JP4540791B2 - Cermet for cutting tools - Google Patents

Cermet for cutting tools Download PDF

Info

Publication number
JP4540791B2
JP4540791B2 JP2000094463A JP2000094463A JP4540791B2 JP 4540791 B2 JP4540791 B2 JP 4540791B2 JP 2000094463 A JP2000094463 A JP 2000094463A JP 2000094463 A JP2000094463 A JP 2000094463A JP 4540791 B2 JP4540791 B2 JP 4540791B2
Authority
JP
Japan
Prior art keywords
core
particles
area
cermet
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000094463A
Other languages
Japanese (ja)
Other versions
JP2001277008A (en
Inventor
伸夫 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2000094463A priority Critical patent/JP4540791B2/en
Publication of JP2001277008A publication Critical patent/JP2001277008A/en
Application granted granted Critical
Publication of JP4540791B2 publication Critical patent/JP4540791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
耐摩耗性と耐欠損性が要求される切削工具で、特に高速切削領域での耐摩耗性、耐熱衝撃性にすぐれる切削工具用サーメットおよびその製造方法に関する
【0002】
【従来の技術】
従来のサーメットは、切削状況の変化への対策としていくつかの発明が提案されてきた。 具体的には、微粒化を目的とした窒素添加、サーメット中の窒素量制御、有芯構造および組成制御、粒径制御、粒径分布制御などの発明が提案されている。
【0003】
有芯構造に関して例えば特表平8―508066号公報では、(Ti,W,Ta,Nb)Cおよび/または(Ti,W,Ta)CとTiCNとWとCoを含有し、TiCN中の窒素量N/(C+N)が0.7以上からなる窒素に富むサーメットが提案されている。ただし、粒径を1.5μm以下と限定しているため、高温領域での耐熱衝撃性が劣り、現在の高速切削条件における切削性能は不十分であった。また特開平9―174306号公報では、Tiの炭窒化物と、周期率表第4a、5a、6a族炭化物、窒化物、炭窒化物からなる硬質相と鉄族金属を含む結合相からなり、N/(C+N)比が0.4〜0.7のサーメットであって、有芯構造の粒子で囲まれた芯のない粒子または1μm以下の微粒粒子の凝集体が点在したことが提案されている。ここでは、凝集部を形成させるための条件として、Ti化合物の粒径を0.5〜2μmとしているため高温領域での耐熱衝撃性が劣り、現在の高速切削条件における切削性能は不十分であった。粗粒の硬質相を特徴とするサーメットとして特公昭61―411号公報、特公昭61―222016号公報があり、両公報ともに7μm以上のTiCを1〜30vol%添加することで耐摩耗性の向上を提案している。また、特開昭61―12846号公報では、粒径5〜10μmの粒子を含み、平均粒径3〜8μmであるサーメットが提案されている。これらはいずれも、Ti化合物が低窒素なサーメットに関するものであった。
【0004】
さらに、特開平5―186843号公報では、硬質成分の平均粒径が1μm未満のより微細化されたマトリックスの中に、コアのための平均粒径が2〜8μmのコア・リム構造を有する硬質成分粒子を10〜50体積%含み、微細マトリックス粒子とコア・リム構造粒子の平均粒子径の差が1.5μm以上である炭窒化物焼結合金が提案されているが、低窒素であるために実施例にも記載されているような切削領域では効果を発揮するものの、より高温領域での熱塑性変形性および耐熱衝撃性が劣り、現在の高速切削条件における工具性能としては不十分であった。
【0005】
また、コア・リム構造の硬質相を含むサーメットについては、古くはアメリカ特許第3971656号が開示されてより日本においても種々提案されてきており、その中でも特にコアに着目した特許が提案されている。例えば、特開平10―287946号公報ではコアが粒子全体の30面積%以上の粒子と、コアが粒子全体の30面積%未満の粒子との比を0.3〜0.8と限定しているが、粒径の絶対値や窒素含有量の影響が大きい切削条件の領域では所望の効果が得られない問題があった。特開平10―298697号公報では黒芯の面積が0.1〜0.7μm2と0.8〜2.5μm2の範囲にピークを持つことが開示されているが、請求範囲で限定された硬質粒子の芯は比較的微細であるため、高温領域での耐熱衝撃性が劣り、現在の高速切削条件における切削性能は不十分であった。
【0006】
【発明が解決しようとする課題】
上記のように、従来のサーメットでは耐摩耗性と耐欠損性を共に向上させることは難しく、特に近年の高速切削に対応できる高温領域での機械的な要求特性と熱的な要求特性を同時に満足させることは困難であった。
【0007】
【課題を解決するための手段】
本発明はこれらの課題を解決すべく種々の検討を行なった結果、主として周期率表4a族金属の炭化物、窒化物、炭窒化物および相互固溶体の1種以上の芯部を有する粒子の窒素量と炭素量の原子比が0.4≦窒素/(窒素+炭素)≦0.95であって、かつ、該焼結体の組織は、芯部の粒径が3μm以上である粒子の芯部面積が全硬質相の3面積%以上、かつ2μm以上である粒子の芯部面積が全硬質相の10面積%以上であることを特徴とするサーメットが、極めて優れた耐摩耗性と耐欠損性を兼ね備えることが明らかとなったものである。さらに、芯部粒径が3μm以上である粒子の芯部面積が有芯構造である全硬質相芯部の10面積%以上、かつ2μm以上である粒子の芯部面積が有芯構造である全硬質相芯部の30面積%以上であることでさらに高温特性が向上することを明らかにした。加えて、0.5μm以下の芯部を持つ粒子により結合相のミーンフリーパスを短くなり耐熱衝撃性が向上することが明らかとなった。
【0008】
また、上記の主として周期率表4a族金属の炭化物、窒化物、炭窒化物および相互固溶体の1種以上の芯部を有する粒子の芯部の径が3μm以上の分布幅とすることによって、高温領域で要求される強度と硬度を兼ね備えるものである。さらに、主として周期率表4a族金属の炭化物、窒化物、炭窒化物および相互固溶体の1種以上の芯部を有する粒子の平均粒径をA、主として周期率表5a、6a族金属の炭化物、窒化物、炭窒化物および相互固溶体の1種以上からなる芯部を有する粒子の平均粒径をBとした場合、B/A≦0.5とした焼結体組織にすることにより、強度および耐欠損性が向上するものである。これらのサーメットは平均粒径6μm以上で、かつ0.4≦窒素/(窒素+炭素)≦0.95である炭窒化チタン粉末を原料として配合し、高温かつ高窒素雰囲気下で焼結することにより従来には得られなかったサーメットが実現されたものである。
【0009】
【発明の実施態様】
従来の高窒素サーメットでは窒素量の増加に伴って焼結性が低下するため、原料粉末粒径や焼結条件を調整して組織を微粒化して焼結してきた。微粒化しない場合では焼結後の焼結体強度が低下するため、切削工具として用いた場合に従来の焼結条件では所望の強度が得られなかった。本発明は、高速切削で要求される高温特性の向上に特に着目して種々の試験を行った結果、従来の焼結条件では得られなかった粗粒であってかつ高窒素な芯部が形成された硬質相を有する焼結体が得られたものである。主として周期率表4a族金属の炭化物、窒化物、炭窒化物の1種以上の芯部を有する粒子を高窒素にするのには焼結性の点からは微粒な方が所望の特性が得られやすいが、それに対してあえて粗粒にする目的は、高温での耐熱衝撃性を向上させることが極めて高速切削での切削性能に対して効果が高いことが明らかになったためである。なおかつ高窒素としたために低窒素合金に比較して靭性が向上した。さらに窒素量が多いほど金属や酸素との反応性が低下するため、従来のサーメットよりも化学的な耐摩耗性の向上をも実現したものである。
【0010】
本発明では特に粒子を有芯構造として、その芯部の大きさが極めて切削性能に大きな影響を与えることが明らかとなったものであり、主として周期率表4a族金属の炭化物、窒化物、炭窒化物および相互固溶体の1種以上の芯部を有する粒子は、粒子の窒素/(窒素+炭素)原子比が0.4以上0.95以下であって、該焼結体の組織は、芯部の粒径が3μm以上である粒子の芯部面積が全硬質相の3面積%以上、かつ2μm以上である粒子の芯部面積が全硬質相の10面積%以上有すれば所望の効果が認められ、上記限定事項を満足しない焼結体では、特に着目した高速領域での切削性能が劣るものであった。これは従来の微粒芯部を有するサーメットに比べて、粒子の脱落が起こりにくく硬質相のなかでも耐摩耗性に寄与する芯部の比率が高いため優れた耐摩耗性を示し、かつ個々粒子の中間相間の接着強度が向上したことにより、熱衝撃によるクラックに対して優れた耐欠損性を有しているためと思われる。その芯部の窒素量は0.4未満では高温特性が劣化し、0.95以上では所望の耐摩耗性が得られないため0.4以上0.95以下と限定したが、0.45以上0.7以下が好ましく、0.5以上0.64以下がさらに好ましい。また、芯部の粒径が3μm以上である粒子の芯部面積が有芯構造である全硬質相芯部の10面積%以上、かつ2μm以上である粒子の芯部面積が有芯構造である全硬質相芯部の30面積%以上となるように、粗い芯をもつ粒子の比率を上記の条件を満足する焼結体では、粗粒の粒子によって熱衝撃クラックの進展を遅らせるため、耐熱衝撃性が向上するものである。
【0011】
さらに、0.5μm以下の芯部を持つ粒子により結合相のミーンフリーパスを短くさせることにより、耐熱衝撃性性が向上するが、芯部面積が全硬質相の5面積%より多い焼結体では高温領域での特性を低下させ、2面積%以下では所望の特性が得られないため2〜5面積%と限定した。そのことより、0.5μm以下の芯部を持つ粒子の50%以上を結合相と接していることを限定した。また、芯の大きさの粒径分布は、3μm未満では切削応力の変動および熱衝撃による負荷に対する所望の性能が得られないため、3μm以上と限定したが、5〜10μmであることがより好ましい。
【0012】
主として周期率表4a族金属の炭化物、窒化物、炭窒化物および相互固溶体の1種以上の芯部を有する粒子の平均粒径をA、主として周期率表5a、6a族金属の炭化物、窒化物、炭窒化物の1種以上からなる芯部を有する粒子の平均粒径をBとした場合、B/Aが0.5より大きい場合は高温での耐熱塑性変形性が劣るため0.5以下と限定した。
【0013】
本発明の切削工具用サーメットを得るには原料粉が高窒素であることは当然であるが、さらに平均粒径が6μm以上の原料粉を配合することによって所望の特性が得られることが本件で明らかとなった。平均粒径が6μmより細かい原料粉を用いても混合時間や焼結時間を短縮することで粗い芯を有する焼結体が得られるが、そのようにして得られた焼結体では、混合時間が短い条件では分散が悪いため耐摩耗性と耐欠損性の切削性能のバラツキが大きく、焼結時間が短い条件では欠陥が残りやすいことにより強度が低下し、欠損に係る工具寿命のバラツキが極めて大きくなるため、平均粒径が6μm以上のTiCN粉として原料に使用すると限定したが、さらに粗い8μm以上のTiCN粉を用いることが好ましい。焼結条件は高温かつ高窒素雰囲気下で行うことで、高窒素かつ3μm以上の粗粒の芯を有する焼結体が得られたものである。
【0014】
【実施例】
市販されている平均粒子径が1〜2μmのWC、(W,Ti)Cの複合炭化物(重量比でWC/TiC=70/30)、TaC、Mo2C、ZrC、Co、Niと発明品として平均粒径10μmのTiC、TiN、TiCN(重量比でTiC/TiN=40/60〜50/50)、比較品として平均粒径1.5μmのTiC、TiN、TiCN(重量比でTiC/TiN=40/60〜50/50)の各原料粉末を表1に示した配合組成に秤量し、ステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に装入し、20時間混合した。
得られた混合粉末をJIS−B4120に記載のSPMN120308形状用金型でもって、196MPaの圧力でプレス成形した。得られた粉末成形体を雰囲気圧力0.13〜2.6kPaの窒素気流中で温度1773〜1873K、保持時間1時間の条件で焼結を行ない、本発明品1〜6および比較品1〜6を得た。
【0015】
【表1】
焼結体配合組成

Figure 0004540791
配合量:mass%、発明品焼結温度:1873K、比較品焼結温度:1773K
【0016】
こうして得られた本発明品1〜6、比較品1〜6のサーメットチップを切断し、逃げ面側の断面を研削した後、1μmのダイヤモンドペーストにより表面から0.2mmの内部までラップ加工を行なった。加工面を光学顕微鏡で1500倍に拡大して観察し、画像解析装置で芯部が3μm以上である粒子と芯部が2μm以上である粒子の芯部の面積%を、5視野測定して平均値を求めた。また、該芯部のNおよびC量をWDSにより測定した。
表1の条件により得られた焼結体は#230のダイヤモンド砥石にて上下面を研削加工し、さらに切れ刃稜線部に0.15×―30°のホーニング処理を施して、下記条件の切削試験により逃げ面摩耗量の比較評価を行なった。結果を表2に示す。
【0017】
切削試験条件1(摩耗試験)
被削材:S48C
切削速度:240m/min
切り込み:1.5mm
送り:0.32mm/rev.
切削油:使用せず(乾式切削)
切削時間:20min
【0018】
切削試験条件2(欠損試験)
被削材 SNCM439
切削速度 240m/min
切り込み 1mm
送り 0.2 mm/rev.
切削油:WET(水溶性)
5秒切削−5秒休止の繰り返し
繰り返し数100回で試験終了
試験回数は各サンプル3回
【0019】
【表2】
試験結果
Figure 0004540791
※1比較品5は焼結時の温度が低いために欠陥を多く含み、所望の性能を得られなかった。
【0020】
【発明の効果】
上記の結果から明らかなように、発明品1〜6のような高窒素であってかつ3μm以上の粗粒な芯部を有する硬質相の芯部面積が全硬質相の3面積%以上、かつ2μm以上の粗粒な芯部を有する硬質相の芯部面積が全硬質相の10面積%以上含まれるサーメットは、比較品1〜6に示したような従来の微粒芯部を有するサーメットに比べて、粒子の脱落が起こりにくく硬質相のなかでも耐摩耗性に寄与する芯部の比率が高いため優れた耐摩耗性を示し、かつ、個々粒子の中間相間の接着強度が向上したことにより、熱衝撃によるクラックに対して優れた耐欠損性を示している。[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tool that requires wear resistance and fracture resistance, and particularly to a cermet for a cutting tool that has excellent wear resistance and thermal shock resistance in a high-speed cutting region, and a manufacturing method thereof.
[Prior art]
Several inventions have been proposed for conventional cermets as countermeasures against changes in cutting conditions. Specifically, inventions such as nitrogen addition for the purpose of atomization, control of the amount of nitrogen in the cermet, cored structure and composition control, particle size control, particle size distribution control have been proposed.
[0003]
With regard to the cored structure, for example, JP-T-8-508066 discloses (Ti, W, Ta, Nb) C and / or (Ti, W, Ta) C, TiCN, W and Co, and nitrogen in TiCN. Nitrogen-rich cermets with a quantity N / (C + N) of 0.7 or more have been proposed. However, since the particle size is limited to 1.5 μm or less, the thermal shock resistance in the high temperature region is inferior, and the cutting performance under the current high-speed cutting conditions is insufficient. In JP-A-9-174306, Ti carbonitride, periodic table 4a, 5a, 6a group carbide, nitride, consisting of a hard phase composed of carbonitride and a binder phase containing an iron group metal, It is proposed that the cermet has an N / (C + N) ratio of 0.4 to 0.7 and is dotted with agglomerates of coreless particles or fine particles of 1 μm or less surrounded by cored particles. ing. Here, as a condition for forming the agglomerated part, since the particle size of the Ti compound is 0.5-2 μm, the thermal shock resistance in the high temperature region is inferior, and the cutting performance under the current high-speed cutting conditions is insufficient. It was. Japanese Patent Publication No. 61-411 and Japanese Patent Publication No. 61-222016 are cermets characterized by a coarse hard phase, and both publications improve wear resistance by adding 1-30 vol% of TiC of 7 μm or more. Has proposed. Japanese Patent Laid-Open No. 61-12846 proposes a cermet containing particles having a particle diameter of 5 to 10 μm and having an average particle diameter of 3 to 8 μm. These all relate to cermets in which the Ti compound is low nitrogen.
[0004]
Further, in Japanese Patent Application Laid-Open No. 5-186843, a hard component having a core-rim structure having an average particle size of 2 to 8 μm for a core in a more refined matrix having an average particle size of a hard component of less than 1 μm. A carbonitride sintered alloy containing 10 to 50% by volume of component particles and having a difference in average particle size between the fine matrix particles and the core / rim structure particles of 1.5 μm or more has been proposed. Although it is effective in the cutting region as described in the examples, it is inferior in thermoplastic deformation and thermal shock resistance in a higher temperature region, and is insufficient as a tool performance under the current high-speed cutting conditions. .
[0005]
In addition, cermets containing a hard phase with a core-rim structure have been proposed in Japan since the disclosure of US Pat. No. 3,971,656, and among them, patents focusing on the core have been proposed. . For example, in Japanese Patent Laid-Open No. 10-287946, the ratio of particles having a core of 30 area% or more of the whole particle and particles having a core of less than 30 area% of the whole particle is limited to 0.3 to 0.8. However, there is a problem that a desired effect cannot be obtained in a region of cutting conditions where the influence of the absolute value of the particle size or the nitrogen content is large. Japanese Patent Laid-Open No. 10-298697 discloses that the area of the black core has peaks in the range of 0.1 to 0.7 μm 2 and 0.8 to 2.5 μm 2 , but is limited by the claims. Since the core of the hard particles is relatively fine, the thermal shock resistance in a high temperature region is inferior, and the cutting performance under the current high-speed cutting conditions is insufficient.
[0006]
[Problems to be solved by the invention]
As mentioned above, it is difficult to improve both wear resistance and fracture resistance with conventional cermets, and satisfy both the mechanical and thermal requirements in the high temperature range that can handle high-speed cutting in recent years. It was difficult to do.
[0007]
[Means for Solving the Problems]
As a result of various investigations to solve these problems, the present invention mainly has a nitrogen content of particles having one or more cores of carbides, nitrides, carbonitrides and mutual solid solutions of Group 4a metals in the periodic table. And the atomic ratio of the amount of carbon is 0.4 ≦ nitrogen / (nitrogen + carbon) ≦ 0.95, and the structure of the sintered body is a core of a particle having a core having a particle size of 3 μm or more. A cermet with an area of 3% by area or more of the entire hard phase and a core area of particles of 2 μm or more of 10% by area or more of the entire hard phase has excellent wear resistance and fracture resistance. It has become clear that it has both. Furthermore, the core area of the particles having a core particle diameter of 3 μm or more is 10 area% or more of the total hard phase core part having a cored structure, and the core area of the particles having a core diameter of 2 μm or more is the cored structure. It has been clarified that the high temperature characteristics are further improved by being 30% by area or more of the hard phase core part. In addition, it has been clarified that particles having a core of 0.5 μm or less shorten the mean free path of the binder phase and improve the thermal shock resistance.
[0008]
Further, by setting the diameter of the core part of the particles having one or more kinds of cores of carbides, nitrides, carbonitrides and mutual solids of the periodic table 4a metal to a distribution width of 3 μm or more, It combines strength and hardness required in the region. Furthermore, the average particle size of the particles having one or more cores of periodic table 4a group metal carbide, nitride, carbonitride and mutual solid solution is A, mainly periodic table 5a, 6a group metal carbide, When the average particle size of the particles having a core portion composed of one or more of nitride, carbonitride, and mutual solid solution is B, by making a sintered body structure with B / A ≦ 0.5, strength and This improves the fracture resistance. These cermets should be blended with titanium carbonitride powder having an average particle size of 6 μm or more and 0.4 ≦ nitrogen / (nitrogen + carbon) ≦ 0.95 as a raw material and sintered in a high temperature and high nitrogen atmosphere. Thus, a cermet that was not obtained in the past has been realized.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In conventional high nitrogen cermets, the sinterability decreases with an increase in the amount of nitrogen. Therefore, the raw material powder particle size and the sintering conditions are adjusted to make the structure finer and sinter. When the particles are not atomized, the strength of the sintered body after sintering is lowered. Therefore, when used as a cutting tool, the desired strength cannot be obtained under conventional sintering conditions. As a result of various tests focusing on improving the high-temperature characteristics required for high-speed cutting, the present invention forms coarse and high-nitrogen cores that could not be obtained under conventional sintering conditions. A sintered body having the hard phase thus obtained is obtained. In order to make particles having one or more cores of group 4a metal carbides, nitrides, and carbonitrides of high periodicity mainly from the viewpoint of sinterability, finer particles have desirable characteristics. However, the purpose of coarse graining is that it has become clear that improving the thermal shock resistance at high temperatures is highly effective for cutting performance in extremely high-speed cutting. In addition, because of the high nitrogen, the toughness improved compared to the low nitrogen alloy. Furthermore, since the reactivity with a metal and oxygen falls, so that there is much nitrogen amount, the improvement of chemical abrasion resistance is also implement | achieved rather than the conventional cermet.
[0010]
In the present invention, it has been clarified that the particle has a cored structure, and the size of the core part has a great influence on the cutting performance. Mainly, the periodic table 4a group metal carbide, nitride, charcoal The particles having one or more cores of nitride and mutual solid solution have a nitrogen / (nitrogen + carbon) atomic ratio of the particles of 0.4 or more and 0.95 or less, and the structure of the sintered body is the core If the core area of a particle having a particle size of 3 μm or more is 3 area% or more of the entire hard phase and the core area of a particle having a particle diameter of 2 μm or more is 10 area% or more of the entire hard phase, a desired effect is obtained. The sintered body that was recognized and did not satisfy the above-mentioned limitations was inferior in cutting performance in a particularly high speed region. This is superior to conventional cermets with fine-grained cores, and it has excellent wear resistance due to the high proportion of cores that contribute to wear resistance even in the hard phase. This is probably because the adhesive strength between the intermediate phases has improved, and thus it has excellent fracture resistance against cracks caused by thermal shock. If the nitrogen content of the core is less than 0.4, the high temperature characteristics deteriorate, and if it is 0.95 or more, the desired wear resistance cannot be obtained, so it is limited to 0.4 or more and 0.95 or less. 0.7 or less is preferable and 0.5 or more and 0.64 or less are more preferable. In addition, the core area of the particles whose core part particle size is 3 μm or more is 10 area% or more of the total hard phase core part having a cored structure, and the core part area of particles having a core part structure of 2 μm or more is the cored structure. In a sintered body that satisfies the above-mentioned conditions for the ratio of particles having a rough core so that it is 30 area% or more of the total hard phase core portion, the progress of thermal shock cracks is delayed by the coarse particles. The property is improved.
[0011]
Furthermore, the thermal shock resistance is improved by shortening the mean free path of the binder phase with particles having a core of 0.5 μm or less, but the sintered body has a core area larger than 5 area% of the total hard phase. Then, the characteristics in the high temperature region were lowered, and since desired characteristics could not be obtained at 2 area% or less, it was limited to 2 to 5 area%. From this, it was limited that 50% or more of the particles having a core of 0.5 μm or less were in contact with the binder phase. Further, the particle size distribution of the core size is limited to 3 μm or more because desired performance with respect to load due to fluctuations in cutting stress and thermal shock cannot be obtained if it is less than 3 μm, but it is more preferably 5 to 10 μm. .
[0012]
The average particle size of the particles having one or more cores of group 4a metal carbide, nitride, carbonitride, and mutual solid solution is mainly A, and the period table 5a, group 6a metal carbide, nitride When the average particle diameter of the particles having a core portion composed of one or more types of carbonitride is B, if B / A is larger than 0.5, the heat plastic deformation at high temperatures is inferior, so that it is 0.5 or less. And limited.
[0013]
In order to obtain the cermet for a cutting tool of the present invention, it is natural that the raw material powder is high nitrogen, but it is the present case that desired characteristics can be obtained by further blending the raw material powder having an average particle size of 6 μm or more. It became clear. Even if a raw material powder having an average particle size smaller than 6 μm is used, a sintered body having a coarse core can be obtained by shortening the mixing time and the sintering time. However, the dispersion of the wear resistance and fracture resistance is large due to poor dispersion under short conditions, and the strength decreases due to the fact that defects tend to remain under conditions where the sintering time is short, resulting in extreme variations in tool life related to fracture. Since it becomes large, it was limited to use it as a raw material as a TiCN powder having an average particle diameter of 6 μm or more, but it is preferable to use a coarser TiCN powder of 8 μm or more. Sintering is performed under a high temperature and high nitrogen atmosphere to obtain a sintered body having a high-nitrogen and coarse core of 3 μm or more.
[0014]
【Example】
Commercially available WC having an average particle size of 1 to 2 μm, composite carbide of (W, Ti) C (weight ratio WC / TiC = 70/30), TaC, Mo 2 C, ZrC, Co, Ni and invention products TiC, TiN, TiCN having an average particle size of 10 μm (TiC / TiN = 40/60 to 50/50 by weight ratio), and TiC, TiN, TiCN having an average particle size of 1.5 μm (TiC / TiN by weight ratio) as comparative products = 40/60 to 50/50), each raw material powder was weighed to the blending composition shown in Table 1, and placed in a stainless steel pot together with an acetone solvent and a cemented carbide ball and mixed for 20 hours.
The obtained mixed powder was press-molded at a pressure of 196 MPa using a SPMN120308 shape mold described in JIS-B4120. The obtained powder compact was sintered in a nitrogen stream at an atmospheric pressure of 0.13 to 2.6 kPa under conditions of a temperature of 1773 to 1873 K and a holding time of 1 hour. Got.
[0015]
[Table 1]
Sintered body composition
Figure 0004540791
Compounding amount: mass%, invention product sintering temperature: 1873K, comparative product sintering temperature: 1773K
[0016]
After cutting the cermet chips of the present invention products 1 to 6 and comparative products 1 to 6 thus obtained and grinding the cross section on the flank side, lapping is performed from the surface to the inside of 0.2 mm with a 1 μm diamond paste. It was. The processed surface was magnified 1500 times with an optical microscope and observed with an image analyzer, and the area% of the core portion of the particle having a core portion of 3 μm or more and the core portion of the particle having a core portion of 2 μm or more was measured by 5 visual fields and averaged. The value was determined. In addition, the N and C contents of the core were measured by WDS.
The upper and lower surfaces of the sintered body obtained under the conditions shown in Table 1 were ground with a # 230 diamond grindstone, and the cutting edge ridge was subjected to a honing treatment of 0.15 × −30 °, and cutting under the following conditions: A comparative evaluation of the amount of flank wear was performed by the test. The results are shown in Table 2.
[0017]
Cutting test condition 1 (Abrasion test)
Work material: S48C
Cutting speed: 240 m / min
Cutting depth: 1.5mm
Feed: 0.32 mm / rev.
Cutting oil: Not used (dry cutting)
Cutting time: 20 min
[0018]
Cutting test condition 2 (defect test)
Work material SNCM439
Cutting speed 240m / min
1mm depth of cut
Feed 0.2 mm / rev.
Cutting oil: WET (water-soluble)
5 seconds cutting-5 seconds pause repeat count 100 times, test end test number is 3 times for each sample
[Table 2]
Test results
Figure 0004540791
* 1 Comparative product 5 contained many defects due to the low temperature during sintering, and the desired performance could not be obtained.
[0020]
【The invention's effect】
As is apparent from the above results, the core area of the hard phase having high nitrogen as in Inventions 1 to 6 and having a coarse core of 3 μm or more is 3 area% or more of the total hard phase, and The cermet in which the core area of the hard phase having a coarse core part of 2 μm or more is contained by 10% by area or more of the total hard phase is compared with the cermet having the conventional fine core part as shown in comparative products 1-6. In addition, since the ratio of the core that contributes to wear resistance is high in the hard phase, the particles are less likely to fall off and show excellent wear resistance, and the adhesive strength between the intermediate phases of the individual particles is improved. Excellent fracture resistance against cracks caused by thermal shock.

Claims (3)

Tiの炭化物、窒化物、炭窒化物の1種以上のTi化合物を主成分とし、周期率表の4a、5a、6a族金属の炭化物、窒化物、炭窒化物の1種およびこれら固溶体の1種以上を含む硬質相が70〜97重量%と、残部が鉄族金属の1種以上からなる結合相および不可避不純物からなる炭窒化チタン基合金において、硬質相が主として周期率表4a族金属の炭化物、窒化物、炭窒化物および相互固溶体の1種以上の芯部を有する粒子と、主として周期率表5a、6a族金属の炭化物、窒化物、炭窒化物および相互固溶体の1種以上からなる芯部を有する粒子と、周期率表の4a、5a、6aの炭化物、窒化物、炭窒化物および相互固溶体の1種以上からなる単相の粒子からなるサーメットにおいて、主として周期率表4a族金属の炭化物、窒化物、炭窒化物および相互固溶体の1種以上の芯部を有する粒子の窒素量と炭素量の原子比が0.4≦窒素/(窒素+炭素)≦0.95であって、該焼結体の組織は、芯部の粒径が3μm以上である粒子の芯部面積が全硬質相の3面積%以上、かつ2μm以上である粒子の芯部面積が全硬質相の10面積%以上であることを特徴とする切削工具用サーメットThe main component is one or more of Ti carbide, nitride, carbonitride, and one of carbides, nitrides, carbonitrides of groups 4a, 5a, and 6a of the periodic table, and 1 of these solid solutions. In a titanium carbonitride-based alloy composed of 70 to 97% by weight of a hard phase containing at least seeds and a binder phase and unavoidable impurities consisting of one or more types of iron group metal in the balance, the hard phase is mainly composed of a periodic table 4a group metal. Particles having one or more cores of carbide, nitride, carbonitride and mutual solid solution, and mainly composed of one or more of periodic table 5a, group 6a metal carbide, nitride, carbonitride and mutual solid solution In a cermet composed of particles having a core and single-phase particles composed of one or more of carbides, nitrides, carbonitrides and mutual solids of 4a, 5a, and 6a in the periodic table, the group 4a metal in the periodic table Carbide, nitriding The atomic ratio of the nitrogen content and the carbon content of the particles having one or more core parts of carbonitride and mutual solid solution is 0.4 ≦ nitrogen / (nitrogen + carbon) ≦ 0.95, and the structure of the sintered body is: The core area of particles having a core particle size of 3 μm or more is 3 area% or more of the entire hard phase, and the core area of particles having a particle diameter of 2 μm or more is 10 area% or more of the entire hard phase. Cermet for cutting tools 上記の主として周期率表4a族金属の炭化物、窒化物、炭窒化物およびそれら相互固溶体の1種以上の芯部を有する粒子において、芯部の粒径が3μm以上である粒子の芯部面積が有芯構造である全硬質相芯部の10面積%以上、かつ2μm以上である粒子の芯部面積が有芯構造である全硬質相芯部の30面積%以上であることを特徴とする特許請求の範囲第1項記載の切削工具用サーメットIn the particles having one or more core parts of the carbides, nitrides, carbonitrides, and their mutual solid solutions, mainly the periodic table 4a group metal, the core area of the particles having a core particle diameter of 3 μm or more is A patent characterized in that the core area of a particle having a core structure of 10% by area or more of the entire hard core part and 2 μm or more is 30% by area or more of the core part having a core structure. The cermet for a cutting tool according to claim 1 上記の主として周期率表4a族金属の炭化物、窒化物、炭窒化物およびそれら相互固溶体の1種以上の芯部を有する粒子において、0.5μm以下の芯部粒径をもつ粒子の芯部面積全硬質相の2〜5面積%であることを特徴とする特許請求の範囲第1項記載の切削工具用サーメットThe core area of particles having a core particle size of 0.5 μm or less in the particles having one or more cores of the carbides, nitrides, carbonitrides and their mutual solid solutions, mainly of the periodic table 4a group metals. 2. The cermet for a cutting tool according to claim 1, wherein the cermet is 2 to 5% by area of the total hard phase.
JP2000094463A 2000-03-30 2000-03-30 Cermet for cutting tools Expired - Lifetime JP4540791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000094463A JP4540791B2 (en) 2000-03-30 2000-03-30 Cermet for cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000094463A JP4540791B2 (en) 2000-03-30 2000-03-30 Cermet for cutting tools

Publications (2)

Publication Number Publication Date
JP2001277008A JP2001277008A (en) 2001-10-09
JP4540791B2 true JP4540791B2 (en) 2010-09-08

Family

ID=18609511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000094463A Expired - Lifetime JP4540791B2 (en) 2000-03-30 2000-03-30 Cermet for cutting tools

Country Status (1)

Country Link
JP (1) JP4540791B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485994B1 (en) * 2002-07-23 2005-05-03 한국야금 주식회사 Ti(CN)-based cermets containing high nitrogen and manufacturing method thereof
US7413591B2 (en) * 2002-12-24 2008-08-19 Kyocera Corporation Throw-away tip and cutting tool
KR102195952B1 (en) * 2014-03-13 2020-12-28 히타치 긴조쿠 가부시키가이샤 Powder magnetic core manufacturing method, and powder magnetic core

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186843A (en) * 1991-05-07 1993-07-27 Sandvik Ab Carbon nitride sintered alloy with controlled particle size
JPH06248385A (en) * 1993-02-26 1994-09-06 Kyocera Corp Ticn based cermet
JPH08508066A (en) * 1993-03-23 1996-08-27 ヴィディア ゲゼルシャフト ミット ベシュレンクテル ハフツング Cermet and its manufacturing method
JPH09174306A (en) * 1995-12-20 1997-07-08 Kyocera Corp Cermet for cutting tool
JPH11131170A (en) * 1997-10-28 1999-05-18 Ngk Spark Plug Co Ltd Cermet tool and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186843A (en) * 1991-05-07 1993-07-27 Sandvik Ab Carbon nitride sintered alloy with controlled particle size
JPH06248385A (en) * 1993-02-26 1994-09-06 Kyocera Corp Ticn based cermet
JPH08508066A (en) * 1993-03-23 1996-08-27 ヴィディア ゲゼルシャフト ミット ベシュレンクテル ハフツング Cermet and its manufacturing method
JPH09174306A (en) * 1995-12-20 1997-07-08 Kyocera Corp Cermet for cutting tool
JPH11131170A (en) * 1997-10-28 1999-05-18 Ngk Spark Plug Co Ltd Cermet tool and its production

Also Published As

Publication number Publication date
JP2001277008A (en) 2001-10-09

Similar Documents

Publication Publication Date Title
JP6703757B2 (en) Cermet and cutting tool
KR100231267B1 (en) Hard alloy and production thereof
CN100439524C (en) Gradient composition sintered alloy and mfg. method
JP5568827B2 (en) Cubic boron nitride sintered body and cubic boron nitride sintered body tool
JPWO2011002008A1 (en) Cermet and coated cermet
JP7272353B2 (en) Cemented Carbide, Cutting Tool and Cemented Carbide Manufacturing Method
JP2004076049A (en) Hard metal of ultra-fine particles
JP2004292842A (en) Cermet
JP2813005B2 (en) WC based hard alloy
JP2580168B2 (en) Nitrogen-containing tungsten carbide based sintered alloy
JP4540791B2 (en) Cermet for cutting tools
JP2006111947A (en) Ultra-fine particle of cermet
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JP2006037160A (en) Sintered compact
JP7385829B2 (en) WC-based cemented carbide cutting tools and surface-coated WC-based cemented carbide cutting tools with excellent plastic deformation resistance and fracture resistance
JP2006144089A (en) Hard metal made of superfine particle
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2005200668A (en) Cermet and coated cermet, and manufacturing methods for them
JP2502322B2 (en) High toughness cermet
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP4280525B2 (en) cermet
JP2002029845A (en) Super-hard sintered compact
JP3045199B2 (en) Manufacturing method of high hardness cemented carbide
JP3976285B2 (en) Cermet tool having a hard nitrided layer and method for producing the same
JPH10259433A (en) Production of hyperfine-grained tungsten carbide base sintered hard alloy having high strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Ref document number: 4540791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term