JP2006037160A - Sintered compact - Google Patents

Sintered compact Download PDF

Info

Publication number
JP2006037160A
JP2006037160A JP2004218038A JP2004218038A JP2006037160A JP 2006037160 A JP2006037160 A JP 2006037160A JP 2004218038 A JP2004218038 A JP 2004218038A JP 2004218038 A JP2004218038 A JP 2004218038A JP 2006037160 A JP2006037160 A JP 2006037160A
Authority
JP
Japan
Prior art keywords
hardness
specific element
toughness
weight
element metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004218038A
Other languages
Japanese (ja)
Inventor
Masaki Kobayashi
正樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2004218038A priority Critical patent/JP2006037160A/en
Publication of JP2006037160A publication Critical patent/JP2006037160A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the service life when used for cutting tools, wear resistant tools and components by improving various properties such as strength, hardness and toughness of a sintered compact consisting mainly of tungsten carbide. <P>SOLUTION: The sintered compact with a gradient composition in which the hardness in the vicinity of the surface is high and the toughness of the inside is high by sintering a powdery mixture obtained by mixing 0.1 to 1.0 wt.% iron group metal, 0.1 to 1.0 wt.% of at least one kind of specific element metal selected from Cr, Au, Cu, Sn and Al, and the powder of a hard phase such as tungsten carbide in a controlled atmosphere, and evaporating or scattering the specific element metal(s) from the surface at the time of the sintering, has excellent various properties such as strength, hardness and toughness. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高硬度、高靱性であり、耐摩耗性に優れた焼結体に関する。具体的には、溶着し易いアルミニウム,チタン,銅などの非鉄金属の切削加工用工具、ブラスト処理用ノズルやウォータージェット用ノズルなどの耐アブレッシブあるいは耐エロージョン摩耗用部材、メカニカルシール,軸受けなどの耐しゅう動摩耗性用部材に最適な焼結体に関する。 The present invention relates to a sintered body having high hardness and high toughness and excellent wear resistance. Specifically, non-ferrous metal cutting tools such as aluminum, titanium, and copper, which are easily welded, abrasive or erosion wear resistant members such as blasting nozzles and water jet nozzles, mechanical seals, bearings, etc. The present invention relates to a sintered body optimum for a sliding wear member.

炭化タングステンを主成分とする超硬合金では、結合相量が少ないほど高硬度で耐摩耗性に優れ、さらに同一硬度であれば靱性が高いほど耐摩耗性が良好となることが知られている。しかし、結合相量の減少に伴って焼結性が悪化するために、硬さ,靱性,強度とも低下すると言う問題がある。そこで、これらを改善するために他炭化物を添加した炭化タングステン基焼結体が種々提案されている。 In cemented carbides based on tungsten carbide, it is known that the smaller the amount of the binder phase, the higher the hardness and the better the wear resistance, and the higher the toughness, the better the wear resistance for the same hardness. . However, since the sinterability deteriorates with a decrease in the amount of the binder phase, there is a problem that hardness, toughness, and strength are reduced. In order to improve these, various tungsten carbide-based sintered bodies to which other carbides are added have been proposed.

Mo2C:2〜20重量%、Cr32,VC,NbC,TaC,TiC,ZrC,HfCの内の1種または2種以上:0.2〜2重量%、Co,Ni,Feの内の1種または2種以上:1重量%以下、残りがWCからなる超硬質合金がある(例えば、特許文献1参照。)。 Mo 2 C: 2 to 20% by weight, one or more of Cr 3 C 2 , VC, NbC, TaC, TiC, ZrC, and HfC: 0.2 to 2% by weight, Co, Ni, Fe Among them, there is a super-hard alloy composed of one or more of them, and 1% by weight or less, and the balance is WC (for example, see Patent Document 1).

また、粒径2μm 以下のWCを主体とし、MoまたはMo2C、およびVCを含有してなる硬質相と、Coを主体とする結合相とからなり、焼結後の合金組成が、0.2〜1.0重量%Co、2.0〜7.0重量%MoまたはMo2C、0.2〜0.6重量%VC、残部がWCからなる高硬度超硬合金がある(例えば、特許文献2参照。)。 The alloy composition after sintering is composed of a hard phase mainly composed of WC having a particle size of 2 μm or less and containing Mo or Mo 2 C and VC and a binder phase mainly composed of Co. 2 to 1.0 wt% Co, 2.0 to 7.0 wt% Mo or Mo 2 C, 0.2 to 0.6 wt% VC, balance is high hardness cemented carbide consisting of WC (e.g., (See Patent Document 2).

さらに、Fe,Co,Niの1種または2種以上が0.02〜0.10重量%、周期律表第4a,5a,6a族の遷移金属の炭化物,窒化物および炭窒化物の1種または2種以上が0.3〜3.0重量%含有され、残りが平均粒子径0.5μm以下の炭化タングステンで構成され、かつ炭化タングステンはW2C/(W2C+WC)が0.01〜0.15の範囲でなる焼結硬質材がある(例えば、特許文献3参照。)。 Further, one or more of Fe, Co and Ni are 0.02 to 0.10% by weight, and one of transition metal carbides, nitrides and carbonitrides of Groups 4a, 5a and 6a of the periodic table Alternatively, two or more kinds are contained in an amount of 0.3 to 3.0% by weight, and the remainder is composed of tungsten carbide having an average particle diameter of 0.5 μm or less, and tungsten carbide has a W 2 C / (W 2 C + WC) of 0.01. There is a sintered hard material in a range of ˜0.15 (for example, see Patent Document 3).

これらの焼結体は、Mo2C,VC,W2Cなどの添加によって焼結性と硬さを改善したものではあるが、靱性の低下を伴うために負荷の大きい条件では異常摩耗を起こすと言う問題がある。 Although these sintered bodies have improved sinterability and hardness by adding Mo 2 C, VC, W 2 C, etc., they cause abnormal wear under heavy load conditions due to a decrease in toughness. There is a problem to say.

特開平5−33098号公報Japanese Patent Laid-Open No. 5-33098 特開平5−59481号公報Japanese Patent Laid-Open No. 5-59481 特開平9−25535号公報Japanese Patent Laid-Open No. 9-25535

炭化タングステン基焼結体は、高硬度、高靱性、耐摩耗性に優れるため、切削加工用工具、ブラスト処理用ノズルやウォータージェット用ノズルなどの耐アブレッシブあるいは耐エロージョン摩耗用部材、メカニカルシール,軸受けなどの耐しゅう動摩耗性用部材に多く用いられるが、さらなる寿命向上が求められている。そこで、本発明は、表面近傍の硬さと内部の靱性を同時に向上させた焼結体の提供を目的とするものである。 Tungsten carbide-based sintered bodies have high hardness, high toughness, and excellent wear resistance, so they are resistant to abrasive or erosion wear, such as cutting tools, blasting nozzles and water jet nozzles, mechanical seals, and bearings. It is often used for sliding wear-resistant members such as the above, but there is a demand for further improvement in life. Therefore, an object of the present invention is to provide a sintered body in which the hardness near the surface and the internal toughness are simultaneously improved.

本発明者は、長年に亘り焼結体の硬さと強度・靱性の同時向上について検討していた所、Cr,Au,Cu,Sn,Alの中から選ばれた少なくとも1種の特定元素金属を添加すると焼結性が改善されること、焼結時の雰囲気を不活性ガス中から真空中に切り替えることによって特定元素金属を焼結体の表面から蒸発・飛散させると傾斜組成材となること、傾斜組成材は表面が高硬度で内部が高靱性になること、結果として耐摩耗性と強度・靱性の両方に優れた焼結体が得られると言う知見を得て、本発明を完成するに至ったものである。 The present inventor has studied the simultaneous improvement of the hardness, strength and toughness of the sintered body for many years. At least one specific element metal selected from Cr, Au, Cu, Sn, and Al is used. When added, the sinterability is improved, and by switching the atmosphere at the time of sintering from inert gas to vacuum, the specific element metal is evaporated and scattered from the surface of the sintered body to become a gradient composition material, In order to complete the present invention, the gradient composition material has a high hardness on the surface and a high toughness inside, and as a result, a sintered body excellent in both wear resistance and strength / toughness can be obtained. It has come.

すなわち、本発明の焼結体は、周期律表4a,5a,6a族元素の炭化物,窒化物およびこれらの相互固溶体の中の少なくとも1種を主成分とする焼結体において、鉄族金属を0.1〜1.0重量%含有し、Cr,Au,Cu,Sn,Alの中の少なくとも1種の特定元素金属を0.1〜1.0重量%含有し、表面から深さ方向に0.1mmまでの表面領域に含まれる特定元素金属の含有量をVi(重量%)と表し、表面から深さ方向に1mm以上の内部領域に含まれる特定元素金属の含有量をVs(重量%)と表したとき、(Vs/Vi)≦0.5を満足する焼結体である。 That is, the sintered body of the present invention is a sintered body mainly composed of at least one of carbides, nitrides, and mutual solid solutions of the periodic table 4a, 5a, and 6a group elements. 0.1 to 1.0% by weight, 0.1 to 1.0% by weight of at least one specific element metal among Cr, Au, Cu, Sn, and Al, and in the depth direction from the surface The content of the specific element metal contained in the surface region up to 0.1 mm is expressed as Vi (% by weight), and the content of the specific element metal contained in the internal region of 1 mm or more in the depth direction from the surface is expressed as Vs (% by weight). ), The sintered body satisfies (Vs / Vi) ≦ 0.5.

本発明の焼結体は、Cr,Au,Cu,Sn,Alの中の少なくとも1種の特定元素金属と鉄族元素とを含有する結合相:0.2〜2.0重量%と、残部が、周期律表4a,5a,6a族元素の炭化物,窒化物およびこれらの相互固溶体の中の少なくとも1種からなる硬質相と不可避不純物とで構成される。 The sintered body of the present invention comprises a binder phase containing at least one specific element metal and an iron group element among Cr, Au, Cu, Sn, and Al: 0.2 to 2.0% by weight, and the balance Is composed of a hard phase composed of at least one of carbides and nitrides of group 4a, 5a, and 6a elements of the periodic table and their mutual solid solution and inevitable impurities.

本発明の硬質相は、周期律表4a,5a,6a族元素の炭化物,窒化物およびこれらの相互固溶体の中の少なくとも1種からなる。硬質相として具体的には、WCなどの炭化タングステン、VC,TaC,NbC,TiN,HfN,(W,Ti)C,(W.Ti.Ta)C,(W,Ti,Ta)(C,N),(Ti,W,Mo)(C,N)などの立方晶化合物、Cr73,Mo2Cなどの非立方晶化合物などを挙げることができる。硬質相中に含まれる立方晶化合物の量は、用途によって異なるために特に制限はない。VC,TaC,NbC,Cr73は0.1〜3重量%程度の添加でWCの粒成長を抑制して硬さを向上させ、(W,Ti)C,(W.Ti.Ta)Cなどは強度を低下させるものの、硬質相全体に対して10〜80重量%含有すると硬さを顕著に改善する。 The hard phase of the present invention comprises at least one of carbides, nitrides and their mutual solid solutions of the periodic table 4a, 5a and 6a group elements. Specific examples of the hard phase include tungsten carbide such as WC, VC, TaC, NbC, TiN, HfN, (W, Ti) C, (W. Ti. Ta) C, (W, Ti, Ta) (C, N), (Ti, W, Mo) (C, N) and the like, and non-cubic compounds such as Cr 7 C 3 and Mo 2 C. The amount of the cubic compound contained in the hard phase is not particularly limited because it varies depending on the application. VC, TaC, NbC, and Cr 7 C 3 improve the hardness by suppressing the grain growth of WC by adding about 0.1 to 3% by weight, and (W, Ti) C, (W.Ti.Ta) Although C and the like reduce the strength, if containing 10 to 80% by weight based on the entire hard phase, the hardness is remarkably improved.

本発明の結合相は、Cr,Au,Cu,Sn,Alの中の少なくとも1種の特定元素金属と鉄族金属とを含有した金属であり、結合相全体に対して30重量%以下のW,Cr,Moなどを固溶しても良い。ここで鉄族金属とはCo,Ni,Feを意味する。結合相は0.2重量未満では焼結が困難なために多量の気孔が残留して硬さ,強度,靱性とも低くなり、2.0重量%を超えて多くなると硬さ低下による摩耗が増大するために、0.2〜2.0重量%と定めた。 The binder phase of the present invention is a metal containing at least one kind of specific element metal and iron group metal among Cr, Au, Cu, Sn, and Al. , Cr, Mo, etc. may be dissolved. Here, the iron group metal means Co, Ni, and Fe. Since the binder phase is difficult to sinter at less than 0.2 wt., A large amount of pores remain and the hardness, strength and toughness are lowered, and when it exceeds 2.0 wt%, the wear due to the reduced hardness increases. Therefore, the content is determined to be 0.2 to 2.0% by weight.

本発明の焼結体に含まれる鉄属金属量は、0.1重量%未満では焼結が困難なために多量の気孔が残留して硬さ,強度,靱性とも低く、逆に1.0重量%を超えて多くなると硬さ低下による摩耗が増大するために、鉄属金属量を0.1〜1.0重量%と定めた。 The amount of iron group metal contained in the sintered body of the present invention is difficult to sinter if it is less than 0.1% by weight, so that a large amount of pores remain and the hardness, strength and toughness are low. When the amount exceeds 5% by weight, wear due to a decrease in hardness increases, so the amount of iron metal was determined to be 0.1 to 1.0% by weight.

本発明の特定元素金属は、Cr,Au,Cu,Sn,Alの中から選ばれた少なくとも1種であり、鉄族金属中に固溶して合金あるいは金属間化合物を形成している。Crは炭化物、Alでは酸化物,窒化物を形成し不可避不純物として焼結体中に分散している場合もある。特定元素金属量は、0.1重量%未満では焼結性を改善する効果が少なく、逆に1.0重量%を超えて多くなると硬さ低下による摩耗が増大するために、特定元素金属量を0.1〜1.0重量%と定めた。また、特定元素金属の中でもCu,Cr,Alは、硬さと靱性の改善効果が大きいので、さらに好ましい。 The specific element metal of the present invention is at least one selected from Cr, Au, Cu, Sn, and Al, and forms an alloy or intermetallic compound by solid solution in the iron group metal. In some cases, Cr forms a carbide, Al forms an oxide or nitride, and is dispersed as an inevitable impurity in the sintered body. If the amount of the specified elemental metal is less than 0.1% by weight, the effect of improving the sinterability is small. Conversely, if the amount of the specified elemental metal exceeds 1.0% by weight, wear due to a decrease in hardness increases. Of 0.1 to 1.0% by weight. Among the specific element metals, Cu, Cr, and Al are more preferable because they have a great effect of improving hardness and toughness.

本発明の特定元素金属は、焼結体の内部から表面に向かって漸次減少しており、表面から深さ方向に0.1mmまでの表面領域に含まれる特定元素金属の含有量をVi(重量%)と表し、表面から深さ方向に1mm以上の内部領域に含まれる特定元素金属の含有量をVs(重量%)と表したとき、(Vs/Vi)≦0.5を満足する。(Vs/Vi)が0.5を超えて大きくなると、表面での特定元素金属の減少に伴う硬さと靱性の向上効果が少ない。 The specific element metal of the present invention gradually decreases from the inside of the sintered body toward the surface, and the content of the specific element metal contained in the surface region from the surface to the depth of 0.1 mm in the depth direction is Vi (weight). %), And when the content of the specific element metal contained in the internal region of 1 mm or more in the depth direction from the surface is expressed as Vs (wt%), (Vs / Vi) ≦ 0.5 is satisfied. When (Vs / Vi) exceeds 0.5, the effect of improving the hardness and toughness associated with the reduction of the specific element metal on the surface is small.

本発明の焼結体は超硬合金と同様な粉末冶金法によって製造されるが、以下の点を考慮すると良い。主原料粉末である硬質相粉末の粒度は、成形性,焼結性,組織の均一性などから0.5〜2μm程度が望ましい。鉄族金属や特定元素金属も1μm以下が望ましく、炭化物,酸化物,窒化物の形で添加し、焼結時に分解、還元させて微粉としても良い。焼結雰囲気は、焼結温度まではアルゴン,窒素などの非酸化性雰囲気とし、特定元素金属の蒸発・飛散を防止する。そして、焼結保持して一旦は均一組成として後、真空にして表面から特定元素金属を飛散させる必要がある。緻密化が不十分な場合は、焼結後にHIPを施しても良い。 The sintered body of the present invention is manufactured by a powder metallurgy method similar to that of cemented carbide, but the following points should be taken into consideration. The particle size of the hard phase powder, which is the main raw material powder, is preferably about 0.5 to 2 μm in view of moldability, sinterability, and structure uniformity. The iron group metal and the specific element metal are also preferably 1 μm or less, and may be added in the form of carbide, oxide, or nitride, and decomposed and reduced during sintering to form fine powder. The sintering atmosphere is a non-oxidizing atmosphere such as argon or nitrogen up to the sintering temperature to prevent evaporation and scattering of the specific element metal. Then, it is necessary to sinter and hold once to obtain a uniform composition, and then to evacuate the specific element metal from the surface. If densification is insufficient, HIP may be applied after sintering.

本発明の焼結体は、添加された特定元素金属が焼結性を改善する作用をし、焼結時の焼結体表面からの特定元素金属の蒸発・飛散が傾斜組成化させる作用をし、得られた傾斜組成材での表面の高硬度と内部の高靱性が耐摩耗性と強度・靱性の両方を向上させる作用をしているものである。 In the sintered body of the present invention, the added specific element metal has an action of improving the sinterability, and the evaporation and scattering of the specific element metal from the surface of the sintered body at the time of sintering has an action of gradient composition. In the obtained gradient composition material, the high hardness of the surface and the high internal toughness serve to improve both the wear resistance and the strength and toughness.

本発明の焼結体は、ほぼ同一量の鉄属金属を添加した従来品に比べて、強度および表面近傍の硬さと内部の靱性が高いために、ブラストによる耐摩耗性では1.5倍、チタン合金切削では2倍の寿命を有する。 Since the sintered body of the present invention has higher strength and hardness near the surface and internal toughness than conventional products to which almost the same amount of iron metal is added, the abrasion resistance by blasting is 1.5 times. Titanium alloy cutting has twice the life.

市販の平均粒径1.0μmのWC,平均粒径0.02μmのカーボンブラック(Cと略記),平均粒径0.6μmのCo,平均粒径1.1μmのNi,平均粒径1.2μmのFe,平均粒径0.8μmのCr32,平均粒径0.5μmのAu,平均粒径0.9μmのCuO,平均粒径0.2μmのAlN,平均粒径0.8μmのVC,平均粒径1.0μmのTaC,平均粒径0.8μmの(W,Ti)C(重量比でWC/TiC=70/30),平均粒径1.0μmのMo2C,平均粒径1.7μmのW2C、#325のフルイを通したSn(スタンプ粉)の各粉末を用いて、表1に示す配合組成に秤量し、ステンレス製ポットにアセトン溶媒と超硬合金製ボールと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。ここで、配合炭素量は、焼結後に遊離炭素あるいはCo33C,Ni24C,Fe33Cなどを析出しないとなるようにC添加により調整した。そして、これらの粉末を金型に充填し、196MPaの圧力でもって5.3×10.5×31mmの圧粉成形体を作製し、カーボンブラック粉末を塗布したカーボン板上に設置した後、焼結炉に挿入して加熱焼結し、本発明品1〜9および比較品1〜9の焼結体を得た。適用した昇温,焼結,冷却の各工程における雰囲気条件の詳細を表2に一括して示し、その雰囲気の条件番号を焼結保持での温度,時間と共に表1に併記した。尚、すべての焼結体には、1450℃で1時間、150MPaのアルゴン中でHIP処理を施した。 Commercially available WC with an average particle size of 1.0 μm, carbon black with an average particle size of 0.02 μm (abbreviated as C), Co with an average particle size of 0.6 μm, Ni with an average particle size of 1.1 μm, an average particle size of 1.2 μm Fe, Cr 3 C 2 with an average particle size of 0.8 μm, Au with an average particle size of 0.5 μm, CuO with an average particle size of 0.9 μm, AlN with an average particle size of 0.2 μm, VC with an average particle size of 0.8 μm , TaC with an average particle size of 1.0 μm, (W, Ti) C with an average particle size of 0.8 μm (weight ratio WC / TiC = 70/30), Mo 2 C with an average particle size of 1.0 μm, average particle size Using each powder of Sn (stamp powder) that passed through 1.7 μm W 2 C, # 325 sieve, weighed to the composition shown in Table 1, with acetone solvent and cemented carbide balls in a stainless steel pot It was inserted, mixed and ground for 48 hours, and then dried to obtain a mixed powder. Here, the amount of blended carbon was adjusted by adding C so that free carbon or Co 3 W 3 C, Ni 2 W 4 C, Fe 3 W 3 C or the like would not precipitate after sintering. Then, these powders are filled into a mold, a compacted body of 5.3 × 10.5 × 31 mm is produced with a pressure of 196 MPa, placed on a carbon plate coated with carbon black powder, and then sintered. It inserted in the sintering furnace and heat-sintered and obtained the sintered compact of this invention products 1-9 and comparative products 1-9. Details of the atmospheric conditions in the applied temperature raising, sintering, and cooling steps are collectively shown in Table 2, and the condition number of the atmosphere is shown in Table 1 together with the temperature and time for holding the sintering. All sintered bodies were subjected to HIP treatment in argon at 150 MPa at 1450 ° C. for 1 hour.

Figure 2006037160
注)*焼結時の雰囲気が前半と後半で異なった場合には、それぞれの時間を示した(例えば20+20と表示)。
Figure 2006037160
Note) * When the atmosphere during sintering is different between the first half and the second half, the respective times are indicated (for example, indicated as 20 + 20).

Figure 2006037160
注)*所定温度まで雰囲気はすべて5Paの真空であり、また1000℃以上での昇温速度を15℃/minとした。
**1000℃までの冷却速度を10℃/minとした。
Figure 2006037160
Note) * Up to a predetermined temperature, the atmosphere was all 5 Pa vacuum, and the heating rate at 1000 ° C. or higher was 15 ° C./min.
** The cooling rate to 1000 ° C. was 10 ° C./min.

こうして得られた各焼結体の試片(4.3×8.5×25mm)を#230のダイヤモンド砥石で湿式研削加工し、4.0×8.0×25.0mmの形状に作製した。この際、4.0×25mmとなる2面の内、一方の面(A面と略記)については研削加工取りしろ(焼結肌の表面からの距離)を0.1mmとした。そして、A面に引っ張り応力が働くように治具にセットし、JIS法による抗折力を測定した。その結果を表3に示す。 Specimens (4.3 × 8.5 × 25 mm) of each sintered body thus obtained were wet-grinded with a # 230 diamond grindstone to produce a 4.0 × 8.0 × 25.0 mm shape. . At this time, of two surfaces of 4.0 × 25 mm, one surface (abbreviated as “A surface”) was set to 0.1 mm as a margin for grinding (distance from the surface of the sintered skin). And it set to the jig | tool so that tensile stress might work to A surface, and measured the bending strength by JIS method. The results are shown in Table 3.

次に、得られた各焼結体の別試片の2個について、一方は1000#のダイヤモンド砥石を用いて表面(焼結肌)から0.05mmの深さまで湿式研削加工し、他方は#400と#1000のダイヤモンド砥石を用いて表面から1.0mmの深さまで湿式研削加工した。そして、両方の試料面について1μmのダイヤモンドペ−ストでラップ加工した後、ビッカース圧子を用いた荷重:196Nでの硬さおよび破壊靱性値K1C(IM法)をそれぞれ測定した。これらの結果を表3に併記した。尚、ラップ加工面を光学顕微鏡で観察した所、全ての焼結体には0.5〜1μmの巣孔が0.01〜0.05体積%存在し、WCの粒子径は1.5〜3μmであった。 Next, about two of the other specimens of each sintered body obtained, one was wet-grinded from the surface (sintered skin) to a depth of 0.05 mm using a 1000 # diamond grindstone, and the other was # Wet grinding was performed to a depth of 1.0 mm from the surface using 400 and # 1000 diamond wheels. Then, after lapping each sample surface with a diamond paste of 1 μm, the load using a Vickers indenter: the hardness at 196 N and the fracture toughness value K1C (IM method) were measured. These results are also shown in Table 3. In addition, when the lapping surface was observed with an optical microscope, all sintered bodies had 0.01 to 0.05% by volume of nest holes of 0.5 to 1 μm, and the particle diameter of WC was 1.5 to It was 3 μm.

Figure 2006037160
Figure 2006037160

表3の結果によれば、本発明品は従来品および同一組成の混合粉末を従来方法で焼結した比較品に比べ、抗折力で50〜400MPa程度高く、表面の硬さはHVで30〜120程度、内部の破壊靱性値は0.2〜1.0程度高い。すなわち、本発明品は強度および表面の硬さと内部の靱性に優れると言える。 According to the results in Table 3, the product of the present invention is about 50 to 400 MPa higher in bending strength than the conventional product and the comparative product obtained by sintering the mixed powder of the same composition by the conventional method, and the surface hardness is 30 in HV. The internal fracture toughness value is about 0.2 to 1.0 high. That is, it can be said that the product of the present invention is excellent in strength, surface hardness and internal toughness.

次に、得られた各焼結体の別試片を切断し、断面を研磨,ラップ加工して組成分析用の試料を作製した。そして、走査型分析電顕を使用し、表面(焼結肌)から内部に向かって組成のライン分析(断面の中心を通って対面まで)を行った。このライン分析結果から、特定元素金属と鉄族金属のそれぞれについて、表面から深さ方向に0.1mmまでの表面領域における平均含有量と、表面から深さ方向に1mm以上の内部領域における平均含有量を求めた。内部領域の含有量に対する表面領域の含有量の比率をそれぞれ算出した。これらの結果を表4に示す。この結果から、本発明品は従来品および同一組成の混合粉末を従来方法で焼結した比較品に比べ、抗折力で50〜400MPa程度高く、表面の硬さはHVで30〜120程度、内部の破壊靱性値は0.2〜1.0程度高い。 Next, another specimen of each obtained sintered body was cut, and the cross section was polished and lapped to prepare a sample for composition analysis. Then, using a scanning analytical electron microscope, a line analysis of the composition (through the center of the cross section to the opposite side) was performed from the surface (sintered skin) to the inside. From this line analysis result, for each of the specific element metal and the iron group metal, the average content in the surface region from the surface to the depth direction of 0.1 mm and the average content in the inner region of 1 mm or more from the surface in the depth direction. The amount was determined. The ratio of the content of the surface area to the content of the internal area was calculated. These results are shown in Table 4. From this result, the product of the present invention is about 50 to 400 MPa higher in bending strength than the conventional product and a comparative product obtained by sintering a mixed powder of the same composition by a conventional method, and the surface hardness is about 30 to 120 in HV. The internal fracture toughness value is about 0.2 to 1.0 higher.

Figure 2006037160
Figure 2006037160

実施例1で得られた4.0×8.0×25.0mm3の試験片の内、本発明品2,4,6,7および比較品2,4,6,7を用いてサンドブラストによる摩耗試験を実施した。ブラスト条件は、使用面:8.0×25.0mm2砥粒:400#,噴射圧:1.1Mpa,入射角度:60°,噴射時間:5分である。ブラストによる摩耗体積を重量減/密度から求め、結果を表5に示す。 Of the 4.0 × 8.0 × 25.0 mm 3 test pieces obtained in Example 1, the present invention products 2, 4, 6, 7 and comparative products 2, 4, 6, 7 were used for sandblasting. A wear test was performed. The blasting conditions are: use surface: 8.0 × 25.0 mm 2 abrasive grains: 400 #, spray pressure: 1.1 Mpa, incident angle: 60 °, spray time: 5 minutes. The wear volume by blasting was determined from weight loss / density, and the results are shown in Table 5.

Figure 2006037160
Figure 2006037160

実施例1で得られた本発明品2,4,6,7および比較品2,4,6,7の混合粉末をISO規格でSNMG120408のハイレーキブレーカ付きチップの金型に充填し、実施例1と同様の条件でプレス成形,焼結を行ってチップ素材を得た。そして、すくい面のボス部のみ270#のダイヤモンド砥石で研削加工した後、320#の炭化けい素砥粒を含有したナイロン製ブラシで研磨して切れ刃部に半径0.05mmのホーニングを施すことによって、本発明品9〜12および比較品9〜12の切削用チップを得た。 The mixed powder of the present invention products 2, 4, 6, 7 and the comparative products 2, 4, 6, 7 obtained in Example 1 was filled into a die of a chip with a high rake breaker of SNMG120408 in accordance with ISO standards. A chip material was obtained by press molding and sintering under the same conditions as in No. 1. Then, only the boss portion of the rake face is ground with a 270 # diamond grindstone, and then polished with a nylon brush containing 320 # silicon carbide abrasive grains, and the cutting edge portion is subjected to honing with a radius of 0.05 mm. Thus, cutting chips of the present invention products 9 to 12 and comparative products 9 to 12 were obtained.

こうして得た切削用チップを用いて、被削材:チタン合金(Ti−6Al−4V),切削速度:100m/min,切込み:1.5mm,送り:0.2mm/rev,湿式の条件で外周連続旋削試験を行った。そして、刃先が欠損,チッピングを発生するか、あるいは逃げ面摩耗量が0.20mmに達するまで時間を測定した。その結果を表6に示す。 Using the cutting tip thus obtained, work material: titanium alloy (Ti-6Al-4V), cutting speed: 100 m / min, depth of cut: 1.5 mm, feed: 0.2 mm / rev, outer periphery under wet conditions A continuous turning test was conducted. The time was measured until the cutting edge was chipped or chipped, or the flank wear amount reached 0.20 mm. The results are shown in Table 6.

Figure 2006037160
Figure 2006037160

表6の結果から本発明品は、強度および表面の硬さと内部の靱性が高いために、欠けやチッピングを起こし難くて耐摩耗性にも優れていることが分かる。 From the results in Table 6, it can be seen that the product of the present invention has high strength, hardness of the surface, and internal toughness, so that it is difficult to cause chipping and chipping and is excellent in wear resistance.

Claims (2)

周期律表4a,5a,6a族元素の炭化物,窒化物およびこれらの相互固溶体の中の少なくとも1種を主成分とする焼結体において、鉄族金属を0.1〜1.0重量%含有し、Cr,Au,Cu,Sn,Alの中の少なくとも1種の特定元素金属を0.1〜1.0重量%含有し、表面から深さ方向に0.1mmまでの表面領域に含まれる特定元素金属の含有量をVi(重量%)と表し、表面から深さ方向に1mm以上の内部領域に含まれる特定元素金属の含有量をVs(重量%)と表したとき、(Vs/Vi)≦0.5を満足する焼結体。 Periodic table 4a, 5a, 6a group carbides, nitrides, and sintered bodies mainly composed of at least one of these mutual solid solutions, containing iron group metal in an amount of 0.1 to 1.0% by weight And 0.1 to 1.0% by weight of at least one specific element metal selected from Cr, Au, Cu, Sn, and Al, and included in the surface region from the surface to 0.1 mm in the depth direction. When the content of the specific element metal is expressed as Vi (% by weight) and the content of the specific element metal contained in the inner region of 1 mm or more in the depth direction from the surface is expressed as Vs (% by weight), (Vs / Vi ) Sintered body satisfying ≦ 0.5. 上記特定元素金属は、Cr,Cu,Alの中のいずれか1種である請求項1に記載の焼結体。 The sintered body according to claim 1, wherein the specific element metal is any one of Cr, Cu, and Al.
JP2004218038A 2004-07-27 2004-07-27 Sintered compact Withdrawn JP2006037160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218038A JP2006037160A (en) 2004-07-27 2004-07-27 Sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218038A JP2006037160A (en) 2004-07-27 2004-07-27 Sintered compact

Publications (1)

Publication Number Publication Date
JP2006037160A true JP2006037160A (en) 2006-02-09

Family

ID=35902469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218038A Withdrawn JP2006037160A (en) 2004-07-27 2004-07-27 Sintered compact

Country Status (1)

Country Link
JP (1) JP2006037160A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102710A (en) * 2007-10-24 2009-05-14 Sumitomo Electric Ind Ltd Cemented carbide with laminated structure, method for producing the same, and tool formed from the cemented carbide
JP2009102709A (en) * 2007-10-24 2009-05-14 Sumitomo Electric Ind Ltd Cemented carbide with laminated structure, method for producing the same, and tool formed from the cemented carbide
WO2010119795A1 (en) * 2009-04-14 2010-10-21 住友電工ハードメタル株式会社 Cemented carbide
JP2012173285A (en) * 2011-02-23 2012-09-10 King Yuan Electronics Co Ltd High hardness abrasion-resistant probe and method for manufacturing the same
JP2012525501A (en) * 2009-04-27 2012-10-22 サンドヴィク インテレクチュアル プロパティー アーゲー Cemented carbide tool
JP2014087953A (en) * 2012-10-30 2014-05-15 Pentel Corp Ball for ballpoint pen
KR101425952B1 (en) 2012-04-03 2014-08-05 (주)하이엠시 Low Binder Sintered Carbides and its Manufacturing Method
CN109161711A (en) * 2018-10-11 2019-01-08 郑州轻工业学院 A kind of surface has the Ultra-fine Grained gradient hard alloy and preparation method thereof of double gradient layer structures
JP2022512832A (en) * 2018-10-30 2022-02-07 ハイペリオン マテリアルズ アンド テクノロジーズ (スウェーデン) アクティエボラーグ Cold Forming Operations and Boriding Methods for Boriding Sinters and Tools for Hollow Wear Parts with Sinters

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102710A (en) * 2007-10-24 2009-05-14 Sumitomo Electric Ind Ltd Cemented carbide with laminated structure, method for producing the same, and tool formed from the cemented carbide
JP2009102709A (en) * 2007-10-24 2009-05-14 Sumitomo Electric Ind Ltd Cemented carbide with laminated structure, method for producing the same, and tool formed from the cemented carbide
KR101245499B1 (en) 2009-04-14 2013-03-25 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Cemented carbide
JP2010248560A (en) * 2009-04-14 2010-11-04 Sumitomo Electric Hardmetal Corp Cemented carbide
WO2010119795A1 (en) * 2009-04-14 2010-10-21 住友電工ハードメタル株式会社 Cemented carbide
JP2012525501A (en) * 2009-04-27 2012-10-22 サンドヴィク インテレクチュアル プロパティー アーゲー Cemented carbide tool
US9127335B2 (en) 2009-04-27 2015-09-08 Sandvik Intellectual Property Ab Cemented carbide tools
JP2012173285A (en) * 2011-02-23 2012-09-10 King Yuan Electronics Co Ltd High hardness abrasion-resistant probe and method for manufacturing the same
KR101425952B1 (en) 2012-04-03 2014-08-05 (주)하이엠시 Low Binder Sintered Carbides and its Manufacturing Method
JP2014087953A (en) * 2012-10-30 2014-05-15 Pentel Corp Ball for ballpoint pen
CN109161711A (en) * 2018-10-11 2019-01-08 郑州轻工业学院 A kind of surface has the Ultra-fine Grained gradient hard alloy and preparation method thereof of double gradient layer structures
JP2022512832A (en) * 2018-10-30 2022-02-07 ハイペリオン マテリアルズ アンド テクノロジーズ (スウェーデン) アクティエボラーグ Cold Forming Operations and Boriding Methods for Boriding Sinters and Tools for Hollow Wear Parts with Sinters
JP7248791B2 (en) 2018-10-30 2023-03-29 ハイペリオン マテリアルズ アンド テクノロジーズ (スウェーデン) アクティエボラーグ Method for boriding sintered bodies and tools for hollow wear parts with cold forming operations and borided sintered bodies

Similar Documents

Publication Publication Date Title
KR100219930B1 (en) Superhard composite member and its production
KR101090490B1 (en) Sintered alloy having gradient composition and method of producing the same
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
EP1359130B1 (en) Cubic boron nitride sintered body and cutting tool
KR102441723B1 (en) Cermet, cutting tool, and method for manufacturing cermet
JP2006037160A (en) Sintered compact
JP5851826B2 (en) WC-based cemented carbide for cutting tools having excellent plastic deformation resistance at high temperatures, coated cutting tools, and methods for producing the same
US20030054940A1 (en) Sintered body
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
JP6695566B2 (en) Cemented carbide used as a tool for machining non-metallic materials
JP6922110B1 (en) Crushing / stirring / mixing / kneading machine parts
JP2006111947A (en) Ultra-fine particle of cermet
JP4776395B2 (en) Cutting tools
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JP5008789B2 (en) Super hard sintered body
JP2004131769A (en) Hyperfine-grained cemented carbide
JP2006144089A (en) Hard metal made of superfine particle
JP4540791B2 (en) Cermet for cutting tools
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
WO2009116616A1 (en) Tungsten carbide-based sintered object
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture
RU2133296C1 (en) Solid alloy (variants) and method of preparing thereof
JP2006063416A (en) Chromium-containing hard metal and coated hard metal thereof
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JP2005194556A (en) Rare-earth-containing sintered alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002