断続切削条件による切削試験を行い、その結果を第6表
に示した。
Example 4 Using each of the samples obtained in Example 3, a cutting test was performed under the following turning conditions and interrupted cutting conditions, and the results are shown in Table 6.

旋削試験条件 被削材 S48C(HB230) チップ形状 SNP432 切削速度 160m/min 送り速度 0.3mm/rev 切込み量 1.5mm 切削時間 7min 断続切削試験条件 被削材 S48C(HB230) 4本スロット入 チップ形状 SNP432 切削速度 100m/min 切込み量 1.5mm 送り速度 0.05mm/revから初めて4000 回断続切削後、未欠損の場合は、さらに送りアップし、
欠損時の送り速度で比較。
Turning Test conditions Workpiece S48C (H B 230) chip shape SNP432 Cutting speed 160 m / min Feed rate 0.3 mm / rev Depth of cut 1.5mm Cutting time 7min interrupted cutting test conditions Workpiece S48C (H B 230) 4 present slot entrance Insert shape SNP432 Cutting speed 100m / min Depth of cut 1.5mm Feed speed 0.05mm / rev After 4000 interrupted cuts for the first time
Compared by feed speed at the time of loss.

実施例5 平均粒径3.0μmのWC粉末,平均粒径1.5μmの(W,T
i)C粉末,平均粒径1.0μmのTaC粉末,平均粒径1.5μ
mのTiN粉末及び平均粒径1.4μmのCo粉末を出発原料と
して用いて、本発明品8,9及び本発明から外れた比較品
9,10,11をそれぞれ第7表に示すごとく配合した。この
内、本発明品8,9は、実施例1の本発明品1と同様の製
造方法で、比較品9,10,11は、実施例1の比較品1と同
様の製造方法で、それぞれ焼結合金とした。こうして得
た本発明品8,9及び比較品9,10,11の硬さ,抗折力,破壊
靭性値を実施例1と同様に調べて、その結果を第8表に
示した。また、各硬質相についても実施例1と同様に調
べて、その結果を第9表に示した。
Example 5 WC powder having an average particle size of 3.0 μm and (W, T
i) C powder, TaC powder with average particle size of 1.0 μm, average particle size of 1.5 μm
m, TiN powder and Co powder with an average particle size of 1.4 μm as starting materials, using the products 8, 9 of the present invention and comparative products deviating from the present invention.
9, 10 and 11 were blended as shown in Table 7, respectively. Of these, products 8 and 9 of the present invention were manufactured by the same method as that of product 1 of the present invention in Example 1, and comparative products 9, 10, and 11 were manufactured by the same method as that of product 1 of the first embodiment. It was a sintered alloy. The hardness, transverse rupture strength, and fracture toughness of the products 8, 9 of the present invention and the comparative products 9, 10, 11 thus obtained were examined in the same manner as in Example 1. The results are shown in Table 8. Further, each hard phase was examined in the same manner as in Example 1, and the results are shown in Table 9.

実施例6 実施例5で得た各試料を実施例1の旋削試験条件及び
フライス切削試験条件と同様にして切削試験を行ない、
その結果を第10表に示した。
Example 6 A cutting test was performed on each of the samples obtained in Example 5 in the same manner as in the turning test conditions and the milling test conditions in Example 1.
The results are shown in Table 10.

(発明の効果) 以上の結果から、本発明の窒素含有炭化タングステン
基燒結合金は、耐摩耗性と耐欠損性において、一方を向
上すると他方が低下するという二律背反的な関係にある
従来の炭化タングステン基燒結合金に対して、耐摩耗性
と耐欠損性の両方をバランス良く向上させることに成功
したものである。具体的には、特に耐欠損性にすぐれて
いるが耐摩耗性で劣る傾向にある従来の炭化タングステ
ン基燒結合金に比べて、本発明の燒結合金は、耐欠損性
が約20〜29%向上し、耐摩耗性が約36〜56%も向上する
という効果がある。また、逆に、耐摩耗性にすぐれてい
るが耐欠損性で劣る傾向にある従来の炭化タングステン
基燒結合金に比べて、本発明の燒結合金は、耐摩耗性で
は殆んど差がなく、耐欠損性が113〜183%も向上すると
いう結果がある。このことから、本発明の燒結合金は、
信頼性にすぐれているもので、NC機及び無人加工機用の
工具品又は、高能率化用の工具部品として利用できる産
業上有用な材料である。
(Effects of the Invention) From the above results, the nitrogen-containing tungsten carbide-based sintered metal of the present invention is a conventional tungsten carbide having a trade-off relationship in that one of the wear resistance and the fracture resistance is improved while the other is reduced. It has succeeded in improving both wear resistance and chipping resistance in a well-balanced manner with respect to the base bonding metal. More specifically, the sintered metal of the present invention has an improved fracture resistance of about 20 to 29% as compared with the conventional tungsten carbide-based sintered metal, which is particularly excellent in fracture resistance but tends to be inferior in wear resistance. However, there is an effect that the wear resistance is improved by about 36 to 56%. Conversely, compared to the conventional tungsten carbide-based sintered bond which is excellent in wear resistance but tends to be inferior in fracture resistance, the sintered bond of the present invention has almost no difference in wear resistance, There is a result that the fracture resistance is improved by 113 to 183%. From this, the sintered metal of the present invention is:
It is excellent in reliability and is an industrially useful material that can be used as a tool for NC machines and unmanned processing machines or as a tool part for high efficiency.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Coを主成分とする結合相5〜20wt%と炭化
タングステンでなる第1硬質相15〜75wt%と下記(A)
式で表わせるBI型固溶体でなる第2硬質相15〜80wt%と
不可避不純物とからなる組成成分であって、該第1硬質
相の平均粒径は1〜3μm、該第2硬質相の平均粒径は
0.8〜2.5μmでなり、かつ該第2硬質相は0.5μm以下
の粒径が20%以下でなることを特徴とする耐欠損性に優
れた窒素含有炭化タングステン基焼結合金。 (Tia1,Zra2,Wb1,Crb2,Tac1,Nbc2,Vc3)(C,N) −−
(A) [ただし、(A)式中a1は金属元素中のチタン(Ti)と
モル比、a2は金属元素中のジルコニウム(Zr)のモル
比、b1は金属元素中のタングステン(W)のモル比、b2
は金属元素中のクロム(Cr)のモル比、c1は金属元素中
のタンタル(Ta)のモル比、c2は金属元素中のニオブ
(Nb)のモル比、c3は金属元素中のバナジュウム(V)
のモル比、xは非金属元素中の炭素(C)のモル比、y
は非金属元素中の窒素(N)のモル比、zは金属元素に
対する非金属元素のモル比を示し、 それぞれは、a1+a2+b1+b2+c1+c2+c3=1、 0.6≧a1+a2≧0.4、0.1≧a2/a1+a2≧0、 0.4≧b1+b2≧0.2、0.1≧b2/b1+b2≧0、 0.4≧c1+c2+c3≧0.1、0.3≧c2/c1+c2+c3≧0、 0.1≧c3/c1+c2+c3≧0、x+y=1、0.3≧y>0、 1.0≧z≧0.75の関係にある。]
(1) A binder phase containing Co as a main component in an amount of 5 to 20% by weight and a first hard phase made of tungsten carbide in an amount of 15 to 75% by weight and the following (A):
A composition component comprising 15 to 80 wt% of a second hard phase composed of a BI-type solid solution represented by the formula and unavoidable impurities, wherein the first hard phase has an average particle size of 1 to 3 μm and the average of the second hard phase is The particle size is
A nitrogen-containing tungsten carbide-based sintered alloy excellent in fracture resistance, characterized in that the second hard phase is 0.8 to 2.5 µm and the particle size of 0.5 µm or less is 20% or less. (Ti a1 , Zr a2 , W b1 , Cr b2 , Ta c1 , Nb c2 , V c3 ) (C x , N y ) z −−
(A) [where a1 is the molar ratio of titanium (Ti) in the metal element, a2 is the molar ratio of zirconium (Zr) in the metal element, and b1 is the molar ratio of tungsten (W) in the metal element. Molar ratio, b2
Is the molar ratio of chromium (Cr) in the metal element, c1 is the molar ratio of tantalum (Ta) in the metal element, c2 is the molar ratio of niobium (Nb) in the metal element, and c3 is vanadium (V) in the metal element. )
X is the molar ratio of carbon (C) in the non-metallic element, y
Represents the molar ratio of nitrogen (N) in the nonmetallic element, z represents the molar ratio of the nonmetallic element to the metal element, and a1 + a2 + b1 + b2 + c1 + c2 + c3 = 1, 0.6 ≧ a1 + a2 ≧ 0.4, 0.1 ≧ a2 / a1 + a2 ≧ 0, 0.4 ≧ b1 + b2 ≧ 0.2, 0.1 ≧ b2 / b1 + b2 ≧ 0, 0.4 ≧ c1 + c2 + c3 ≧ 0.1, 0.3 ≧ c2 / c1 + c2 + c3 ≧ 0, 0.1 ≧ c3 / c1 + c2 + c3 ≧ 0, x + y = 1, 0.3 ≧ y> 0, 1.0 ≧ z ≧ 0.75 In a relationship. ]
JP13009487A 1987-05-27 1987-05-28 Nitrogen-containing tungsten carbide based sintered alloy Expired - Lifetime JP2580168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13009487A JP2580168B2 (en) 1987-05-27 1987-05-28 Nitrogen-containing tungsten carbide based sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13009487A JP2580168B2 (en) 1987-05-27 1987-05-28 Nitrogen-containing tungsten carbide based sintered alloy

Publications (2)

Publication Number Publication Date
JPS63297537A JPS63297537A (en) 1988-12-05
JP2580168B2 true JP2580168B2 (en) 1997-02-12

Family

ID=15025817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13009487A Expired - Lifetime JP2580168B2 (en) 1987-05-27 1987-05-28 Nitrogen-containing tungsten carbide based sintered alloy

Country Status (1)

Country Link
JP (1) JP2580168B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890592B2 (en) * 1989-01-26 1999-05-17 住友電気工業株式会社 Carbide alloy drill
EP0417302B1 (en) * 1989-02-22 1997-07-02 Sumitomo Electric Industries, Ltd. Nitrogen-containing cermet
JP2616655B2 (en) * 1993-03-08 1997-06-04 三菱マテリアル株式会社 Titanium carbonitride-based cermet cutting tool with excellent wear resistance
DE4435265A1 (en) * 1994-10-01 1996-04-04 Mitsubishi Materials Corp Cermet cutting tool with good wear resistance, toughness and cutting properties in continuous and discontinuous processes
US5580666A (en) * 1995-01-20 1996-12-03 The Dow Chemical Company Cemented ceramic article made from ultrafine solid solution powders, method of making same, and the material thereof
SE519830C2 (en) * 1999-05-03 2003-04-15 Sandvik Ab Titanium-based carbonitride alloy with binder phase of cobalt for finishing
SE527348C2 (en) * 2003-10-23 2006-02-14 Sandvik Intellectual Property Ways to make a cemented carbide
SE529302C2 (en) 2005-04-20 2007-06-26 Sandvik Intellectual Property Ways to manufacture a coated submicron cemented carbide with binder phase oriented surface zone
KR100796649B1 (en) * 2006-06-21 2008-01-22 재단법인서울대학교산학협력재단 Ceramic and cermet having the second phase to improve toughness via phase separation from complete solid-solution phase and the method for preparing them

Also Published As

Publication number Publication date
JPS63297537A (en) 1988-12-05

Similar Documents

Publication Publication Date Title
KR100231267B1 (en) Hard alloy and production thereof
CN100439524C (en) Gradient composition sintered alloy and mfg. method
WO1998027241A1 (en) Cemented carbide, process for the production thereof, and cemented carbide tools
JPH0860201A (en) Carburized carbide powder mixture based on tungsten and carburized carbide product produced therefrom
JP2622131B2 (en) Alloys for cutting tools
JP2710934B2 (en) Cermet alloy
JP2580168B2 (en) Nitrogen-containing tungsten carbide based sintered alloy
WO2010104094A1 (en) Cermet and coated cermet
JPS6256224B2 (en)
JP3612966B2 (en) Cemented carbide, method for producing the same and cemented carbide tool
JPH0450373B2 (en)
JPH0333771B2 (en)
JP2006144089A (en) Hard metal made of superfine particle
JP2006111947A (en) Ultra-fine particle of cermet
JPH06212341A (en) Sintered hard alloy and its production
JP3950229B2 (en) Cemented carbide, method for producing the same and cemented carbide tool
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP3605740B2 (en) Carbide alloy for end mill
JPS6256944B2 (en)
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP4540791B2 (en) Cermet for cutting tools
JP2514088B2 (en) High hardness and high toughness sintered alloy
JP3232599B2 (en) High hardness cemented carbide
JPS6315981B2 (en)
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 11