JP2005194556A - Rare-earth-containing sintered alloy - Google Patents

Rare-earth-containing sintered alloy Download PDF

Info

Publication number
JP2005194556A
JP2005194556A JP2004000765A JP2004000765A JP2005194556A JP 2005194556 A JP2005194556 A JP 2005194556A JP 2004000765 A JP2004000765 A JP 2004000765A JP 2004000765 A JP2004000765 A JP 2004000765A JP 2005194556 A JP2005194556 A JP 2005194556A
Authority
JP
Japan
Prior art keywords
rare earth
oxide
sintered alloy
phase
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004000765A
Other languages
Japanese (ja)
Inventor
Masaki Kobayashi
正樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2004000765A priority Critical patent/JP2005194556A/en
Publication of JP2005194556A publication Critical patent/JP2005194556A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare-earth-containing sintered alloy containing rare-earth oxides by which remarkable improvement of practical performance and expansion of applications can be attained by improving hardness and wear resistance simultaneously with toughness and chipping resistance. <P>SOLUTION: A compound oxide consisting of chromium oxide and rare earth oxide is added as disperse-phase-forming powder to a starting material for a hard sintered alloy. By this method, the rare-earth-containing sintered alloy consisting of the following phases can be obtained: a binder phase composed mainly of iron-group metals; a disperse phase composed mainly of the compound oxide consisting of an oxide of at least one among scandium, yttrium and lanthanides and chromium oxide; and a hard phase composed mainly of at least one kind among the carbides and nitrides of the group IVa, Va and VIa metals of the periodic table and mutual solid solutions thereof. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、刃先交換型チップ,ドリル,エンドミルなどの切削工具、ダイ,パンチ,スリッタ−などの耐摩耗工具、カッタ−ビットなどの土木建設工具に代表される各種工具に使用される超硬合金,サ−メット、およびこれらに硬質膜を被覆した被覆焼結合金の基材として最適な希土類を含有する焼結合金に関するものである。 The present invention relates to a cemented carbide used for various tools typified by cutting tools such as blade-tip-exchangeable tips, drills and end mills, wear-resistant tools such as dies, punches and slitters, and civil engineering tools such as cutter bits. , Cermets, and sintered alloys containing rare earths that are optimal as a base material for coated sintered alloys in which hard films are coated.

WC−Co系,WC−(W,Ti,Ta)C−Co系に代表される超硬合金やTiC−Fe,Ti(C,N)−WC−TaC−Niに代表されるサ−メットなどの硬質焼結合金は、炭化物硬質相の粒度,金属結合相の量,他炭化物(VC,Cr32,Mo2C,ZrCなど)の添加量などを調整することにより、切削工具,耐摩耗工具および部品などの各用途で必要となる硬さ,強度,靱性や耐摩耗性,耐欠損性,耐チッピング性などの合金特性,実用性能を得ている。しかし、硬さと靱性(あるいは耐摩耗性と耐欠損性)は相反する合金特性であり、両方を同時に改善することは非常に困難である。その改善策として、希土類元素などの安定な酸化物を添加して分散強化する方法が提案されている(例えば、特許文献1,2参照。)。 Cemented carbides represented by WC-Co, WC- (W, Ti, Ta) C-Co, cermets represented by TiC-Fe, Ti (C, N) -WC-TaC-Ni, etc. The hard sintered alloy has a cutting tool, resistance by adjusting the particle size of the carbide hard phase, the amount of metal binder phase, the amount of other carbides (VC, Cr 3 C 2 , Mo 2 C, ZrC, etc.) added. We have obtained alloy properties and practical performance such as hardness, strength, toughness, wear resistance, fracture resistance, and chipping resistance required for each application such as worn tools and parts. However, hardness and toughness (or wear resistance and fracture resistance) are contradictory alloy properties, and it is very difficult to improve both at the same time. As a measure for improvement, a method of strengthening dispersion by adding a stable oxide such as a rare earth element has been proposed (see, for example, Patent Documents 1 and 2).

特開平10−121182号公報JP-A-10-121182 特開平11−124650号公報Japanese Patent Laid-Open No. 11-124650

希土類酸化物を添加する先行技術として、特開平10−121182号公報には、CoまたはCoとNiからなるバインダー相と共に、平均粒子径が8〜30μmの球状で均一粗大なWCを96〜88wt%含有した岩石採掘用超硬合金であって、任意に最大2%までのCe,Yなどの希土類元素を添加した高温及び熱力学的特性を改良した超硬合金が記載されている。本公報に記載された超硬合金は、希土類酸化物の分散による結合相の変態防止やWC粒界の強化によって靱性あるいは硬さが上昇するものの、希土類酸化物と結合相との濡れ性が悪いために、その改善効果が少ないという問題がある。 As a prior art for adding a rare earth oxide, JP-A-10-121182 discloses 96 to 88 wt% of spherical and uniform coarse WC having an average particle diameter of 8 to 30 μm together with a binder phase made of Co or Co and Ni. A cemented carbide for rock mining containing a cemented carbide with improved high temperature and thermodynamic properties optionally containing up to 2% rare earth elements such as Ce, Y is described. The cemented carbide described in this publication has poor toughness or hardness due to prevention of transformation of the binder phase due to dispersion of rare earth oxides and strengthening of WC grain boundaries, but poor wettability between the rare earth oxide and binder phase. Therefore, there is a problem that the improvement effect is small.

また、特開平11−124650号公報には、鉄属金属を主成分とする結合相を5〜30体積%と、0.01体積%以上のMg,Al,希土類元素などの酸化物を結晶内に分散させたWCとからなる酸化物により粒内分散強化されたWC含有超硬合金が記載されている。本公報記載の超硬合金は、WCの強化により硬さ,靱性とも改善されるものの、その効果が少なく、またWC粒内に均一・微細に分散させることが困難という問題もある。 Japanese Patent Laid-Open No. 11-124650 discloses a binder phase containing iron group metal as a main component and oxides such as Mg, Al and rare earth elements in an amount of 5 to 30% by volume and 0.01% by volume or more. WC-containing cemented carbides are described in which intragranular dispersion strengthening is performed using an oxide composed of WC dispersed in the WC. Although the cemented carbide described in this publication is improved in both hardness and toughness by strengthening WC, there is a problem that the effect is small and it is difficult to disperse uniformly and finely in WC grains.

本発明は、上記の様な問題点を解決したもので、具体的には、分散相となる希土類酸化物をクロムとの複合酸化物として超硬合金やサ−メットの原料粉末中に添加して焼結することによって、焼結合金の硬度と靱性を同時に改善し、結果として実用性能の大幅改善と用途拡大を達成できる希土類含有焼結合金の提供を目的とするものである。 The present invention solves the above-described problems. Specifically, a rare earth oxide serving as a dispersed phase is added to a raw material powder of cemented carbide or cermet as a composite oxide with chromium. The purpose of the present invention is to provide a rare earth-containing sintered alloy that simultaneously improves the hardness and toughness of the sintered alloy by sintering, and as a result, can achieve a significant improvement in practical performance and expansion of applications.

本発明者は、希土類酸化物を添加した硬質焼結合金の硬さと靱性(あるいは耐摩耗性と耐欠損性)の同時向上について検討していた所、希土類酸化物をクロムとの複合酸化物として添加・分散させると達成できること、その理由は分散相の表面がCrリッチとなって焼結時の濡れ性が改善されるために、炭化物の硬質相と金属の結合相との両方に強固に接合し、また分散相および結合相にクロムが固溶して機械的特性が向上するという知見を得て本発明を完成するに至ったものである。 The present inventor was considering simultaneous improvement of hardness and toughness (or wear resistance and fracture resistance) of a hard sintered alloy to which a rare earth oxide was added, and the rare earth oxide was made into a composite oxide with chromium. What can be achieved by adding and dispersing, because the surface of the dispersed phase is Cr-rich and wettability during sintering is improved, so that both the hard phase of carbide and the bonded phase of metal are firmly bonded. In addition, the present invention has been completed with the knowledge that chromium is dissolved in the dispersed phase and the binder phase to improve the mechanical properties.

すなわち、本発明の希土類含有焼結合金は、鉄族金属を主成分とする結合相:3〜30体積%と、スカンジウム,イットリウム,ランタニド元素(原子番号57〜71)の中の少なくとも1種の酸化物とクロムの酸化物とからなる複合酸化物を主成分とする分散相:0.1〜10体積%と、残りが周期律表4a,5a,6a族金属の炭化物,窒化物およびこれら相互固溶体の中の少なくとも1種を主成分とする硬質相と不可避不純物とからなるものである。 That is, the rare earth-containing sintered alloy of the present invention has a binder phase composed mainly of an iron group metal: 3 to 30% by volume, and at least one of scandium, yttrium, and lanthanide elements (atomic number 57 to 71). Dispersed phase mainly composed of composite oxide composed of oxide and chromium oxide: 0.1 to 10% by volume, the remainder being periodic group 4a, 5a, 6a group metal carbide, nitride and their mutual It consists of a hard phase mainly composed of at least one of solid solutions and inevitable impurities.

本発明の希土類含有焼結合金における分散相は、スカンジウム,イットリウム,ランタニド元素(原子番号57〜71)の中の少なくとも1種の酸化物とクロムの酸化物とからなる複合酸化物を主成分とするもので、希土類酸化物を30体積%以下含有しても良い。なお、この発明において希土類は、スカンジウム,イットリウム,ランタニド元素(原子番号57〜71)を示す。複合酸化物として具体的には、YCrO3,LaCrO3,CeCrO3,NdCrO3,SmCrO3,EuCrO3,GdCrO3,DyCrO3,TmCrO3,YbCrO3およびこれらの相互固溶体などを挙げることができる。また、希土類酸化物の含有は、複合酸化物の成分ズレや焼結時の反応によって起こるものである。希土類含有焼結合金全体に対する分散相の含有量は、0.1体積%未満では分散相による強化が不十分なために、硬さ,靱性の向上効果が少なく、逆に10体積%を超えて多くなると、分散相が粗大化して凝集し、硬さや強度の低下が著しいために、0.1〜10重量%と定めた。 The dispersed phase in the rare earth-containing sintered alloy of the present invention is mainly composed of a composite oxide comprising at least one oxide of scandium, yttrium, and lanthanide elements (atomic number 57 to 71) and a chromium oxide. Therefore, you may contain 30 volume% or less of rare earth oxides. In the present invention, the rare earth represents scandium, yttrium, or a lanthanide element (atomic number 57 to 71). Specific examples of the composite oxide include YCrO 3 , LaCrO 3 , CeCrO 3 , NdCrO 3 , SmCrO 3 , EuCrO 3 , GdCrO 3 , DyCrO 3 , TmCrO 3 , YbCrO 3, and mutual solid solutions thereof. The inclusion of the rare earth oxide is caused by a component deviation of the composite oxide or a reaction during sintering. If the content of the dispersed phase with respect to the entire rare earth-containing sintered alloy is less than 0.1% by volume, the strengthening by the dispersed phase is insufficient, so the effect of improving the hardness and toughness is small, and conversely exceeds 10% by volume. When the amount is increased, the dispersed phase becomes coarse and aggregates, and the hardness and strength are significantly reduced.

本発明の希土類含有焼結合金は、内部よりも表面近傍の分散相含有量が少ない表面領域(傾斜組織化)を形成していると、表面領域の硬さと靱性が大幅に向上するので好ましい。具体的には、希土類含有焼結合金の表面から0.1mm内部までの分散相の平均体積率Vsと、表面から1mm以上内部における該分散相の平均体積率Viとの比(Vs/Vi)が0.5以下であると好ましい。体積比(Vs/Vi)が0.1以下であるとさらに好ましく、Vsが実質的に0体積%であっても良い。 In the rare earth-containing sintered alloy of the present invention, it is preferable to form a surface region (gradient organization) having a smaller dispersed phase content near the surface than inside because the hardness and toughness of the surface region are greatly improved. Specifically, the ratio (Vs / Vi) of the average volume fraction Vs of the dispersed phase from the surface of the rare earth-containing sintered alloy to the inside of 0.1 mm and the average volume fraction Vi of the dispersed phase in the interior of 1 mm or more from the surface. Is preferably 0.5 or less. The volume ratio (Vs / Vi) is more preferably 0.1 or less, and Vs may be substantially 0% by volume.

本発明の希土類含有焼結合金における分散相は、サマリウム,ユーロビウム,ツリウム,イッテルビウムの中の少なくとも1種の酸化物を含有すると、上記の傾斜組織化が促進されて表面領域の硬さと靱性が大幅に向上するので好ましい。すなわち、分散相がSmCrO3,EuCrO3,TmCrO3,YbCrO3であると、焼結時にこれらの分散相が分解・還元されてCrと共にSm,Eu,Tm,Ybを生じ、いずれの金属も蒸気圧が高いために希土類含有焼結合金の表面から飛散することによって、表面領域の分散相が著しく減少するものである。表面から0.01mm内部までの分散相の含有量が0.1体積%以下であると、さらに好ましい。 When the dispersed phase in the rare earth-containing sintered alloy of the present invention contains at least one oxide of samarium, eurobium, thulium, and ytterbium, the above-described gradient organization is promoted, and the hardness and toughness of the surface region are greatly increased. Therefore, it is preferable. That is, if the disperse phase is SmCrO 3 , EuCrO 3 , TmCrO 3 , YbCrO 3 , these disperse phases are decomposed and reduced during sintering to produce Sm, Eu, Tm, Yb together with Cr, and any metal is vaporized. Since the pressure is high, the dispersed phase in the surface region is significantly reduced by scattering from the surface of the rare earth-containing sintered alloy. It is more preferable that the content of the dispersed phase from the surface to the inside of 0.01 mm is 0.1% by volume or less.

本発明の希土類含有焼結合金における結合相は、鉄族金属であるCo,Ni,Feの少なくとも1種を主成分とし、20重量%以下のCrとWを含有したもので、具体的には、Co−W−Cr,Ni−W−Cr,Fe−Ni−Cr−Moなどの合金を挙げることができる。結合相の含有量は、3体積%未満では焼結不足となって硬さ,強度,靱性とも低下し、逆に30体積%を超えて多くなると、硬さや耐摩耗性が顕著に低下するため、結合相量を3〜30体積%と定めた。 The binder phase in the rare earth-containing sintered alloy of the present invention is mainly composed of at least one of iron group metals Co, Ni, and Fe, and contains 20 wt% or less of Cr and W. Specifically, , Co—W—Cr, Ni—W—Cr, Fe—Ni—Cr—Mo and the like can be mentioned. If the content of the binder phase is less than 3% by volume, the sintering is insufficient and the hardness, strength and toughness are reduced. Conversely, if the content exceeds 30% by volume, the hardness and wear resistance are significantly reduced. The amount of the binder phase was determined to be 3 to 30% by volume.

本発明の希土類含有焼結合金における硬質相は、炭化タングステン、または、炭化タングステンと周期律表4a,5a,6a族金属の炭化物,窒化物およびこれらの相互固溶体の中の少なくとも1種からなる立方晶化合物とであると実用上好ましい。ここで、立方晶化合物として具体的には、VC,TaC,NbC,TiN,HfN,(W,Ti)C,(W,Ti,Ta)C,(W,Ti,Ta)(C,N),(Ti,W,Mo)(C,N)などを挙げることができる。また、一部の硬質相は、立方晶化合物に属さないCr73,Mo2Cなどであっても良い。ここで、立方晶化合物が窒素を含有すると、真空中焼結により表面に立方晶化合物を含まない結合相の富化した表面領域を形成するので、本発明の希土類酸化物の分散あるいは傾斜組織化と併用しても良い。 The hard phase in the rare earth-containing sintered alloy of the present invention is a cubic composed of tungsten carbide or tungsten carbide and carbides, nitrides of the periodic table 4a, 5a, and 6a metals, and at least one of these mutual solid solutions. A crystal compound is preferred in practice. Here, specific examples of the cubic compound include VC, TaC, NbC, TiN, HfN, (W, Ti) C, (W, Ti, Ta) C, (W, Ti, Ta) (C, N). , (Ti, W, Mo) (C, N). Further, some of the hard phases may be Cr 7 C 3 , Mo 2 C, or the like that does not belong to a cubic compound. Here, when the cubic compound contains nitrogen, a surface region enriched with a binder phase not containing the cubic compound is formed on the surface by sintering in vacuum, so that the rare earth oxide according to the present invention is dispersed or textured. You may use together.

さらに、本発明の希土類含有焼結合金における硬質相は、チタンの炭化物,窒化物,炭窒化物の中の少なくとも1種を30重量%以上と、残りがチタンを除く周期律表4a,5a,6a族金属の炭化物,窒化物,炭窒化物の中の少なくとも1種とであると実用上好ましい。具体的には、炭窒化チタンの芯部がMo,V,Ta,Nb,Wの中から選ばれた1種以上の金属元素とTiとの金属炭窒化物固溶体に包囲された有芯構造を有する硬質相である。 Further, the hard phase in the rare earth-containing sintered alloy of the present invention is 30% by weight or more of at least one of titanium carbide, nitride, carbonitride, and the rest of the periodic table 4a, 5a, excluding titanium. It is practically preferable that it is at least one of carbides, nitrides, and carbonitrides of group 6a metals. Specifically, a cored structure in which the core of titanium carbonitride is surrounded by a metal carbonitride solid solution of at least one metal element selected from Mo, V, Ta, Nb, and W and Ti. It has a hard phase.

本発明の希土類含有焼結合金は、原料粉末の混合、加圧成形、焼結による従来の粉末冶金法で作製できるが、以下の点に留意すると良い。まず、分散相形成粉末である複合酸化物は、予め高温で焼成して安定な化合物とする必要がある。酸化クロムと希土類酸化物とを添加した場合には、焼結過程で複合酸化物は殆ど形成されず、酸化クロムのみが優先的に分解されて希土類酸化物しか残留しないからである。次に、傾斜組織化を促進するには、粉末成形体の昇温時にCOガスを導入して複合酸化物の分解を防ぎ、成形体が緻密化してから真空引きすれば良い。真空中で不安定となった表面近傍の複合酸化物が分解し、結合相への溶解や蒸発・飛散することによって傾斜組織化が起こる。 The rare earth-containing sintered alloy of the present invention can be produced by conventional powder metallurgy by mixing raw material powder, pressure forming, and sintering, but the following points should be noted. First, the composite oxide that is the dispersed phase forming powder needs to be fired at a high temperature in advance to form a stable compound. This is because, when chromium oxide and rare earth oxide are added, almost no complex oxide is formed during the sintering process, and only chromium oxide is preferentially decomposed and only the rare earth oxide remains. Next, in order to promote inclined organization, CO gas may be introduced at the time of raising the temperature of the powder compact to prevent decomposition of the complex oxide, and vacuuming may be performed after the compact has become dense. The complex oxide in the vicinity of the surface that has become unstable in vacuum is decomposed and dissolved in the binder phase, or evaporated and scattered, resulting in a gradient structure.

本発明の希土類含有焼結合金は、希土類酸化物に固溶したクロムが複合酸化物を形成して分散相の硬さを向上させる作用をし、希土類含有焼結合金中に分散した複合酸化物が結合相に強固に接合して強度や靱性を改善する作用をし、結合相に固溶したクロムあるいは希土類元素が結合相を強化する作用をし、これらの相乗効果として合金特性および実用性能を向上させる作用をしているものである。 The rare earth-containing sintered alloy according to the present invention has a function in which chromium dissolved in a rare earth oxide forms a composite oxide to improve the hardness of the dispersed phase and is dispersed in the rare earth-containing sintered alloy. Works to improve the strength and toughness by firmly bonding to the binder phase, and chromium or rare earth elements dissolved in the binder phase strengthens the binder phase. It has the effect of improving.

本発明の希土類含有焼結合金は、希土類酸化物を分散させた従来の希土類含有焼結合金に比べて、硬さと靱性が同時に改善されており、切削工具に使用した場合には、耐摩耗性と耐欠損性の両方が向上するという効果がある。 The rare earth-containing sintered alloy of the present invention is improved in hardness and toughness at the same time as compared with the conventional rare earth-containing sintered alloy in which rare earth oxide is dispersed. And defect resistance are improved.

まず、市販の平均粒径が0.2μmのCr23および0.02〜0.3μmのY23,La23,Ce23,Sm23,Eu23,Gd23,Yb23の各粉末を用いて、表1に示す配合組成に秤量し、ウレタンゴムで内張りしたステンレス製ポットにエタノール溶媒とアルミナ製ボ−ルと共に挿入し、24時間のボールミル後、乾燥して混合粉末とした。これらの混合粉末をジルコニア製ルツボに充填し、大気炉に挿入して1550℃で1時間の加熱処理を施した後、再びボールミルによる48時間の粉砕を行って(A)〜(G)の複合酸化物粉末を得た。得られた複合酸化物粉末の粒子径(電顕観察による)と成分(X線回折による)を表1に併記した。 First, commercially available Cr 2 O 3 having an average particle diameter of 0.2 μm and Y 2 O 3 , La 2 O 3 , Ce 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , 0.02 to 0.3 μm, Using each powder of Gd 2 O 3 and Yb 2 O 3 , weighed to the composition shown in Table 1 and inserted into a stainless steel pot lined with urethane rubber together with ethanol solvent and alumina ball. After ball milling, it was dried to obtain a mixed powder. These mixed powders are filled into a zirconia crucible, inserted into an atmospheric furnace, subjected to a heat treatment at 1550 ° C. for 1 hour, and then pulverized again for 48 hours by a ball mill to obtain a composite of (A) to (G). An oxide powder was obtained. The particle diameter (by electron microscope observation) and components (by X-ray diffraction) of the obtained composite oxide powder are also shown in Table 1.

Figure 2005194556
Figure 2005194556

次に、得られた複合酸化物粉末(A)〜(G)、前述のCr23,Y23,La23,Ce23,Sm23,Eu23,Gd23,Yb23および市販の平均粒径が0.5μmのWC(WC/Fと略記),2.3μmのWC(WC/Mと略記),3.5μmのWC(WC/Cと略記),0.02μmのカ−ボンブラック(Cと略記),1.0μmのCo,1.7μmのNi,1.5μmのFe,2.3μmのCr32,1.0μmのTaC,1.2μmのTiN,1.1μmの(W,Ti,Ta)C(重量比でWC/TiC/TaC=50/20/30)の各粉末を用いて、表2に示す配合組成に秤量し、ステンレス製ポットにアセトン溶媒と超硬合金製ボ−ルと共に挿入し、48時間の混合粉砕後、乾燥して混合粉末を得た。ここで、配合炭素量は、焼結後に中炭素合金(遊離炭素あるいはCo33C,Ni24C,Fe33Cなどを析出しない健全相領域範囲の中央)となるように、CあるいはWの添加により調整した。そして、これらの粉末を金型に充填し、196MPaの圧力でもって18×18×7.5mmの粉末成形体を作製し、カ−ボンブラック粉末を塗布したカ−ボン板上に設置した後、焼結炉に挿入して加熱焼結し、本発明品1〜11および比較品1〜9の超硬合金を得た。適用した昇温,焼結,冷却の各工程における雰囲気条件の詳細を表3に一括して示し、その雰囲気の条件番号を焼結保持での温度,時間と共に表2に併記した。 Next, the obtained composite oxide powders (A) to (G), the aforementioned Cr 2 O 3 , Y 2 O 3 , La 2 O 3 , Ce 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Yb 2 O 3 and commercially available WC having an average particle size of 0.5 μm (abbreviated as WC / F), 2.3 μm WC (abbreviated as WC / M), 3.5 μm WC (WC / Cb), 0.02 μm carbon black (abbreviated C), 1.0 μm Co, 1.7 μm Ni, 1.5 μm Fe, 2.3 μm Cr 3 C 2 , 1.0 μm Using each powder of TaC, 1.2 μm TiN, 1.1 μm (W, Ti, Ta) C (weight ratio WC / TiC / TaC = 50/20/30), the composition shown in Table 2 was obtained. Weighed and inserted into a stainless steel pot together with an acetone solvent and a cemented carbide ball, mixed and ground for 48 hours, and dried to obtain a mixed powder. Here, the amount of blended carbon is such that it becomes a medium carbon alloy (the center of the range of the healthy phase region where free carbon or Co 3 W 3 C, Ni 2 W 4 C, Fe 3 W 3 C or the like does not precipitate) after sintering. , C or W was added. Then, after filling these powders into a mold, producing a 18 × 18 × 7.5 mm powder compact with a pressure of 196 MPa, and placing it on a carbon plate coated with carbon black powder, It inserted in the sintering furnace and heat-sintered, and obtained the cemented carbide of this invention products 1-11 and the comparative products 1-9. Details of the atmospheric conditions in the applied temperature raising, sintering, and cooling steps are collectively shown in Table 3, and the condition number of the atmosphere is shown in Table 2 together with the temperature and time for holding the sintering.

Figure 2005194556
Figure 2005194556

Figure 2005194556
注)*雰囲気は昇温時の所定温度まですべて5Pa、冷却時では1Paの真空であり、また800℃以上での昇温速度を15℃/minとした。
Figure 2005194556
Note) * The atmosphere was all 5 Pa up to the predetermined temperature at the time of temperature rise, 1 Pa at the time of cooling, and the temperature rise rate at 800 ° C. or higher was 15 ° C./min.

こうして得られた各超硬合金の試片(14.5×14.5×6mm)の中央を切断し、断面を1000#のダイヤモンド砥石で湿式研削加工した後、1μmのダイヤモンドペ−ストでラップ加工して断面組織観察用の試料を作製した。まず、光学顕微鏡で断面全体の組織を観察した後、電子顕微鏡を用いて各試料の表面(焼結肌)から内部に向かっての組織写真を順次撮り、画像処理装置を使用してWC相,金属結合相,分散相および立方晶化合物,炭化クロム(Cr73)の含有体積および平均粒子径(結合相を除く)を求めた。表面から1mm以上内部における各相の含有体積(但し、分散相の平均体積率はVi(体積%)で表記),分散相の表面から0.1mm内部までの平均体積率Vs(体積%)および分散相の表面と内部の体積比(Vs/Vi)を表4に示す。また表5には、表面から1mm以上内部における各相の平均粒子径を示す。 After cutting the center of each specimen (14.5 × 14.5 × 6 mm) of each cemented carbide obtained in this way, the section was wet ground with a 1000 # diamond grindstone and then lapped with a 1 μm diamond paste. The sample for cross-sectional structure observation was produced by processing. First, after observing the structure of the entire cross-section with an optical microscope, a structure photograph from the surface (sintered skin) of each sample to the inside is sequentially taken using an electron microscope, and the WC phase, The volume and average particle diameter (excluding the binder phase) of the metal binder phase, the dispersed phase, the cubic compound, and chromium carbide (Cr 7 C 3 ) were determined. The volume of each phase within 1 mm or more from the surface (however, the average volume ratio of the dispersed phase is expressed as Vi (volume%)), the average volume ratio Vs (volume%) from the surface of the dispersed phase to the inside of 0.1 mm, and Table 4 shows the volume ratio (Vs / Vi) between the surface and the inside of the dispersed phase. Table 5 shows the average particle diameter of each phase within 1 mm or more from the surface.

表4の結果から、本発明品ではいずれも添加された複合酸化物が残留して分散しているが、複合酸化物にして添加していない比較品(酸化クロムのみ,希土類酸化物と酸化クロム,希土類酸化物のみ)では、酸化クロムが消失して希土類酸化物のみが分散相となっている。また、複合酸化物中の希土類元素がSm,Eu,Ybの場合には、分散相が表面近傍で顕著に減少した傾斜組織材となっていることが分かる。 From the results shown in Table 4, the composite oxides added and remained in all of the products of the present invention were dispersed, but the comparative products not added as composite oxides (only chromium oxide, rare earth oxide and chromium oxide) , Rare earth oxide only), chromium oxide disappears and only the rare earth oxide is in the dispersed phase. In addition, when the rare earth element in the composite oxide is Sm, Eu, Yb, it can be seen that the gradient structure material has a disperse phase significantly reduced near the surface.

Figure 2005194556
注)*Vs/Viが0/0の場合は―で表す。
Figure 2005194556
Note) When -Vs / Vi is 0/0, it is indicated by-.

Figure 2005194556
Figure 2005194556

次に、得られた各超硬合金の別試片の2個について、一方は側面(14.5×6mm)を1000#のダイヤモンド砥石を用いて表面(焼結肌)から0.05mmの深さまで湿式研削加工し、他方は400#と1000#のダイヤモンド砥石を用いて表面から1.0mmの深さまで湿式研削加工した。そして、両方の試料面について1μmのダイヤモンドペ−ストでラップ加工した後、ビッカース圧子を用いた荷重:294Nでの硬さ及び破壊靱性値K1C(IM法)をそれぞれ測定した。これらの結果を表6に示す。
これらの結果によれば、希土類酸化物をクロムとの複合炭化物として添加した本発明品は、ほぼ同一組成で希土類酸化物のみを添加した比較品に比べると、硬さと破壊靱性値の一方が同等で、かつ他方が高くなっている。また、傾斜組織材となっている本発明品6,7,9,10,11(Sm,Eu,Ybを含有)では硬さと破壊靱性の両方が向上している。
Next, about two obtained specimens of each cemented carbide, one side is 0.05 mm deep from the surface (sintered skin) using a 1000 # diamond grindstone on the side (14.5 × 6 mm). The other was wet ground to a depth of 1.0 mm from the surface using 400 # and 1000 # diamond wheels. Then, after lapping each sample surface with a 1 μm diamond paste, a load using a Vickers indenter: a hardness at 294 N and a fracture toughness value K1C (IM method) were measured. These results are shown in Table 6.
According to these results, the product of the present invention in which rare earth oxide is added as a composite carbide with chromium has one of the same hardness and fracture toughness as compared with a comparative product to which only rare earth oxide is added with almost the same composition. And the other is higher. Further, in the products 6, 7, 9, 10, and 11 (containing Sm, Eu, and Yb) of the present invention, which are gradient structures, both hardness and fracture toughness are improved.

Figure 2005194556
Figure 2005194556

実施例1で使用した複合酸化物の(A),(C),(E)、酸化物のY23,Ce23,Eu23,Cr23およびWC/M,TaC,Ni,Co,TiN、さらには1.3μmのTiC,1.7μmのMo2C,1.3μmのTi(C,N)(重量比でTiC/TiN=50/50),1.0μmのNbC,1.7μmのZrCの各粉末を、表7に示す配合組成に秤量し、実施例1と同様の方法・条件でもって混合,加圧成形,焼結を行い、本発明品12〜14および比較品10〜12のサ−メットを得た。焼結時に用いた雰囲気条件は実施例1の表3中のものであり、その条件番号と焼結条件を表7に併記した。

Figure 2005194556
The composite oxides (A), (C), (E) used in Example 1, the oxides Y 2 O 3 , Ce 2 O 3 , Eu 2 O 3 , Cr 2 O 3 and WC / M, TaC Ni, Co, TiN, 1.3 μm TiC, 1.7 μm Mo 2 C, 1.3 μm Ti (C, N) (weight ratio TiC / TiN = 50/50), 1.0 μm Each powder of NbC, 1.7 μm of ZrC is weighed to the blending composition shown in Table 7, and mixed, pressure-molded, and sintered in the same manner and conditions as in Example 1 to obtain the inventive products 12-14. Further, cermets of comparative products 10 to 12 were obtained. The atmospheric conditions used during sintering are those in Table 3 of Example 1, and the condition numbers and sintering conditions are also shown in Table 7.
Figure 2005194556

こうして得られた各サ−メットの試片を用い、実施例1と同様にして分散相の分布と硬さ,破壊靱性値を測定し、その結果を表8と表9に示す。これらの結果から、本発明品は分散相が希土類酸化物である比較品と比べ、複合酸化物が残留して分散しているために硬さと靱性が高いことが分かる。 Using the specimens of each cermet thus obtained, the distribution of the dispersed phase, the hardness, and the fracture toughness value were measured in the same manner as in Example 1, and the results are shown in Tables 8 and 9. From these results, it can be seen that the product of the present invention is higher in hardness and toughness because the composite oxide remains and is dispersed than the comparative product in which the dispersed phase is a rare earth oxide.

Figure 2005194556
Figure 2005194556

Figure 2005194556
Figure 2005194556

実施例1で得た、本発明品1,7、9および比較品2,5、9の混合粉末を用いて、ISO規格でSNMG120408のブレーカ付きチップ用金型でもって、それぞれ実施例1と同様の条件でプレス成形,焼結を行ってチップ素材を得た。そして、上下のボス面を270#のダイヤモンド砥石で研削加工(但し、刃先とブレーカ面は焼結肌)した後、320#の炭化けい素砥粒を含有したナイロン製ブラシで刃先部を研磨して半径0.1mmのホーニングを施しことにより、本発明品16,17、18および比較品12,13,14の切削用チップを得た。 Using the mixed powders of the present invention products 1, 7 and 9 and comparative products 2, 5 and 9 obtained in Example 1, with a chip die with chip breaker of SNMG120408 according to ISO standard, respectively, similar to Example 1 Chip materials were obtained by press molding and sintering under the conditions described above. The upper and lower boss surfaces are ground with a 270 # diamond grindstone (however, the blade tip and breaker surface are sintered), and then the blade tip portion is polished with a nylon brush containing 320 # silicon carbide abrasive grains. Then, honing with a radius of 0.1 mm was performed to obtain cutting chips of the present invention products 16, 17, 18 and comparative products 12, 13, 14.

これらの切削用チップを用いて以下に示す3種の切削試験を実施した。これらの結果を表10にまとめて示す。
試験(A);被削材:FC250,切削形態:乾式の外周連続旋削切削,切削速度:150m/min,切込み:2.0mm,送り:0.3mm/rev,切削時間:30min,評価基準:逃げ面の平均摩耗量VB(mm)
試験(B);被削材:S48Cの4本溝入り,切削形態:湿式の外周断続旋削,切削速度:100m/min,切込み:2.0mm,送り:0.3mm/revから0.1mm/rev刻みでアップ(各送りでの衝撃回数は3000回),評価基準:欠損あるいはチッピングを生じた最大送り量(3個の平均値)
試験(C);被削材:SCM440,切削形態:湿式の外周連続旋削,切削速度:150m/min,切込み:2.0mm,送り:0.3mm/rev,切削時間:20min,評価基準:逃げ面の平均摩耗量VB(mm)
The following three types of cutting tests were performed using these cutting tips. These results are summarized in Table 10.
Test (A); Work material: FC250, Cutting type: Dry peripheral continuous turning, Cutting speed: 150 m / min, Cutting: 2.0 mm, Feeding: 0.3 mm / rev, Cutting time: 30 min, Evaluation criteria: Average flank wear amount VB (mm)
Test (B); Workpiece material: S48C with 4 grooves, Cutting mode: Wet outer peripheral intermittent turning, Cutting speed: 100 m / min, Cutting depth: 2.0 mm, Feeding rate: 0.3 mm / rev to 0.1 mm / Up in rev increments (the number of impacts at each feed is 3000 times), evaluation criteria: Maximum feed amount with missing or chipping (average value of 3)
Test (C); work material: SCM440, cutting form: wet peripheral continuous turning, cutting speed: 150 m / min, depth of cut: 2.0 mm, feed: 0.3 mm / rev, cutting time: 20 min, evaluation criteria: clearance Average surface wear VB (mm)

Figure 2005194556
Figure 2005194556

表10の試験結果によれば、酸化クロムとの複合酸化物を分散させた本発明品は、希土類酸化物を分散させた比較品に比べ、摩耗量が少なくて欠損しにくいことが分かる。 According to the test results in Table 10, it can be seen that the product of the present invention in which the composite oxide with chromium oxide is dispersed has less wear and is less likely to be deficient than the comparative product in which the rare earth oxide is dispersed.

Claims (5)

鉄族金属を主成分とする結合相:3〜30体積%と、スカンジウム,イットリウム,ランタニド元素の中の少なくとも1種の酸化物とクロムの酸化物とからなる複合酸化物を主成分とする分散相:0.1〜10体積%と、残りが周期律表4a,5a,6a族金属の炭化物,窒化物およびこれら相互固溶体の中の少なくとも1種を主成分とする硬質相とからなる希土類含有焼結合金。 Bonding phase mainly composed of iron group metal: 3 to 30% by volume, and dispersion mainly composed of composite oxide composed of at least one oxide of scandium, yttrium and lanthanide elements and oxide of chromium Phase: 0.1 to 10% by volume, and the rest is a rare earth-containing material comprising a hard phase mainly composed of at least one of the carbides and nitrides of the periodic table 4a, 5a and 6a metals and their mutual solid solutions Sintered alloy. 上記希土類含有焼結合金の表面近傍には、内部よりも上記分散相の含有量が少ない表面領域が形成されており、表面から0.1mm内部までの該分散相の平均体積率Vs(体積%)と、表面から1mm以上内部における該分散相の平均体積率Vi(体積%)との比(Vs/Vi)が0.5以下である請求項1に記載の希土類含有焼結合金。 In the vicinity of the surface of the rare earth-containing sintered alloy, a surface region having a smaller content of the dispersed phase than the inside is formed, and the average volume fraction Vs (volume%) of the dispersed phase from the surface to the inside of 0.1 mm. ) And the average volume fraction Vi (volume%) of the dispersed phase in the interior of 1 mm or more from the surface, the rare earth-containing sintered alloy according to claim 1, wherein the ratio (Vs / Vi) is 0.5 or less. 上記分散相は、サマリウム,ユーロビウム,ツリウム,イッテルビウムの中の少なくとも1種の酸化物を含有する請求項1または2に記載の希土類含有焼結合金。 The rare earth-containing sintered alloy according to claim 1 or 2, wherein the dispersed phase contains at least one oxide of samarium, eurobium, thulium, and ytterbium. 上記硬質相は、炭化タングステン、または、炭化タングステンと周期律表4a,5a,6a族金属の炭化物,窒化物,酸化物およびこれらの相互固溶体の中の少なくとも1種の立方晶化合物とからなる請求項1〜3のいずれか1項に記載の希土類含有焼結合金。 The hard phase is composed of tungsten carbide or tungsten carbide and at least one cubic compound of carbides, nitrides, oxides and their mutual solid solutions of the periodic table 4a, 5a, and 6a metals. Item 4. The rare earth-containing sintered alloy according to any one of Items 1 to 3. 上記硬質相は、チタンの炭化物,窒化物,炭窒化物の中の少なくとも1種を30重量%以上と、残りがチタンを除く周期律表4a,5a,6a族金属の炭化物,窒化物,炭窒化物の中の少なくとも1種以上とからなる請求項1〜3のいずれか1項に記載の希土類含有焼結合金。 The hard phase is composed of at least one of titanium carbide, nitride, carbonitride of 30 wt% or more, and the remainder of the periodic table 4a, 5a, 6a group metal carbide, nitride, charcoal excluding titanium. The rare earth-containing sintered alloy according to any one of claims 1 to 3, comprising at least one of nitrides.
JP2004000765A 2004-01-06 2004-01-06 Rare-earth-containing sintered alloy Withdrawn JP2005194556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000765A JP2005194556A (en) 2004-01-06 2004-01-06 Rare-earth-containing sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000765A JP2005194556A (en) 2004-01-06 2004-01-06 Rare-earth-containing sintered alloy

Publications (1)

Publication Number Publication Date
JP2005194556A true JP2005194556A (en) 2005-07-21

Family

ID=34816454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000765A Withdrawn JP2005194556A (en) 2004-01-06 2004-01-06 Rare-earth-containing sintered alloy

Country Status (1)

Country Link
JP (1) JP2005194556A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190052293A (en) * 2017-11-08 2019-05-16 주식회사 와이지-원 WC-Co ALLOY AND ENDMILL FOR
CN114752801A (en) * 2022-05-12 2022-07-15 崇义章源钨业股份有限公司 Plate-shaped crystal reinforced net-shaped structure hard alloy and preparation method thereof
CN115595484A (en) * 2022-10-13 2023-01-13 济南市冶金科学研究所有限责任公司(Cn) Numerical control blade base body for heavy-load machining and preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190052293A (en) * 2017-11-08 2019-05-16 주식회사 와이지-원 WC-Co ALLOY AND ENDMILL FOR
KR102018056B1 (en) * 2017-11-08 2019-09-04 주식회사 와이지-원 WC-Co ALLOY AND ENDMILL FOR
CN114752801A (en) * 2022-05-12 2022-07-15 崇义章源钨业股份有限公司 Plate-shaped crystal reinforced net-shaped structure hard alloy and preparation method thereof
CN115595484A (en) * 2022-10-13 2023-01-13 济南市冶金科学研究所有限责任公司(Cn) Numerical control blade base body for heavy-load machining and preparation method
CN115595484B (en) * 2022-10-13 2024-03-19 济南市冶金科学研究所有限责任公司 Numerical control blade matrix for heavy-load machining and preparation method

Similar Documents

Publication Publication Date Title
JP3035797B2 (en) Cutting insert made of cubic boron nitride based ultra-high pressure sintered material with high strength
JP5100927B2 (en) Method for producing cubic boron nitride sintered body
KR100219930B1 (en) Superhard composite member and its production
US20200071583A1 (en) Sintered polycrystalline cubic boron nitride material
JP6290872B2 (en) Method for producing cBN material
JP2004292905A (en) Compositionally graded sintered alloy and method of producing the same
JP2679744B2 (en) High hardness and wear resistant material
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
JPH11302767A (en) Cemented carbide excellent in mechanical characteristic and its production
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
WO2021079561A1 (en) Cemented carbide and cutting tool comprising same as base material
JP2006037160A (en) Sintered compact
JP2006111947A (en) Ultra-fine particle of cermet
JP2005194556A (en) Rare-earth-containing sintered alloy
JP2006144089A (en) Hard metal made of superfine particle
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JP4111469B2 (en) WC-containing cemented carbide reinforced by intragranular dispersion with oxide and method for producing the same
JP2004131769A (en) Hyperfine-grained cemented carbide
JP4413022B2 (en) Composite oxide dispersion sintered alloy
JP3292949B2 (en) Fine-grained cemented carbide and method for producing the same
JP5092237B2 (en) cBN-based ultra-high pressure sintered body and method for producing the same
JP2001198710A (en) Cemented carbide extruded material, manufacturing method and cutting tool
JP2002029845A (en) Super-hard sintered compact
JP3474254B2 (en) High-strength tough cemented carbide and its coated cemented carbide
JPH07172924A (en) Highly tough sintered compact for tool and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306