JP2010253607A - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
JP2010253607A
JP2010253607A JP2009105961A JP2009105961A JP2010253607A JP 2010253607 A JP2010253607 A JP 2010253607A JP 2009105961 A JP2009105961 A JP 2009105961A JP 2009105961 A JP2009105961 A JP 2009105961A JP 2010253607 A JP2010253607 A JP 2010253607A
Authority
JP
Japan
Prior art keywords
average particle
hard phase
particle diameter
cutting tool
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009105961A
Other languages
Japanese (ja)
Inventor
Hideyoshi Kinoshita
秀吉 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009105961A priority Critical patent/JP2010253607A/en
Publication of JP2010253607A publication Critical patent/JP2010253607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cermet cutting tool having high chipping resistance and wear resistance. <P>SOLUTION: The cermet cutting tool 1 is configured of: a hard phase 4 composed of, as a main component, Ti as carbide, nitride and carbo-nitride of one or more elements of groups 4, 5 and 6 metal in the periodic table; and a bonding phase 5 composed mainly of at least one of Co and Ni. In a cross-sectional texture observation, the cermet cutting tool 1 has a flocculating part 2 having an average particle diameter of 50-200 μm and occupying 60-90 area%, and a matrix part 3 enclosing the circumference of the flocculating part 2 and occupying 10-40 area%. The ratio (d<SB>1</SB>/d<SB>2</SB>) of the average particle diameter d<SB>1</SB>of the hard phase 4 (4a) in the flocculating part 2 to the average particle diameter d<SB>2</SB>of the hard phase 4 (4b) in the matrix part 3 is 1.5-5. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はサーメット製の切削工具に関する。   The present invention relates to a cutting tool made of cermet.

現在、切削工具としてTiを主成分とするサーメットが広く使われている。サーメットの硬質相は芯部と周辺部とからなる有芯構造をとりやすいことが知られているが、例えば、特許文献1では、芯部の粒径が1μm以下の有芯構造からなる第1のB1型結晶(硬質相)および有芯構造でない第3のB1型結晶(硬質相)からなる平均粒径10〜150μmの凝集部の周囲を、芯部の粒径が1μmよりも大きい有芯構造からなる第2のB1型結晶(硬質相)にて取り囲んだ硬質相の配置からなるサーメット製の切削工具が開示され、図1には凝集部における硬質相の粒径が周辺部における硬質相の粒径よりも小さい構成からなる組織のサーメットが記載されている。そして、湿式高速フライス切削加工において良好な耐欠損性を発揮できることが記載されている。   Currently, cermets mainly composed of Ti are widely used as cutting tools. Although it is known that the hard phase of the cermet is likely to have a cored structure composed of a core part and a peripheral part, in Patent Document 1, for example, the first is made of a cored structure having a core part with a particle size of 1 μm or less. Around the agglomerated part having an average particle diameter of 10 to 150 μm consisting of the B1 type crystal (hard phase) and the third B1 type crystal (hard phase) which is not a cored structure, the core part has a core diameter larger than 1 μm. A cermet cutting tool comprising a hard phase arrangement surrounded by a second B1-type crystal (hard phase) having a structure is disclosed, and in FIG. The cermet of the structure | tissue which consists of a structure smaller than the particle size of is described. And it is described that good fracture resistance can be exhibited in wet high-speed milling.

また、特許文献2では、(Zr,Ti)CNの第1硬質相と(Ti,W,Mo,Zr)CNの第2硬質相とが互いに独立した粒子として存在する組織からなるサーメット製の切削工具が開示され、互いに平均粒径0.05〜0.5μmと硬質相の粒径を微粒にできて、硬さ、強度および靭性に優れ、かつZrの含有により耐溶着性に優れたサーメットとなることが記載されている。   Moreover, in patent document 2, the cutting made from cermet which consists of a structure | tissue in which the 1st hard phase of (Zr, Ti) CN and the 2nd hard phase of (Ti, W, Mo, Zr) CN exist as a mutually independent particle | grain. A tool is disclosed, and a cermet having an average particle size of 0.05 to 0.5 μm and a hard phase can be made fine, excellent in hardness, strength and toughness, and excellent in welding resistance due to the inclusion of Zr. It is described that it becomes.

特開平9−174306号公報JP-A-9-174306 特開2008−25008号公報JP 2008-25008 A

しかしながら、上記特許文献1の切削工具のように、凝集部における硬質相の粒径が周辺部の粒径よりも小さい構成では、湿式高速フライス切削加工において良好な耐欠損性を発揮できるものの、例えば鋳物の高速連続切削加工等の切削条件においては耐摩耗性が低下するという問題があった。   However, as in the cutting tool of Patent Document 1 described above, the structure in which the hard phase particle size in the agglomerated portion is smaller than the particle size in the peripheral portion can exhibit good fracture resistance in wet high-speed milling, for example, There has been a problem that wear resistance is reduced under cutting conditions such as high-speed continuous cutting of castings.

また、特許文献2のように、(Zr,Ti)CNの第1硬質相と(Ti,W,Mo,Zr)CNの第2硬質相とが互いに独立した粒子として存在したサーメットにおいても、硬質相の粒径を微粒化できて、炭素鋼の乾式断続旋削切削加工では高い耐摩耗性を示すものの、鋳物の高速切削加工等の切削条件においては耐摩耗性が低下してしまうという問題があった。   Further, as in Patent Document 2, even in a cermet in which the first hard phase of (Zr, Ti) CN and the second hard phase of (Ti, W, Mo, Zr) CN exist as mutually independent particles, Although the particle size of the phase can be reduced and carbon steel shows high wear resistance in dry intermittent turning of carbon steel, there is a problem that wear resistance is reduced under cutting conditions such as high-speed cutting of castings. It was.

そこで、本発明の切削工具は上記問題を解決するためのものであり、その目的はさらなる切削性能の向上であり、特に鋳物の高速切削加工の切削条件においても、高い耐摩耗性と耐欠損性を有する切削工具を提供することである。   Therefore, the cutting tool of the present invention is for solving the above-mentioned problems, and its purpose is to further improve the cutting performance, and particularly high wear resistance and fracture resistance even under cutting conditions for high-speed cutting of castings. A cutting tool is provided.

本発明の切削工具は、Tiを主成分とする周期表第4、5および6族金属のうちの1種以上の炭化物、窒化物および炭窒化物からなる硬質相と、主としてCoおよびNiの少なくとも1種からなる結合相とから構成されてなり、断面組織観察にて、60〜90面積%の割合で存在している平均粒径50〜200μmの凝集部と、該凝集部の周囲を包み込み10〜40面積%の割合で存在しているマトリックス部とを有しており、前記凝集部における前記硬質相の平均粒径dと前記マトリックス部における前記硬質相の平均粒径dとの比(d/d)が1.5〜5である。 The cutting tool of the present invention includes a hard phase composed of one or more carbides, nitrides, and carbonitrides of Group 4, 5, and 6 metals in the periodic table mainly composed of Ti, and mainly at least Co and Ni. It is composed of a binder phase composed of one kind, and in the cross-sectional structure observation, it wraps around the agglomerated part having an average particle diameter of 50 to 200 μm present at a ratio of 60 to 90% by area and 10%. It has a matrix portion which is present in a proportion of 40 area%, the ratio of the average particle size d 2 of the hard phase in the average particle diameter d 1 and the matrix portion of the hard phase in the aggregation unit (d 1 / d 2) is 1.5 to 5.

ここで、上記構成において、前記凝集部における前記結合相の含有量が前記マトリックス部における前記結合相の含有量よりも少ないことが望ましい。   Here, in the above configuration, it is preferable that the content of the binder phase in the aggregation portion is smaller than the content of the binder phase in the matrix portion.

本発明の切削工具によれば、平均粒径50〜200μmの凝集部が60〜90面積%の割合で存在し、その周囲をマトリックス部で包み込む組織からなり、かつ前記凝集部における前記硬質相の平均粒径dと前記マトリックス部における前記硬質相の平均粒径dとの比(d/d)が1.5〜5であることによって、鋳物の高速切削加工等の切削条件においても耐摩耗性および耐欠損性が向上することが判明した。 According to the cutting tool of the present invention, the agglomerated part having an average particle size of 50 to 200 μm is present in a ratio of 60 to 90% by area, and is composed of a structure surrounding the periphery with a matrix part, and the hard phase in the agglomerated part is formed. When the ratio (d 1 / d 2 ) between the average particle diameter d 1 and the average particle diameter d 2 of the hard phase in the matrix portion is 1.5 to 5, in a cutting condition such as high-speed cutting of a casting It was also found that the wear resistance and fracture resistance were improved.

ここで、上記構成において、前記凝集部における結合相の含有量が前記マトリックス部における結合相の含有量よりも少ない場合には、耐摩耗性と耐欠損性とのバランスが良くなる。   Here, in the above configuration, when the content of the binder phase in the aggregate portion is less than the content of the binder phase in the matrix portion, the balance between wear resistance and fracture resistance is improved.

本発明の切削工具の一例を示し、(a)表面付近、(b)内部についての走査型電子顕微鏡写真である。An example of the cutting tool of this invention is shown, It is a scanning electron micrograph about (a) surface vicinity and (b) inside.

本発明の切削工具の一例について、その断面組織観察における、図1の(a)500倍、(b)3000倍についての走査型電子顕微鏡写真を基に説明する。   An example of the cutting tool of the present invention will be described based on scanning electron micrographs of (a) 500 times and (b) 3000 times in FIG.

本発明の切削工具1は、図1(b)に示すように、Tiを主成分とする周期表第4、5および6族金属の窒化物または炭窒化物からなる硬質相4と、主としてCoおよびNiの少なくとも1種からなる結合相5とから構成されるサーメットからなる。また、切削工具1は、図1(a)に示すように、60〜90面積%の割合で存在している平均粒径50〜200μmの凝集部2と、凝集部2の周囲を包み込み10〜40面積%の割合で存在しているマトリックス部3とからなるとともに、凝集部2における硬質相4(4a)の平均粒径dとマトリックス部3における硬質相4(4b)の平均粒径dとの比(d/d)が1.5〜5である組織で構成されている。 As shown in FIG. 1 (b), the cutting tool 1 of the present invention includes a hard phase 4 made of a nitride or carbonitride of the fourth, fifth, and sixth metals of the periodic table mainly composed of Ti, and mainly Co. And a cermet composed of a binder phase 5 composed of at least one of Ni. Further, as shown in FIG. 1A, the cutting tool 1 wraps around the agglomerated part 2 having an average particle diameter of 50 to 200 μm, which is present at a ratio of 60 to 90% by area, and 10 to 10%. The matrix portion 3 is present at a ratio of 40 area%, and the average particle diameter d 1 of the hard phase 4 (4a) in the aggregation portion 2 and the average particle diameter d of the hard phase 4 (4b) in the matrix portion 3 the ratio of 2 (d 1 / d 2) is composed of tissue that is 1.5 to 5.

これによって、切削工具の耐摩耗性および耐欠損性、特に鋳物の高速切削加工の切削条件においては、切削工具1の耐欠損性が向上する。   As a result, the wear resistance and fracture resistance of the cutting tool, particularly the fracture resistance of the cutting tool 1 is improved under the cutting conditions of high-speed cutting of the casting.

すなわち、切削工具1に凝集部2が存在しないか、または凝集部2の平均粒径が50μmよりも小さい場合、および凝集部2の存在比率が60面積%よりも少ない場合には、凝集部2の存在による靭性向上効果が得られず、耐摩耗性および耐欠損性がともに低下する。逆に、凝集部2の平均粒径が200μmを超えると、工具の異常摩耗が発生するおそれがあり、凝集部2の存在比率が90面積%よりも多いと、耐欠損性が低下するという不具合がある。   That is, when the agglomerated part 2 does not exist in the cutting tool 1 or when the average particle size of the agglomerated part 2 is smaller than 50 μm, and when the abundance ratio of the agglomerated part 2 is less than 60 area%, the agglomerated part 2 The effect of improving toughness due to the presence of N is not obtained, and both wear resistance and fracture resistance are reduced. Conversely, if the average particle size of the agglomerated part 2 exceeds 200 μm, abnormal wear of the tool may occur, and if the abundance ratio of the agglomerated part 2 is more than 90 area%, the defect resistance decreases. There is.

ここで、上記構成において、凝集部2における結合相5の含有量がマトリックス部3における結合相5の含有量よりも少ない場合には、凝集部が高硬度化するため、耐摩耗性が向上する。本発明によれば、凝集部2における硬質相4(4a)の平均粒径dとマトリックス部3における硬質相4(4b)の平均粒径dとの比(d/d)が1.5〜5であること、すなわち、凝集部2の硬質相4aの平均粒径dよりもマトリックス部3の硬質相4bの平均粒径dが小さいことから、毛細管効果の差によって凝集部2よりもマトリックス部3に結合相5が多く存在しやすい傾向にある。 Here, in the above configuration, when the content of the binder phase 5 in the agglomerated part 2 is less than the content of the binder phase 5 in the matrix part 3, the agglomerated part becomes harder, so that the wear resistance is improved. . According to the present invention, the ratio (d 1 / d 2 ) between the average particle diameter d 1 of the hard phase 4 (4a) in the aggregation part 2 and the average particle diameter d 2 of the hard phase 4 (4b) in the matrix part 3 is. it is 1.5-5 aggregation, i.e., since the average particle size d 2 of the hard phase 4b of the matrix portion 3 is smaller than the average particle size d 1 of the hard phase 4a aggregation unit 2, the difference in capillary effect There is a tendency that a larger amount of the binder phase 5 exists in the matrix part 3 than in the part 2.

ここで、図1の走査型電子顕微鏡写真から明らかなとおり、硬質相4は、黒色の粒子として観察される第1硬質相7と、灰白色の粒子、または白色の芯部の周辺に灰白色の周辺部が存在する有芯構造からなる粒子として観察される第2硬質相8とから構成されている。なお、上記灰白色とは、写真撮影の条件によって白色に近い色調に見えることもあり、灰色に近い色調に見えることもある。ここで、第1硬質相7はTiCNからなる黒色粒子であるがCoやNiを含有していても良い。また、第1硬質相7の外周には、灰白色の周辺部が存在して有芯構造をなしていてもよい。   Here, as is apparent from the scanning electron micrograph of FIG. 1, the hard phase 4 is composed of the first hard phase 7 observed as black particles, grayish white particles, or a grayish white periphery around the white core. It is comprised from the 2nd hard phase 8 observed as particle | grains which consist of a cored structure in which a part exists. The grayish white color may appear to be a color tone close to white or may be a color tone close to gray depending on the conditions of photography. Here, the first hard phase 7 is black particles made of TiCN, but may contain Co or Ni. Moreover, the outer periphery of the 1st hard phase 7 may have a gray-white peripheral part, and may have a cored structure.

なお、本発明における硬質相2の粒径の測定は、CIS−019D−2005に規定された超硬合金の平均粒径の測定方法に準じて測定する。この時、硬質相4が有芯構造からなる場合については、芯部と周辺部を含めた周辺部の外縁までを1つの硬質相4としてその粒径を測定する。   In addition, the measurement of the particle size of the hard phase 2 in this invention is measured according to the measuring method of the average particle size of the cemented carbide prescribed | regulated to CIS-019D-2005. At this time, when the hard phase 4 has a cored structure, the particle diameter is measured as one hard phase 4 up to the outer edge of the peripheral part including the core part and the peripheral part.

また、切削工具1に含有される硬質相をなすTiを主成分とする周期表第4、5および6族金属の窒化物または炭窒化物の合計含有比率は70〜96質量%であることが望ましく、一方、結合相3の含有比率は4〜30質量%であることによって、サーメットの硬度および靭性のバランスに優れたものとなる。凝集部2においては、耐摩耗性の向上の点で、硬質相の含有比率が88〜96質量%、結合相の含有比率が4〜12質量%であることが望ましい。また、マトリックス部3においては、耐欠損性の向上の点で、硬質相の含有比率が80〜90質量%、結合相の含有比率が10〜20質量%であることが望ましい。さらに、結合相としては、鉄族金属の総量に対してCoを65質量%以上含有することが切削工具の耐熱衝撃性を高めるために望ましい。なお、サーメットの焼肌面が平滑な面となるようにサーメットの良好な焼結性を維持するためには、鉄族金属としてNiを5〜50質量%、特に10〜35質量%の割合で含有せしめることが望ましい。
(製造方法)
次に、上述した切削工具の製造方法について説明する。
Further, the total content ratio of the nitrides or carbonitrides of Periodic Tables 4, 5, and 6 metals mainly composed of Ti forming the hard phase contained in the cutting tool 1 is 70 to 96% by mass. On the other hand, when the content ratio of the binder phase 3 is 4 to 30% by mass, the cermet hardness and toughness are excellent in balance. In the agglomerated part 2, it is desirable that the hard phase content is 88 to 96% by mass and the binder phase content is 4 to 12% by mass in terms of improving wear resistance. Moreover, in the matrix part 3, it is desirable that the content rate of a hard phase is 80-90 mass% and the content rate of a binder phase is 10-20 mass% from the point of the improvement of fracture resistance. Furthermore, it is desirable for the binder phase to contain 65 mass% or more of Co with respect to the total amount of iron group metal in order to increase the thermal shock resistance of the cutting tool. In addition, in order to maintain the favorable sinterability of the cermet so that the burned skin surface of the cermet becomes a smooth surface, Ni is contained in an amount of 5 to 50% by mass, particularly 10 to 35% by mass as an iron group metal. It is desirable to make it contain.
(Production method)
Next, the manufacturing method of the cutting tool mentioned above is demonstrated.

原料として、2種類の混合原料粉末を準備する。
第1の混合原料粉末は、平均粒径1〜3μm、望ましくは1.5〜2.5μmのTiCN粉末と、平均粒径0.1〜2μmの上述した他の周期表第4、5および6族金属の炭化物粉末、窒化物粉末または炭窒化物粉末のいずれか1種と、平均粒径1.0〜3.0μmのCo粉末と平均粒径0.3〜0.8μmのNi粉末との少なくとも1種と、所望により平均粒径0.5〜10μmのMnCO粉末を混合した混合粉末とする。
Two kinds of mixed raw material powders are prepared as raw materials.
The first mixed raw material powder is composed of TiCN powder having an average particle diameter of 1 to 3 μm, desirably 1.5 to 2.5 μm, and the other periodic tables 4, 5 and 6 described above having an average particle diameter of 0.1 to 2 μm. Any one of group metal carbide powder, nitride powder or carbonitride powder, Co powder having an average particle size of 1.0 to 3.0 μm, and Ni powder having an average particle size of 0.3 to 0.8 μm at least one, and mixed powder of MnCO 3 powder having an average particle size 0.5~10μm desired.

一方、第2の原料粉末は、平均粒径0.6〜1μm、望ましくは0.8〜1.0μmのTiCN粉末と、平均粒径0.1〜2μmの上述した他の周期表第4、5および6族金属の炭化物粉末、窒化物粉末または炭窒化物粉末のいずれか1種と、平均粒径1.0〜3.0μmのCo粉末と平均粒径0.3〜0.8μmのNi粉末との少なくとも1種と、所望により平均粒径0.5〜10μmのMnCO粉末を混合した混合粉末とする。
なお、上記第1および第2の原料中にTiC粉末やTiN粉末を添加することもあるが、これらの原料粉末は焼成後のサーメットにおいてTiCNを構成する。
On the other hand, the second raw material powder is composed of TiCN powder having an average particle diameter of 0.6 to 1 μm, desirably 0.8 to 1.0 μm, and the above-described other periodic table 4 having an average particle diameter of 0.1 to 2 μm. Any one of group 5 and 6 metal carbide powder, nitride powder or carbonitride powder, Co powder with an average particle size of 1.0 to 3.0 μm and Ni with an average particle size of 0.3 to 0.8 μm A mixed powder obtained by mixing at least one kind of powder and MnCO 3 powder having an average particle diameter of 0.5 to 10 μm as required is used.
TiC powder and TiN powder may be added to the first and second raw materials, but these raw material powders constitute TiCN in the cermet after firing.

次に、第1の原料粉末にバインダを添加して、平均粒径50〜300μmの顆粒に造粒し、真空雰囲気中にて、800〜1300℃で0.2〜1時間熱処理する。このとき、熱処理温度が800℃よりも低いと成形過程中に破壊されるため、所定サイズの凝集部2を形成することができず、逆に、熱処理温度が1300℃を超えると、焼成後のサーメット中に凝集部2とマトリックス部3における収縮差によってボイド、もしくはクラックが発生して切削工具1の耐欠損性が低下する。   Next, a binder is added to the first raw material powder, granulated into granules having an average particle size of 50 to 300 μm, and heat-treated at 800 to 1300 ° C. for 0.2 to 1 hour in a vacuum atmosphere. At this time, if the heat treatment temperature is lower than 800 ° C., it is destroyed during the molding process, so that the agglomerated portion 2 having a predetermined size cannot be formed. Conversely, if the heat treatment temperature exceeds 1300 ° C., Voids or cracks are generated by the difference in shrinkage between the agglomerated portion 2 and the matrix portion 3 in the cermet, and the fracture resistance of the cutting tool 1 is lowered.

そして、この熱処理した第1の原料粉末と、熱処理していない第2の原料粉末とを振動ミル、回転ミル等の湿式条件にて混合し、プレス成形、押出成形、射出成形等の公知の成形方法によって所定形状に成形する。   Then, the heat-treated first raw material powder and the non-heat-treated second raw material powder are mixed under wet conditions such as a vibration mill and a rotary mill, and known molding such as press molding, extrusion molding, injection molding and the like. It is formed into a predetermined shape by a method.

その後、本発明によれば、上記成形体を下記の条件にて焼成することにより、上述した所定組織のサーメットを作製することができる。焼成条件としては、
(a)1050〜1250℃まで昇温し、
(b)窒素(N)等の不活性ガスを30〜2000Pa充填した雰囲気で0.1〜2℃/分の昇温速度で1300〜1450℃まで昇温し、
(c)真空雰囲気で3〜15℃/分の昇温速度で1500〜1600℃まで昇温するとともに、真空雰囲気のまま、または不活性ガスを充填した雰囲気で0.5〜2時間維持し、
(d)6〜15℃/分の冷却速度で冷却する工程にて焼成する。
Thereafter, according to the present invention, the cermet having the predetermined structure described above can be produced by firing the molded body under the following conditions. As firing conditions,
(A) The temperature is raised to 1050 to 1250 ° C.
(B) In an atmosphere filled with an inert gas such as nitrogen (N 2 ) of 30 to 2000 Pa, the temperature is increased to 1300 to 1450 ° C. at a temperature increase rate of 0.1 to 2 ° C./min,
(C) While raising the temperature to 1500-1600 ° C. at a rate of temperature increase of 3-15 ° C./min in a vacuum atmosphere, maintaining the vacuum atmosphere or an atmosphere filled with an inert gas for 0.5-2 hours,
(D) Firing is performed at a cooling rate of 6 to 15 ° C./min.

そして、所望により、サーメットの表面に被覆層を成膜する。被覆層の成膜方法として、イオンプレーティング法やスパッタリング法等の物理蒸着(PVD)法が好適に適応可能である。   Then, if desired, a coating layer is formed on the surface of the cermet. A physical vapor deposition (PVD) method such as an ion plating method or a sputtering method can be suitably applied as the coating layer forming method.

マイクロトラック法による測定で平均粒径(d50値)が2.0μmのTiCN粉末、平均粒径1.1μmで表1のC量のWC粉末、平均粒径1.5μmのTiN粉末、平均粒径2μmのTaC粉末、平均粒径1.5μmのNbC粉末、平均粒径1.8μmのZrC粉末、平均粒径1.0μmのVC粉末、平均粒径2.4μmのNi粉末、および平均粒径1.9μmのCo粉末を用いて、表1に示す割合で調整した第1の混合粉末をステンレス製ボールミルと超硬ボールを用いて、イソプロピルアルコール(IPA)を添加して湿式混合し、パラフィンを3質量%添加、混合した後、スプレードライヤにて表1に示す平均粒径の顆粒とし、表1に示す条件にて熱処理を行った。 TiCN powder having an average particle diameter (d 50 value) of 2.0 μm as measured by the microtrack method, WC powder having an average particle diameter of 1.1 μm and the amount of C shown in Table 1, TiN powder having an average particle diameter of 1.5 μm, an average particle TaC powder having a diameter of 2 μm, NbC powder having an average particle diameter of 1.5 μm, ZrC powder having an average particle diameter of 1.8 μm, VC powder having an average particle diameter of 1.0 μm, Ni powder having an average particle diameter of 2.4 μm, and an average particle diameter Using a 1.9 μm Co powder, the first mixed powder prepared at the ratio shown in Table 1 was wet mixed by adding isopropyl alcohol (IPA) using a stainless steel ball mill and a carbide ball, and paraffin was added. After adding 3% by mass and mixing, granules having an average particle diameter shown in Table 1 were formed by a spray dryer, and heat treatment was performed under the conditions shown in Table 1.

同様に、上記原料粉末を用いて表1に示す第2の混合原料粉末を調整し、上記熱処理を行った第1の混合原料粉末と振動ミルにて湿式条件で混合し、さらにバインダを混合して、成形用の混合粉末とした。   Similarly, the second mixed raw material powder shown in Table 1 is prepared using the raw material powder, mixed with the first mixed raw material powder subjected to the heat treatment in a wet condition in a vibration mill, and further mixed with a binder. Thus, a mixed powder for molding was obtained.

そして、この成形用の混合粉末を用いて、200MPaでCNMG120408の工具形状にプレス成形した。そして、(a)10℃/分の昇温速度で1200℃まで昇温し、(b)窒素(N)を1000Pa充填した雰囲気で0.5℃/分の昇温速度で1400℃まで昇温し、(c)真空雰囲気で7℃/分の昇温速度で1575℃まで昇温するとともに、その状態で1時間維持し、(d)10℃/分の冷却速度で冷却する工程にて焼成する焼成条件で焼成した。 And using this mixed powder for molding, it was press-molded into a tool shape of CNMG120408 at 200 MPa. Then, (a) the temperature is increased to 1200 ° C. at a temperature increase rate of 10 ° C./min, and (b) the temperature is increased to 1400 ° C. at a temperature increase rate of 0.5 ° C./min in an atmosphere filled with 1000 Pa of nitrogen (N 2 ). (C) In the process of heating up to 1575 ° C. at a rate of 7 ° C./min in a vacuum atmosphere, maintaining in that state for 1 hour, and (d) cooling at a cooling rate of 10 ° C./min Firing was performed under firing conditions.

得られたサーメットについて、走査型電子顕微鏡(SEM)観察を行い、10000倍の写真にて、表面および内部のそれぞれ任意5箇所について市販の画像解析ソフトを用いて8μm×8μmの領域で画像解析を行い、硬質相の存在状態、表面領域の存在を確認するとともにこれらの平均粒径を測定し、これらの比率を算出した。結果は表2に示した。   The obtained cermet was observed with a scanning electron microscope (SEM), and image analysis was performed in a region of 8 μm × 8 μm using a commercially available image analysis software for each of the surface and the interior at a 10000 × magnification. Then, the presence state of the hard phase and the presence of the surface region were confirmed, and the average particle diameters thereof were measured, and the ratios thereof were calculated. The results are shown in Table 2.

次に、得られたサーメット製の切削工具を用いて以下の切削条件にて切削試験(耐摩耗性評価試験、耐欠損性評価試験)を行った。結果は表2に併記した。
(耐摩耗性評価)
被削材:FC250
切削速度:350m/分
送り:0.20mm/rev
切込み:1.0mm
切削状態:湿式(水溶性切削液使用)
評価方法:摩耗量が0.2mmに達するまでの時間
(耐欠損性評価)
被削材:S45C
切削速度:100m/分
送り:0.05〜0.5mm/rev
切込み:1.5mm
切削状態:乾式
評価方法:各送りについて10秒ずつ加工する条件で加工し欠損するまでの時間(秒)
表1〜2より、凝集部の平均粒径が200μmを超える試料No.7では異常摩耗が発生した。また、凝集部の平均粒径が50μmより小さい試料No.8、9では、耐欠損性が低下した。さらに、第1原料混合粉末の熱処理温度が1300℃を超える試料No.10では、サーメットのマトリックス部にクラックが発生して、耐摩耗性、耐欠損性とも低下した。また、d1/d2の比率が1.5よりも小さい試料No.11、12でも耐摩耗性が低いものであった。
Next, using the obtained cermet cutting tool, cutting tests (abrasion resistance evaluation test and fracture resistance evaluation test) were performed under the following cutting conditions. The results are shown in Table 2.
(Abrasion resistance evaluation)
Work material: FC250
Cutting speed: 350 m / min Feed: 0.20 mm / rev
Cutting depth: 1.0mm
Cutting state: wet (uses water-soluble cutting fluid)
Evaluation method: Time until the wear amount reaches 0.2 mm (defect resistance evaluation)
Work material: S45C
Cutting speed: 100 m / min Feed: 0.05 to 0.5 mm / rev
Cutting depth: 1.5mm
Cutting condition: Dry evaluation method: Time (seconds) until machining and chipping under the condition of machining for 10 seconds for each feed
From Tables 1-2, the sample No. in which the average particle diameter of the aggregated part exceeds 200 μm. In No. 7, abnormal wear occurred. In addition, the sample No. In 8 and 9, the fracture resistance decreased. Furthermore, sample No. 1 in which the heat treatment temperature of the first raw material mixed powder exceeds 1300 ° C. In No. 10, cracks occurred in the matrix portion of the cermet, and both wear resistance and fracture resistance were reduced. In addition, the sample No. 11 and 12 also had low wear resistance.

これに対し、本発明の範囲内の組織となったサーメットからなる試料No.1〜6では、優れた耐摩耗性を発揮するとともに耐欠損性も良好であり、工具寿命が長いものであった。   On the other hand, sample no. Nos. 1 to 6 exhibited excellent wear resistance, good fracture resistance, and long tool life.

1 切削工具
2 凝集部
3 マトリックス部
4 硬質相
4a 凝集部中の硬質相
4b マトリックス部中の硬質相
5 結合相
7 第1硬質相
8 第2硬質相
DESCRIPTION OF SYMBOLS 1 Cutting tool 2 Aggregation part 3 Matrix part 4 Hard phase 4a Hard phase in the agglomeration part 4b Hard phase in the matrix part 5 Bonding phase 7 1st hard phase 8 2nd hard phase

Claims (2)

Tiを主成分とする周期表第4、5および6族金属のうちの1種以上の炭化物、窒化物および炭窒化物からなる硬質相と、主としてCoおよびNiの少なくとも1種からなる結合相とから構成されてなり、断面組織観察にて、60〜90面積%の割合で存在している平均粒径50〜200μmの凝集部と、該凝集部の周囲を包み込み10〜40面積%の割合で存在しているマトリックス部とを有しており、前記凝集部における前記硬質相の平均粒径dと前記マトリックス部における前記硬質相の平均粒径dとの比(d/d)が1.5〜5である切削工具。 A hard phase composed of one or more carbides, nitrides, and carbonitrides of Group 4, 5, and 6 metals of the periodic table mainly containing Ti, and a binder phase mainly composed of at least one of Co and Ni In the cross-sectional structure observation, the aggregate part having an average particle diameter of 50 to 200 μm existing at a ratio of 60 to 90 area% and the periphery of the aggregate part are wrapped at a ratio of 10 to 40 area%. A ratio of the average particle diameter d 1 of the hard phase in the aggregated portion to the average particle diameter d 2 of the hard phase in the matrix portion (d 1 / d 2 ). Is a cutting tool of 1.5-5. 前記凝集部における前記結合相の含有量が前記マトリックス部における前記結合相の含有量よりも少ない請求項1記載の切削工具。   The cutting tool according to claim 1, wherein the content of the binder phase in the aggregated portion is less than the content of the binder phase in the matrix portion.
JP2009105961A 2009-04-24 2009-04-24 Cutting tool Pending JP2010253607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105961A JP2010253607A (en) 2009-04-24 2009-04-24 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105961A JP2010253607A (en) 2009-04-24 2009-04-24 Cutting tool

Publications (1)

Publication Number Publication Date
JP2010253607A true JP2010253607A (en) 2010-11-11

Family

ID=43315131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105961A Pending JP2010253607A (en) 2009-04-24 2009-04-24 Cutting tool

Country Status (1)

Country Link
JP (1) JP2010253607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283569A (en) * 2013-06-28 2016-01-27 京瓷株式会社 Cermet, and method for manufacturing same, as well as cutting tool
CN106232846A (en) * 2015-01-16 2016-12-14 住友电气工业株式会社 Ceramic metal, cutting element and ceramic-metallic manufacture method
WO2018181036A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Cutting insert and cutting tool provided with same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283569A (en) * 2013-06-28 2016-01-27 京瓷株式会社 Cermet, and method for manufacturing same, as well as cutting tool
CN105283569B (en) * 2013-06-28 2017-07-14 京瓷株式会社 Cermet and its manufacture method and cutting element
CN106232846A (en) * 2015-01-16 2016-12-14 住友电气工业株式会社 Ceramic metal, cutting element and ceramic-metallic manufacture method
CN106232846B (en) * 2015-01-16 2018-06-15 住友电气工业株式会社 The manufacturing method of cermet, cutting element and cermet
WO2018181036A1 (en) * 2017-03-29 2018-10-04 京セラ株式会社 Cutting insert and cutting tool provided with same

Similar Documents

Publication Publication Date Title
WO2011002008A1 (en) Cermet and coated cermet
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
JP6144763B2 (en) Cermet, manufacturing method thereof and cutting tool
CN105283570B (en) Cermet and cutting tool
JP2010031308A (en) Cermet
JP5559575B2 (en) Cermet and coated cermet
JP5213326B2 (en) cermet
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP5273987B2 (en) Cermet manufacturing method
JP5594568B2 (en) Cutting tool made of cubic boron nitride based ultra high pressure sintered material and cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2010274346A (en) Cutting tool
JP2010253607A (en) Cutting tool
WO2011065468A1 (en) Rotation tool
JP2012086297A (en) Wc-based cemented carbide cutting tool exercising superior chipping resistance and wear resistance in high speed intermittent cutting
JP5063129B2 (en) cermet
JP2010500477A (en) Mixed powder containing solid solution powder and sintered body using the same, mixed cermet powder containing solid solution powder, cermet using the same, and method for producing them
JP2008155335A (en) Cutting tool
JP4172754B2 (en) TiCN-based cermet and method for producing the same
JP5031610B2 (en) TiCN-based cermet
JP2009006413A (en) Ti based cermet
JP2011088253A (en) Cutting tool made of wc-based cemented carbide superior in thermal plastic deformation resistance and cutting tool made of surface-coated wc-based cemented carbide
JP2011132057A (en) Sintered compact
JP6380016B2 (en) Cermet tools and coated cermet tools
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JP2001049378A (en) Wear resistant cemented carbide sintered compact and its manufacture