JP5906813B2 - Hard materials and cutting tools - Google Patents

Hard materials and cutting tools Download PDF

Info

Publication number
JP5906813B2
JP5906813B2 JP2012044396A JP2012044396A JP5906813B2 JP 5906813 B2 JP5906813 B2 JP 5906813B2 JP 2012044396 A JP2012044396 A JP 2012044396A JP 2012044396 A JP2012044396 A JP 2012044396A JP 5906813 B2 JP5906813 B2 JP 5906813B2
Authority
JP
Japan
Prior art keywords
hard
core
hard phase
shell
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012044396A
Other languages
Japanese (ja)
Other versions
JP2013181188A (en
Inventor
森口 秀樹
秀樹 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012044396A priority Critical patent/JP5906813B2/en
Publication of JP2013181188A publication Critical patent/JP2013181188A/en
Application granted granted Critical
Publication of JP5906813B2 publication Critical patent/JP5906813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、鋼や鋳鉄、焼結合金などの金属材料の切削に好適な硬質材料とその製造方法、並びに前記硬質材料を用いた切削工具に関する。特に、超硬合金に比べてWの使用量を削減でき、かつ超硬合金の代替材料として期待できる硬質材料に関する。   The present invention relates to a hard material suitable for cutting a metal material such as steel, cast iron, and sintered alloy, a manufacturing method thereof, and a cutting tool using the hard material. In particular, the present invention relates to a hard material that can reduce the amount of W used compared to a cemented carbide and can be expected as an alternative material for the cemented carbide.

従来、鋼や鋳鉄、焼結合金を切削するための硬質材料としては超硬合金やサーメット、或いはそれらの表面にセラミックスの硬質被覆を設けたものが知られている。超硬合金は強度と破壊靱性に優れ、熱伝導率にも優れているため、鋼や鋳鉄の粗加工や断続切削などの切削加工に適している。一方、サーメットは鉄との反応性が低く、優れた仕上げ面が得られるため、鋼や鋳鉄の仕上げ加工や焼結合金の連続旋削加工などに使用されている。サーメットの一例としては、硬質相として、TiCN相(内芯部)の周辺をTiWCNといった複合固溶体相(周辺部)が取り囲んだ二重構造(有芯構造)の有芯粒子を含むサーメットが特許文献1に記載されている。   Conventionally, as hard materials for cutting steel, cast iron, and sintered alloys, cemented carbides and cermets, or those having a hard ceramic coating on their surfaces are known. Cemented carbide has excellent strength and fracture toughness, and excellent thermal conductivity, making it suitable for roughing and intermittent cutting of steel and cast iron. On the other hand, cermet is low in reactivity with iron and provides an excellent finished surface, so it is used for finishing of steel and cast iron, continuous turning of sintered alloys, and the like. An example of a cermet is a cermet containing cored particles having a double structure (core structure) in which a hard solid phase is surrounded by a composite solid solution phase (peripheral part) such as TiWCN around the TiCN phase (inner core part). 1.

特開2010−31308号公報JP 2010-31308 A

近年、超硬合金の主要原料であるタングステンは原料供給の地域偏在性が高く、供給リスクが懸念されるため、チタンを主要原料とし、TiCやTiCNといったチタン化合物を主成分とするサーメットを代替使用するニーズが高まっている。   In recent years, tungsten, which is the main raw material for cemented carbide, is highly unevenly distributed in the region, and there is concern about supply risks. Therefore, titanium is the main raw material, and cermets containing titanium compounds such as TiC and TiCN are used instead. There is a growing need to do so.

しかし、サーメットを構成するTiCやTiCNは超硬合金を構成するWCと比較して熱伝導率が1/5程度と非常に低く、しかも線膨張係数はWCの2倍以上と大きく、ヤング率もWCの約1/2と小さいため、サーメットの耐熱衝撃性は超硬合金のそれと比較してかなり劣っている。このため、サーメットを鋼や鋳鉄の粗加工や断続切削などの熱衝撃負荷の大きい切削用途で使用すると、欠損に対する信頼性が低く、超硬合金の代替材料としてサーメットを使用することには限界があった。   However, TiC and TiCN composing cermet have a very low thermal conductivity of about 1/5 compared to WC composing cemented carbide, and the coefficient of linear expansion is more than twice that of WC, and the Young's modulus is also high. Since WC is as small as about 1/2, the thermal shock resistance of cermet is considerably inferior to that of cemented carbide. For this reason, when cermet is used for cutting applications with large thermal shock loads such as roughing and interrupted cutting of steel and cast iron, the reliability against fracture is low, and there is a limit to using cermet as an alternative material for cemented carbide. there were.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、超硬合金に比べてWの使用量を削減でき、かつ超硬合金の代替となり得る強度と靭性を備えた硬質材料とその製造方法を提供することにある。また、本発明の他の目的は、上記硬質材料を用いた切削工具を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is that it can reduce the amount of W used compared to cemented carbide and has strength and toughness that can replace cemented carbide. It is to provide a hard material and a manufacturing method thereof. Another object of the present invention is to provide a cutting tool using the hard material.

本発明者は、従来のサーメットの硬質相を構成するチタン系の化合物を利用することを前提に、その硬質相の材質や形態を工夫することを鋭意検討した。その結果、特定材質のコアシェル構造の硬質相を用いることで、十分な耐摩耗性を確保しながら硬質相の熱伝導率を高め、特に硬質材料の耐熱衝撃性を改善できるとの知見を得た。本発明は、この知見に基づいてなされたもので、以下に示す硬質材料、切削工具、および硬質材料の製造方法の各構成を有する。   This inventor earnestly examined devising the material and form of the hard phase on the assumption that the titanium-based compound which comprises the hard phase of the conventional cermet was utilized. As a result, by using a hard phase with a core-shell structure of a specific material, we obtained knowledge that the thermal conductivity of the hard phase can be increased while securing sufficient wear resistance, and in particular the thermal shock resistance of hard materials can be improved. . This invention is made | formed based on this knowledge, and has each structure of the manufacturing method of a hard material, a cutting tool, and a hard material shown below.

〔硬質材料〕
本発明の硬質材料は、第一硬質相と、鉄族金属を含む結合相とを備える。この硬質材料において、前記第一硬質相は、Tiの窒化物からなるコアと、WCで構成されて、前記コアを覆うシェルとを有する。
[Hard material]
The hard material of the present invention includes a first hard phase and a binder phase containing an iron group metal. In this hard material, the first hard phase has a core made of Ti nitride and a shell made of WC and covering the core.

このようなコアシェル構造の第一硬質相を備える硬質材料は、コアがTiの窒化物を主体とする化合物からなることにより、鋼に対する低い反応性、すなわち高い耐摩耗性を備える。また、Tiの窒化物をコアとすれば、Tiの炭化物や炭窒化物をコアとする場合に比べて高い熱伝導性を期待でき、優れた耐熱衝撃性を期待できる。また、供給安定性に優れるTiの化合物をコアとする第一硬質相を用いることで、WCを硬質相の主材料とする超硬合金に比べて、Wの使用量を削減することができる。   The hard material including the first hard phase having such a core-shell structure has low reactivity with respect to steel, that is, high wear resistance, because the core is made of a compound mainly composed of Ti nitride. Further, if Ti nitride is used as a core, higher thermal conductivity can be expected than when Ti carbide or carbonitride is used as a core, and excellent thermal shock resistance can be expected. Further, the use of W can be reduced by using the first hard phase having a core of Ti compound having excellent supply stability as compared with the cemented carbide containing WC as the main material of the hard phase.

一方、シェルがWCからなることにより、硬質材料中に優れた熱伝導率を有するWC骨格のネットワークを形成し易く、硬質材料の熱伝導率を高めることができ、従来のサーメットの欠点である耐熱衝撃性の低さを改善できる。また、シェルがWCであることにより、鉄族金属との濡れ性に優れるため、結合相原料として鉄族金属を用いると焼結性が向上して緻密な焼結体を得ることができ、耐欠損性に優れた硬質材料とできる。   On the other hand, when the shell is made of WC, it is easy to form a WC skeleton network having excellent thermal conductivity in the hard material, and the thermal conductivity of the hard material can be increased, which is a disadvantage of conventional cermets. Improves low impact. In addition, since the shell is WC, the wettability with the iron group metal is excellent, so when the iron group metal is used as the binder phase material, the sinterability is improved and a dense sintered body can be obtained. It can be a hard material with excellent chipping properties.

本発明の硬質材料の一形態として、さらに第二硬質相を含み、その第二硬質相は、Tiの炭化物および炭窒化物の少なくとも一方からなるコアと、WCで構成されて、前記コアを覆うシェルとを有することが挙げられる。   As one form of the hard material of the present invention, it further includes a second hard phase, and the second hard phase is composed of a core made of at least one of Ti carbide and carbonitride and WC, and covers the core. And having a shell.

第一硬質相に加え、Tiの炭化物および炭窒化物の少なくとも一方をコアとするコアシェル構造の第二硬質相を用いることで、硬質材料の硬度が上昇し、耐塑性変形性の向上と更なる耐摩耗性の向上を期待できる。   In addition to the first hard phase, the use of the second hard phase having a core-shell structure with at least one of Ti carbide and carbonitride as the core increases the hardness of the hard material and further improves the plastic deformation resistance. Improvement of wear resistance can be expected.

本発明の硬質材料の一形態として、さらに第三硬質相として第一硬質相のコアとは異なる材質からなり、第二硬質相を含む場合は第二硬質相のコアとも異なる材質からなって、周期表4,5,6族元素から選ばれる少なくとも一種の金属元素とCおよびNの少なくとも一方の元素との化合物の少なくとも一種を2〜80質量%含有することが挙げられる。 As one form of the hard material of the present invention, it is made of a material different from the core of the first hard phase as the third hard phase, and when it contains the second hard phase, it is made of a material different from the core of the second hard phase, It includes that contains at least one of 2 to 80% by weight of the compound of at least one element of at least one metal element and C and N are selected from periodic table group 4, 5, 6 elements.

この構成によれば、所定量の第三硬質相を含有することで、硬質材料中に高熱伝導率の熱伝導パスをより多く形成することができる。これは、コアシェル構造の第一硬質相の粒子間または第一硬質相と第二硬質相の粒子間に熱伝導率に優れる第三硬質相が適度に介在されるためである。よって、硬質材料の放熱性を高めることができ、耐熱衝撃性に優れた材料とすることができる。第三硬質相の好適な具体例としてはWCが挙げられる。   According to this configuration, by including a predetermined amount of the third hard phase, more heat conduction paths having high thermal conductivity can be formed in the hard material. This is because the third hard phase having excellent thermal conductivity is appropriately interposed between the particles of the first hard phase of the core-shell structure or between the particles of the first hard phase and the second hard phase. Therefore, the heat dissipation of the hard material can be increased, and a material having excellent thermal shock resistance can be obtained. A preferred specific example of the third hard phase is WC.

本発明の硬質材料の一形態として、前記コアがさらにWを含む固溶体であることが挙げられる。   One form of the hard material of the present invention is that the core is a solid solution further containing W.

コアがさらにWを含む固溶体であると、コアの線膨脹係数をWCのそれに近づけることができ、さらにコアのチタン化合物とシェルのWCとの化学的な親和性が高まる結果、コアとシェルの密着力を高めることができる。その結果、硬質材料の強度、靭性を向上できる。   When the core is a solid solution further containing W, the linear expansion coefficient of the core can be made close to that of WC, and the chemical affinity between the titanium compound of the core and the WC of the shell is further increased. You can increase your power. As a result, the strength and toughness of the hard material can be improved.

コアがWを含む本発明の硬質材料の一形態として、前記Wの固溶量がTiに対する原子比で1〜30%であることが好ましい。   As one form of the hard material of the present invention in which the core contains W, the solid solution amount of W is preferably 1 to 30% in terms of atomic ratio with respect to Ti.

コアがWを1〜30%固溶していると、シェルを構成するWCとの密着性が高まり、シェルが剥がれ難くなる。この結果、高熱伝導率のWC骨格のネットワークが焼結後にも維持され易く、高熱伝導率の硬質材料を製造できる。   When the core is solid-solved with 1 to 30% of W, the adhesion with the WC constituting the shell is increased and the shell is difficult to peel off. As a result, a high thermal conductivity WC skeleton network is easily maintained after sintering, and a hard material with high thermal conductivity can be manufactured.

本発明の硬質材料の一形態として、前記コアの平均粒径を0.5μm以上とすることが挙げられる。より好ましいコアの平均粒径は2μm以上である。   As one form of the hard material of the present invention, the average particle diameter of the core may be 0.5 μm or more. A more preferable average particle diameter of the core is 2 μm or more.

この構成によれば、コアの平均粒径を特定することで、硬質材料の熱伝導率の向上効果が得られ易い。   According to this configuration, the effect of improving the thermal conductivity of the hard material is easily obtained by specifying the average particle diameter of the core.

本発明の硬質材料の一形態として、前記シェルの平均厚みを、前記コアの平均粒径の3%未満とすることが挙げられる。   As one form of the hard material of the present invention, the average thickness of the shell may be less than 3% of the average particle diameter of the core.

この構成によれば、高熱伝導率のWCからなるシェルが剥がれたり、シェルに亀裂が入ったりすることを防ぐことができる。この結果、焼結中の液相にTiNやTiC、TiCNが溶解し、シェルを構成するWCの上に再析出して、熱伝導率の低い(W,Ti)Cや(W,Ti)CNが形成することを防ぐことができ、硬質材料の熱伝導率を向上させる効果が顕著になる。   According to this configuration, it is possible to prevent the shell made of WC having high thermal conductivity from peeling off or cracking the shell. As a result, TiN, TiC, and TiCN are dissolved in the liquid phase during sintering and re-deposited on the WC constituting the shell, resulting in (W, Ti) C and (W, Ti) CN with low thermal conductivity. Can be prevented, and the effect of improving the thermal conductivity of the hard material becomes remarkable.

〔切削工具〕
一方、本発明の切削工具は、逃げ面およびすくい面の両面の稜線部で構成される切刃とその近傍とを含む切刃周辺領域を備える。この切削工具の少なくとも前記切刃周辺領域は、上述した本発明に係る硬質材料からなる基材と、この基材を覆う硬質被覆とを備える。そして、この基材を構成する硬質材料は、前記コアが露出することなくシェルで覆われている。
〔Cutting tools〕
On the other hand, the cutting tool of the present invention includes a cutting edge peripheral region including a cutting edge constituted by ridges on both sides of the flank face and the rake face and the vicinity thereof. At least the cutting edge peripheral region of the cutting tool includes a base material made of the hard material according to the present invention described above and a hard coating covering the base material. And the hard material which comprises this base material is covered with the shell, without exposing the said core.

本発明の硬質材料で基材を構成し、その基材表面に硬質被覆を設けた切削工具とした場合、切刃周辺領域、特に切削工具の逃げ面およびすくい面の少なくとも一部の基材を構成するコアがシェルで覆われていることで、硬質被覆がWCのシェルに対して成膜されることになる。そのため、コアが露出している基材に対して硬質被覆を成膜する場合に比べて、硬質被覆の基材への密着力を高めることができる。その結果、切削工具としての寿命を長くできる。勿論、この切削工具は、上述した硬質材料が持つ高い耐熱衝撃性、耐欠損性などの特性を有することは言うまでもない。   When the base material is composed of the hard material of the present invention, and the cutting tool is provided with a hard coating on the surface of the base material, at least a part of the base material in the peripheral region of the cutting edge, particularly the flank and rake face of the cutting tool. Since the core to be formed is covered with the shell, a hard coating is formed on the WC shell. Therefore, the adhesion of the hard coating to the base material can be increased as compared with the case where the hard coating is formed on the base material from which the core is exposed. As a result, the life as a cutting tool can be extended. Of course, it goes without saying that this cutting tool has characteristics such as the high thermal shock resistance and fracture resistance of the hard material described above.

〔硬質材料の製造方法〕
さらに、本発明の硬質材料の製造方法は、第一硬質相と、鉄族金属を含む結合相とを含む硬質材料を得るための硬質材料の製造方法であって、次の工程を備える。
準備工程:前記第一硬質相と結合相とを含む原料粉末を準備する。
混合工程:前記原料粉末を混合して混合粉末とする。
成形工程:前記混合粉末を所定の圧力にて圧縮して成形体を得る。
焼結工程:前記成形体を所定の温度にて焼結する。
この製造方法において、前記準備工程における第一硬質相は、Tiの窒化物からなるコアと、前記コアの外周に成膜されたWCからなるシェルとを有する。そして、前記混合工程は、前記シェルを損傷しないように、粉砕メディアを用いることなく前記原料粉末を混合する。
[Method of manufacturing hard material]
Furthermore, the manufacturing method of the hard material of this invention is a manufacturing method of the hard material for obtaining the hard material containing the 1st hard phase and the binder phase containing an iron group metal, Comprising: The following process is provided.
Preparation step: A raw material powder containing the first hard phase and the binder phase is prepared.
Mixing step: The raw material powder is mixed to obtain a mixed powder.
Molding step: The mixed powder is compressed at a predetermined pressure to obtain a molded body.
Sintering step: The molded body is sintered at a predetermined temperature.
In this manufacturing method, the first hard phase in the preparation step has a core made of Ti nitride and a shell made of WC formed on the outer periphery of the core. And the said mixing process mixes the said raw material powder, without using a grinding | pulverization media so that the said shell may not be damaged.

Tiの窒化物からなるコアと、WCのシェルとを備える第一硬質相を用い、この硬質相を含む原料粉末を混合する際、粉砕メディアを用いないメディアレス混合とすることで、シェルの損傷や剥離を最小限に抑えることができる。それにより、コアがシェルでより確実に覆われた焼結体の硬質材料を得ることができる。   Using a first hard phase comprising a core made of Ti nitride and a WC shell, and mixing the raw powder containing the hard phase, media-less mixing without the use of grinding media will damage the shell. And peeling can be minimized. Thereby, the hard material of the sintered compact whose core was more reliably covered with the shell can be obtained.

本発明の硬質材料の製造方法の一形態として、前記シェルは、気相成長法により前記コアの外周に成膜され、その成膜温度を700〜1100℃とすることが挙げられる。   As one form of the manufacturing method of the hard material of this invention, the said shell is formed into a film by the vapor deposition method on the outer periphery of the said core, The film-forming temperature shall be 700-1100 degreeC.

シェルの成膜を気相成長法により行うことで、緻密なシェルを比較的容易に形成することができる。また、上記の温度範囲でWCを成膜すると、WCの結晶性が高くなり、シェルをより高熱伝導率にできる。また、この温度範囲で成膜を行うと、コアとシェルとの密着性が高くなり、WCの剥がれや、それに伴い焼結工程でシェルを構成するWCがTiなどの他元素と固溶体化することによる熱伝導率の低下が抑制できるため、好ましい。   By forming the shell by a vapor deposition method, a dense shell can be formed relatively easily. Further, when WC is formed in the above temperature range, the crystallinity of WC increases, and the shell can have higher thermal conductivity. In addition, when the film is formed in this temperature range, the adhesion between the core and the shell becomes high, and the WC peeling off and the WC constituting the shell in the sintering process becomes a solid solution with other elements such as Ti. Since the fall of the heat conductivity by can be suppressed, it is preferable.

また、シェルを気相成長法で成膜した本発明の硬質材料の製造方法において、前記気相成長法はCVD法であり、このCVD法にはCH3CNガスを用いることが挙げられる。 In the method for producing a hard material of the present invention in which a shell is formed by vapor deposition, the vapor deposition method is a CVD method, and the CVD method includes using CH 3 CN gas.

WCの成膜にCH3CNガスを用いると、脆性のW2Cよりも化学的に安定で高熱伝導率のWCを成膜し易く、中でも結晶性の高いWCを成膜できるため好ましい。 It is preferable to use CH 3 CN gas for the film formation of WC because it is easier to form a WC that is chemically more stable and has a higher thermal conductivity than brittle W 2 C, and in particular, a WC film having high crystallinity can be formed.

本発明の硬質材料によれば、高熱伝導率で、特に耐熱衝撃性に優れた材料とすることができる。   According to the hard material of the present invention, a material having high thermal conductivity and excellent thermal shock resistance can be obtained.

本発明の硬質材料の製造方法によれば、コアシェル構造の硬質相粉末を含む原料粉末を用いて硬質材料を作製する際、シェルの損傷を効果的に抑制できる。その結果、シェルの亀裂や剥離が少ない、或いは実質的に亀裂や剥離のないコアシェル構造の硬質相を有する硬質材料を得ることができる。   According to the method for producing a hard material of the present invention, when the hard material is produced using the raw material powder containing the hard phase powder having the core-shell structure, the damage to the shell can be effectively suppressed. As a result, it is possible to obtain a hard material having a hard phase with a core-shell structure with little cracking or peeling of the shell or substantially no cracking or peeling.

本発明の切削工具によれば、本発明の硬質材料を用いることで、十分な耐摩耗性を備えながら、耐欠損性や耐熱衝撃性に優れる工具とすることができる。   According to the cutting tool of the present invention, by using the hard material of the present invention, it is possible to obtain a tool having excellent wear resistance and thermal shock resistance while having sufficient wear resistance.

(A)は第一硬質相のみを含む実施形態に係る本発明硬質材料の組織を示す模式図、(B)は第三硬質相を含む実施形態に係る本発明硬質材料の組織を示す模式図である。(A) is a schematic diagram showing the structure of the hard material of the present invention according to the embodiment including only the first hard phase, (B) is a schematic diagram showing the structure of the hard material of the present invention according to the embodiment including the third hard phase. It is. 実施形態に係る本発明切削工具の切刃近傍を示す模式断面図である。It is a schematic cross section which shows the cutting blade vicinity of this invention cutting tool which concerns on embodiment.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

〔概要〕
本発明の硬質材料は、図1(A)にその一例を示すように、硬質相10の粉末を結合相20で結合した焼結体で構成される。この硬質材料の主たる特徴は、その硬質相の材質と構造にある。具体的には、コア11の外周をシェル12で覆ったコアシェル構造の第一硬質相粒子10Aを硬質相10に含み、コア11の材質をTiの窒化物、さらに必要に応じてコア11の材質をTiの炭化物、炭窒化物から選ばれた少なくとも一種に置き換え、シェル12の材質をWCとしている。以下、この硬質材料、その製造方法、並びに硬質材料を用いた切削工具を順次詳しく説明する。
〔Overview〕
The hard material of the present invention is composed of a sintered body in which a powder of a hard phase 10 is bonded with a bonding phase 20 as shown in FIG. 1 (A). The main feature of this hard material is the material and structure of the hard phase. Specifically, the hard phase 10 includes first hard phase particles 10A having a core-shell structure in which the outer periphery of the core 11 is covered with a shell 12, and the material of the core 11 is Ti nitride, and if necessary, the material of the core 11 Is replaced with at least one selected from Ti carbide and carbonitride, and the material of the shell 12 is WC. Hereinafter, this hard material, its manufacturing method, and the cutting tool using the hard material will be described in detail.

〔硬質材料〕
{硬質相}
硬質相は、コアシェル構造の第一硬質相を含み、必要に応じて、第一硬質相とは異なる第二硬質相および第三硬質相の少なくとも一方を含む。そのうち、第一硬質相と第二硬質相とはコアシェル構造であり、第三硬質相はコアシェル構造ではない。
[Hard material]
{Hard phase}
The hard phase includes a first hard phase having a core-shell structure, and optionally includes at least one of a second hard phase and a third hard phase different from the first hard phase. Among them, the first hard phase and the second hard phase have a core-shell structure, and the third hard phase does not have a core-shell structure.

(第一硬質相)
本発明における第一硬質相のコアシェル構造は、従来のサーメットにおいて、特許文献1などに硬質相粒子として開示される有芯構造とは異なる。従来のサーメットは、例えばTiCNとWCの硬質相と、NiおよびCoの少なくとも一方からなる結合相とを原料粉末に用い、焼結過程で生じる結合相の液相へのTiCNとWCの構成元素の固溶に伴い、焼結および冷却過程で生成したTiCNの内芯部と、(Ti,W)CNの周辺部とを有する有芯構造の硬質相粒子としている。これに対し、本発明における第一硬質相粒子は、原料粉末の段階でTiNのコアにWCのシェルを被覆したコアシェル構造の複合粒子を用い、焼結過程におけるコアとシェルとの間での両者の構成元素の拡散を最小化する。そのため、シェルはTiが実質的に固溶していない高熱伝導のWCをそのまま最表面に有し、これにより高熱伝導率を期待できる。従来のサーメットに形成される(Ti,W)CNなどの固溶体では熱伝導をつかさどるフォノンが結晶構造の乱れにより熱を伝えにくくなっており、低熱伝導率であるため、同じような有芯構造であっても、焼結体の熱伝導率には大きな差が生じる。
(First hard phase)
The core shell structure of the first hard phase in the present invention is different from the cored structure disclosed as hard phase particles in Patent Document 1 or the like in the conventional cermet. Conventional cermets use, for example, a hard phase of TiCN and WC and a binder phase composed of at least one of Ni and Co as raw material powder, and the constituent elements of TiCN and WC into the liquid phase of the binder phase generated during the sintering process. A hard phase particle having a cored structure having an inner core portion of TiCN generated in the sintering and cooling process and a peripheral portion of (Ti, W) CN accompanying solid solution. On the other hand, the first hard phase particle in the present invention uses a composite particle having a core-shell structure in which a WC shell is coated on a TiN core in the raw material powder stage, and both between the core and the shell in the sintering process. Minimize the diffusion of constituent elements. Therefore, the shell has WC with high thermal conductivity in which Ti is not substantially dissolved in the outermost surface as it is, so that high thermal conductivity can be expected. In solid solutions such as (Ti, W) CN formed in conventional cermets, phonons that control heat conduction are difficult to transfer heat due to disorder of the crystal structure, and have low thermal conductivity. Even if it exists, a big difference arises in the thermal conductivity of a sintered compact.

<コア>
コアは、コアシェル構造の硬質相の中心部を構成し、十分な硬度を備えることで、主に硬質材料の耐摩耗性の向上に寄与する機能を有する。
<Core>
The core constitutes the center of the hard phase of the core-shell structure and has a function that contributes mainly to the improvement of the wear resistance of the hard material by having sufficient hardness.

《材質》
コアの材質は、Tiの窒化物とする。Tiの窒化物は熱伝導率がTiの炭化物、炭窒化物などと比べて大きく、硬質材料の熱伝導率を大きくできる。
<Material>
The core material is Ti nitride. Ti nitride has a higher thermal conductivity than Ti carbide, carbonitride, etc., and can increase the thermal conductivity of hard materials.

その他、コアの材質としては、Tiの窒化物に、さらに他の金属元素が固溶された固溶体であっても構わない。この金属元素は、固溶体を形成することで、TiNに比べて、さらにはTiCやTiCNに比べても、コアの線膨脹係数をWCのそれに近づけることができる元素が好ましい。具体的には、Wが好適に利用できる。つまり(Ti,W)N、(Ti,W)C、(Ti,W)CNをコアとして利用できる。このWの固溶されたコアは、成形体の焼結時にシェルのWCからコアに固溶されて構成されたものでも良いし、原料粉末の段階で予めWが固溶されたコアを用いることで構成されたものでも良い。Wの固溶量は、Tiに対する原子比で1〜30%であることが好ましい。コアがWを1〜30%固溶していると、シェルを構成するWCとの密着性が高まり、シェルが剥がれ難くなるため、上述したWC(シェル)の固溶体化が進み難くなる。この結果、高熱伝導率のWC骨格のネットワークが焼結後にも維持され易く、高熱伝導率の硬質材料を製造できる。   In addition, the core material may be a solid solution in which another metal element is further dissolved in Ti nitride. This metal element is preferably an element that can form a solid solution so that the linear expansion coefficient of the core can be made close to that of WC as compared to TiN and even compared to TiC and TiCN. Specifically, W can be suitably used. That is, (Ti, W) N, (Ti, W) C, and (Ti, W) CN can be used as cores. The core in which the solid solution of W is formed may be a solid solution formed from the WC of the shell to the core during the sintering of the molded body, or a core in which W is pre-dissolved in the raw powder stage is used. It may be composed of The solid solution amount of W is preferably 1 to 30% in terms of atomic ratio to Ti. When the core is solid-solved with 1 to 30% of W, the adhesion with the WC constituting the shell is increased and the shell is difficult to peel off, so that the above-described solid solution of WC (shell) is difficult to proceed. As a result, a high thermal conductivity WC skeleton network is easily maintained after sintering, and a hard material with high thermal conductivity can be manufactured.

《サイズ》
コアの平均粒径は0.5μm以上とすることが好ましい。硬質相の粒径が小さいと、粒界が多くなるため、硬質材料の熱伝導率が低下する。そのため、コアの平均粒径を0.5μm以上とすれば、硬質材料の熱伝導率の向上効果が得られ易い。また、このようなサイズのコア粒子は製造し易い。特に、硬質材料の高熱伝導化を考慮すると、この平均粒径は1.5μm以上、さらには2μm以上とすることが好ましい。一方、コアの平均粒径の上限は7μm程度である。コアの平均粒径が7μm以下であれば、高強度の硬質材料が得られ易いからである。この平均粒径は、焼結後の硬質材料に対して切断面を平面研削後に鏡面研磨して、走査型電子顕微鏡(SEM)で写真撮影を行い、フルマンの式を用いて算出した値である。この明細書における他の粒子の平均粒径も同様に測定される。なお、本発明の硬質材料におけるコアの平均粒径(焼結後の平均粒径)は、後述するように粉砕メディアを用いない混合方法を経て製造されると好ましく、その場合、原料粉末におけるコア粒子の平均粒径がほぼ維持されている。
"size"
The average particle diameter of the core is preferably 0.5 μm or more. If the particle size of the hard phase is small, the grain boundaries increase, and the thermal conductivity of the hard material decreases. Therefore, if the average particle diameter of the core is 0.5 μm or more, the effect of improving the thermal conductivity of the hard material is easily obtained. Moreover, the core particle of such a size is easy to manufacture. In particular, considering the high thermal conductivity of the hard material, the average particle size is preferably 1.5 μm or more, more preferably 2 μm or more. On the other hand, the upper limit of the average particle diameter of the core is about 7 μm. This is because a high-strength hard material can be easily obtained if the average particle size of the core is 7 μm or less. This average particle size is a value calculated by using the Fullman equation after the cut surface of the sintered hard material is mirror-polished after surface grinding and photographed with a scanning electron microscope (SEM). . The average particle size of the other particles in this specification is measured similarly. The average particle diameter of the core in the hard material of the present invention (average particle diameter after sintering) is preferably produced through a mixing method that does not use a pulverizing medium as described later. In that case, the core in the raw material powder The average particle size of the particles is almost maintained.

<シェル>
シェルは、コアの外周を覆い、硬質材料の靭性を確保すると共に、硬質材料中に高熱伝導率の熱伝導パスを形成すること、及びコア成分の結合相中への溶け込みを防止することを主たる機能とする。
<Shell>
The shell covers the outer periphery of the core to ensure the toughness of the hard material, and to form a heat conduction path with a high thermal conductivity in the hard material and to prevent the core component from being dissolved into the binder phase. Function.

《材質》
シェルがWCからなることにより、硬質材料中に優れた熱伝導率を有するWC骨格のネットワークを形成し易く、硬質材料の熱伝導率を高めることができ、従来のサーメットの欠点である耐熱衝撃性の低さを改善できる。この効果はシェルをW2Cとした場合に比べて明らかに大きい。これはWCの熱伝導率がW2Cのそれよりも大きいためと考えられる。W2CはWCよりも20〜30%程度硬く、耐摩耗性の向上が期待できるが脆性である。そのため、硬質材料の熱伝導率を向上させ、従来のサーメットの欠点である耐熱衝撃性の低さを大きく改善するには、シェルにW2CでなくWCを採用する意義は非常に大きい。また、シェルがWCであることにより、鉄族金属との濡れ性に優れるため、結合相原料として鉄族金属を用いると焼結性が向上して緻密な焼結体を得ることができ、耐欠損性に優れた硬質材料とできる。結合相原料を用いない場合でも、シェルを構成するWCの優れた焼結性により、緻密な焼結体を得ることができる。
<Material>
When the shell is made of WC, it is easy to form a WC skeleton network with excellent thermal conductivity in the hard material, the thermal conductivity of the hard material can be increased, and thermal shock resistance is a drawback of conventional cermets. Can be improved. This effect is clearly greater than when the shell is W 2 C. This is probably because the thermal conductivity of WC is larger than that of W 2 C. W 2 C is about 20-30% harder than WC, and can be expected to improve wear resistance, but is brittle. Therefore, in order to improve the thermal conductivity of hard materials and greatly improve the low thermal shock resistance, which is a drawback of conventional cermets, it is very significant to use WC instead of W 2 C for the shell. In addition, since the shell is WC, the wettability with the iron group metal is excellent, so when the iron group metal is used as the binder phase material, the sinterability is improved and a dense sintered body can be obtained. It can be a hard material with excellent chipping properties. Even when the binder phase raw material is not used, a dense sintered body can be obtained due to the excellent sinterability of WC constituting the shell.

《厚さ》
WCで構成されるシェルの平均厚みをコアの平均粒径との比率で示すと、コアの平均粒径の3%未満であることが好ましい。これは、平均厚みが3%未満であれば混合工程、プレス工程、焼結工程でシェルに亀裂が発生したり、シェルが剥離することを抑制しやすいためである。つまり、コアのサイズに応じて、一定比率未満の厚みのシェルが形成されていれば、シェルの亀裂発生や剥離を抑制し易い。この結果、硬質材料の高熱伝導化の効果が大きくできる。この平均厚みの測定は、硬質材料の切削面を集束イオンビーム(Focused Ion Beam:FIB)加工して、透過型電子顕微鏡(TEM)で写真撮影を行い、複数の第一硬質相粒子における10点以上の測定点のシェルの厚みをフルマンの式を用いて算出することにより行う。
"thickness"
When the average thickness of the shell composed of WC is expressed as a ratio to the average particle diameter of the core, it is preferably less than 3% of the average particle diameter of the core. This is because if the average thickness is less than 3%, it is easy to suppress cracks in the shell and peeling of the shell during the mixing step, pressing step, and sintering step. That is, if a shell having a thickness less than a certain ratio is formed according to the size of the core, it is easy to suppress the occurrence of cracks and peeling of the shell. As a result, the effect of increasing the thermal conductivity of the hard material can be increased. This average thickness is measured by processing a focused ion beam (FIB) on the cut surface of a hard material, taking a photograph with a transmission electron microscope (TEM), and measuring 10 points on multiple first hard phase particles. The thickness of the shell at the above measurement points is calculated by using the Fullman equation.

(第二硬質相)
第一硬質相に加え、TiCおよびTiCNの少なくとも一方をコアとするコアシェル構造の第二硬質相を併用しても良い。この第二硬質相のコアもさらにWを含む固溶体で構成されても良い。この第二硬質相は、コアの材質が第一硬質相と異なる点を除き、そのコアの諸元およびシェルの諸元は、上述した第一硬質相のそれと同様である。第一硬質相と第二硬質相とを併用する場合、TiCおよびTiCNの硬度はTiNよりも高硬度であるため、これを用いた硬質材料は耐塑性変形性と耐摩耗性に優れるが、熱伝導率はTiNに劣るので、期待する硬質材料の特性に応じて適宜第一硬質相と第二硬質相の割合を選択すれば良い。硬質相各材料の硬度は、WC<TiN<TiCN<TiCの関係にある。なお、この第二硬質相を硬質材料に含む場合も、図1(A)と同様の断面組織を有し、第一硬質相10Aの一部が第二硬質相に置換された断面組織を呈する。この硬質材料の断面組織において、原料粉末におけるコア粒子の平均粒径がほぼ維持されている点は第二硬質相においても同様である。
(Second hard phase)
In addition to the first hard phase, a second hard phase having a core-shell structure having at least one of TiC and TiCN as a core may be used in combination. The second hard phase core may also be formed of a solid solution containing W. The second hard phase has the same core specifications and shell specifications as those of the first hard phase, except that the core material is different from that of the first hard phase. When the first hard phase and the second hard phase are used together, the hardness of TiC and TiCN is higher than that of TiN, so the hard material using this has excellent plastic deformation resistance and wear resistance. Since the conductivity is inferior to TiN, the ratio of the first hard phase and the second hard phase may be appropriately selected according to the expected properties of the hard material. The hardness of each material of the hard phase has a relationship of WC <TiN <TiCN <TiC. Even when this second hard phase is included in the hard material, it has a cross-sectional structure similar to that in FIG. . The same applies to the second hard phase in that the average particle diameter of the core particles in the raw material powder is substantially maintained in the cross-sectional structure of the hard material.

(第三硬質相)
第三硬質相は、第一、第二硬質相以外の硬質相であり、その材質、配合量などに応じて、硬質材料の耐摩耗性、耐熱衝撃性、耐欠損性などの特性を改善する機能を有する。この第三硬質相は、第一・第二硬質相のようなコアシェル構造ではない。例えば、図1(B)に示すように、第三硬質相を含む硬質材料は、第一硬質相粒子10Aと第三硬質相粒子10Bとが混在して結合相20で結合された構造となる。
(Third hard phase)
The third hard phase is a hard phase other than the first and second hard phases, and improves the properties such as wear resistance, thermal shock resistance, and fracture resistance of the hard material according to the material and blending amount. It has a function. This third hard phase is not a core-shell structure like the first and second hard phases. For example, as shown in FIG. 1 (B), the hard material including the third hard phase has a structure in which the first hard phase particles 10A and the third hard phase particles 10B are mixed and bonded by the bonding phase 20. .

《材質》
第三硬質相の材質としては、周期表4,5,6族元素から選ばれる少なくとも一種の金属元素とCおよびNの少なくとも一種の元素との化合物、即ち、上記金属元素の炭化物、窒化物、および炭窒化物の少なくとも一種が利用できる。特に、WCが好適に利用できる。第三硬質相としてWCを含むと硬質材料の耐熱衝撃性、耐欠損性をさらに高めることができる。その他、第三硬質相としてTaCとNbCの少なくとも一方を含むと鋼に対する耐反応性を向上でき、ZrC、ZrCN、およびZrNの少なくとも一種を含むと高温での硬質材料の強度を向上させることができる。第三硬質相として、WCとWC以外の材料を含む場合、第三硬質相全体に占めるWCの含有量を50質量%以上とすることが耐熱衝撃性(耐欠損性)の向上の点で好ましい。
<Material>
As the material of the third hard phase, compound of at least one element of at least one metal element and C and N are selected from the periodic table 4,5,6 group elements, i.e., carbide of the metal element, nitride , And at least one of carbonitrides can be used. In particular, WC can be suitably used. When WC is included as the third hard phase, the thermal shock resistance and fracture resistance of the hard material can be further enhanced. In addition, when at least one of TaC and NbC is included as the third hard phase, the resistance to steel can be improved, and when at least one of ZrC, ZrCN, and ZrN is included, the strength of the hard material at high temperature can be improved. . When a material other than WC and WC is included as the third hard phase, the content of WC in the entire third hard phase is preferably 50% by mass or more from the viewpoint of improving thermal shock resistance (fracture resistance). .

《構造》
第三硬質相の構造は、単相構造のものが一般的であるが、従来のサーメットに含まれる有芯構造であっても構わない。その具体例としては、内芯部が実質的にTi(C,N)からなり、周辺部が、(Ti,W,Mo)(C,N),(Ti,W,Nb)(C,N),(Ti,W,Mo,Nb)(C,N),(Ti,W,Mo,Nb,Zr)(C,N)等からなる有芯構造が挙げられる。
"Construction"
The structure of the third hard phase is generally a single phase structure, but may be a cored structure included in a conventional cermet. As a specific example, the inner core portion is substantially made of Ti (C, N), and the peripheral portion is (Ti, W, Mo) (C, N), (Ti, W, Nb) (C, N ), (Ti, W, Mo, Nb) (C, N), (Ti, W, Mo, Nb, Zr) (C, N) and the like.

《サイズ》
第三硬質相の平均粒径は、0.1〜4μm程度が好ましい。0.1μm以上の平均粒径とすることで、原料粉末を扱い易く、工業的に入手可能だからである。また、4μm以下の平均粒径とすることで、硬質材料の強度や耐摩耗性を確保し易いからである。特に、第一硬質相および第二硬質相の粒径よりも第三硬質相の粒径を小さくした場合には、第一硬質相同士の粒子間または第一硬質相と第二硬質相の粒子間に第三硬質相を介在させ易く、高熱伝導率の熱伝導パスを形成し易いからである。第三硬質相の平均粒径を第一硬質相および第二硬質相の平均粒径よりも小さくすることで、焼結中に生成する液相への溶解が第三硬質相を主体とするものにでき、第一硬質相および第二硬質相の溶解、固溶体化を防ぐことができる。この結果、硬質材料の熱伝導率を高くすることができる。なお、第一硬質相および第二硬質相の液相への溶解を防ぐ目的のみの観点では、第三硬質相、例えばWCの粒度を微粒と粗粒の2つのピークを粒度分布に持つ二重粒度分布とし、微粒の粉末を第一硬質相および第二硬質相の溶解防止のための優先溶解用とし、粗粒の粉末を熱伝導率向上用として残存させる構成としてもよい。この場合には、必ずしも第三硬質相の平均粒径は第一硬質相よりも小さくなくても良い。
"size"
The average particle size of the third hard phase is preferably about 0.1 to 4 μm. This is because, by setting the average particle size to 0.1 μm or more, the raw material powder is easy to handle and is industrially available. Further, by setting the average particle size to 4 μm or less, it is easy to ensure the strength and wear resistance of the hard material. In particular, when the particle size of the third hard phase is smaller than the particle size of the first hard phase and the second hard phase, the particles between the first hard phases or the particles of the first hard phase and the second hard phase This is because it is easy to interpose the third hard phase between them, and it is easy to form a heat conduction path with high thermal conductivity. By making the average particle size of the third hard phase smaller than the average particle size of the first hard phase and the second hard phase, dissolution in the liquid phase generated during sintering is mainly composed of the third hard phase. And the dissolution and solid solution of the first hard phase and the second hard phase can be prevented. As a result, the thermal conductivity of the hard material can be increased. From the standpoint of only preventing the dissolution of the first hard phase and the second hard phase into the liquid phase, the double particle size distribution of the third hard phase, eg, WC, has two peaks of fine particles and coarse particles in the particle size distribution. The particle size distribution may be adopted, the fine powder may be used for preferential dissolution for preventing the dissolution of the first hard phase and the second hard phase, and the coarse powder may be left for improving the thermal conductivity. In this case, the average particle diameter of the third hard phase is not necessarily smaller than that of the first hard phase.

(含有量)
硬質相(第二硬質相や第三硬質相がある場合は、これら各硬質相も含む)の含有量は、硬質材料全体に対して70質量%以上97質量%以下とすることが好ましい。硬質相を70質量%以上、特に80質量%以上含有することで、硬質材料の強度や耐摩耗性を確保し易い。一方、硬質相の含有量を97質量%以下とすることで、硬質材料中に結合相を一定量含有させ、硬質材料の靭性(耐欠損性)を確保し易くできる。
(Content)
The content of the hard phase (including the second hard phase and the third hard phase, including these hard phases) is preferably 70% by mass or more and 97% by mass or less based on the entire hard material. By containing 70% by mass or more, particularly 80% by mass or more of the hard phase, it is easy to ensure the strength and wear resistance of the hard material. On the other hand, when the content of the hard phase is 97% by mass or less, a certain amount of the binder phase is contained in the hard material, and the toughness (breakage resistance) of the hard material can be easily ensured.

第二硬質相を含み、他の硬質相が第一硬質相のみの場合、硬質相全体に対する第二硬質相の含有量は5質量%以上45質量%以下程度が好ましい。より特定的には5%以上30質量%以下程度である。   When the second hard phase is included and the other hard phase is only the first hard phase, the content of the second hard phase with respect to the entire hard phase is preferably about 5% by mass or more and 45% by mass or less. More specifically, it is about 5% to 30% by mass.

第三硬質相を含む場合、結合相を含む硬質材料全体に対する第三硬質相の含有量は、2質量%以上80質量%以下程度が好ましい。これは、2質量%未満であると第三硬質相を含有する効果は小さく、80質量%を超えるとコアシェル構造の粒子の存在効果が小さくなるためである。結合相を含まない硬質相全体に対する第三硬質相の含有量で示すと、その割合は2質量%超85質量%以下とすることが好ましい。他の硬質相が第一硬質相のみの場合、硬質相全体に対する第三硬質相の含有量は5質量%超50質量%以下程度が好適である。   When the third hard phase is included, the content of the third hard phase with respect to the entire hard material including the binder phase is preferably about 2% by mass to 80% by mass. This is because if it is less than 2% by mass, the effect of containing the third hard phase is small, and if it exceeds 80% by mass, the existence effect of the core-shell structure particles is small. In terms of the content of the third hard phase with respect to the entire hard phase not including the binder phase, the ratio is preferably more than 2 mass% and 85 mass% or less. When the other hard phase is only the first hard phase, the content of the third hard phase with respect to the entire hard phase is preferably more than 5 mass% and about 50 mass% or less.

第一・第二・第三硬質相を全て含む場合、硬質相全体に対する第一硬質相と第二硬質相の合計含有量は15質量%以上98質量%未満程度が好ましい。また、第一・第二・第三硬質相を全て含む場合、硬質相全体に対する第二硬質相の含有量としては5質量%以上45質量%以下程度、特に5質量%以上30質量%以下程度が挙げられる。   When all of the first, second, and third hard phases are included, the total content of the first hard phase and the second hard phase with respect to the entire hard phase is preferably about 15% by mass or more and less than 98% by mass. When all of the first, second and third hard phases are included, the content of the second hard phase with respect to the entire hard phase is about 5% by mass to 45% by mass, particularly about 5% by mass to 30% by mass. Is mentioned.

また、第三硬質相にWCを含有する場合、第一硬質相および第二硬質相の体積含有率が第三硬質相(WC)の体積含有率よりも大きい場合には、従来の類似組成の硬質合金に対する耐熱衝撃性と耐摩耗性の向上効果が大きい。その上、地域偏在性が高く供給リスクを有するWCの使用比率が小さい省タングステン材料とできる。逆に、第一硬質相および第二硬質相の体積含有率がWC(第三硬質相)の体積含有率よりも小さい場合でも、本発明の硬質材料は、従来の超硬合金と比較して、遜色ない耐摩耗性、耐熱衝撃性、耐欠損性を発揮できる。   In addition, when WC is contained in the third hard phase, if the volume content of the first hard phase and the second hard phase is larger than the volume content of the third hard phase (WC), Greatly improves thermal shock resistance and wear resistance of hard alloys. In addition, it can be a tungsten-saving material with a small use ratio of WC that has high regional uneven distribution and a supply risk. On the contrary, even when the volume content of the first hard phase and the second hard phase is smaller than the volume content of WC (third hard phase), the hard material of the present invention is compared with the conventional cemented carbide. Can exhibit wear resistance, thermal shock resistance, and fracture resistance.

{結合相}
《材質》
結合相は硬質相の粒子を結合する材料で、鉄族金属が好ましい。特に、CoとNiの少なくとも一方は硬質相と濡れ性が高く好ましい。結合相がCoを主体とすると特に焼結性が向上し、焼結体を緻密とし易く、強度、破壊靱性を向上できる。一方、Niは耐食性に優れる。また、結合相中にはW、Cr、Ru、Cなど、硬質相の構成元素が固溶していても構わない。特にW、Cr、Ruの少なくとも一種の固溶量が多いと結合相が固溶強化され、硬質材料の靭性を向上できて好ましい。
{Bond phase}
<Material>
The binder phase is a material that binds the particles of the hard phase and is preferably an iron group metal. In particular, at least one of Co and Ni is preferable because of its high hard phase and wettability. When the binder phase is mainly composed of Co, the sinterability is particularly improved, the sintered body can be easily densified, and the strength and fracture toughness can be improved. On the other hand, Ni is excellent in corrosion resistance. Further, the constituent elements of the hard phase such as W, Cr, Ru, and C may be dissolved in the binder phase. In particular, a large amount of at least one of W, Cr, and Ru is preferable because the binder phase is strengthened by solid solution and the toughness of the hard material can be improved.

《含有量》
結合相は、硬質材料全体に対して3質量%以上20質量%以下含有することが好ましい。結合相の含有量が多いほど硬質材料の靱性や焼結性が高くなる傾向があり、少ないと強度や靭性が低下する傾向にある。
"Content"
The binder phase is preferably contained in an amount of 3% by mass to 20% by mass with respect to the entire hard material. As the binder phase content increases, the toughness and sinterability of the hard material tend to increase, and when the content is small, the strength and toughness tend to decrease.

〔硬質材料の製造方法〕
本発明の硬質材料は、代表的には、原料粉末の準備→混合→成形→焼結・冷却という工程を経て製造される。
[Method of manufacturing hard material]
The hard material of the present invention is typically produced through the steps of preparation of raw material powder → mixing → molding → sintering / cooling.

{準備工程}
準備工程では、第一硬質相を含む硬質相粉末と、結合相粉末とを準備する。その際、必要に応じて、さらに第二硬質相粉末と第三硬質相粉末の少なくとも一方を含む硬質相粉末を準備する。第一硬質相(第二硬質相)粉末以外の原料粉末の多くは、例えば市販品を利用することができるため、以下の説明は主に第一硬質相および第二硬質相粉末を得る方法について述べる。
{Preparation process}
In the preparation step, a hard phase powder including the first hard phase and a binder phase powder are prepared. At that time, if necessary, a hard phase powder further containing at least one of the second hard phase powder and the third hard phase powder is prepared. Since many of the raw material powders other than the first hard phase (second hard phase) powder can use, for example, commercially available products, the following explanation mainly relates to a method for obtaining the first hard phase and the second hard phase powder. State.

コアシェル構造の第一硬質相および第二硬質相粉末を得るには、まずコアとなる粒子からなる粉末(コア粉末)を用意する。つまり、TiN、TiC、TiCNまたはこれらの各々にWが固溶された固溶体のコア粉末を用意する。TiN、TiCやTiCNのコア粉末の他、Wの固溶されたコア粉末も、Wの固溶量の異なる各種粉末を市販品から選択することができる。次に、用意したコア粉末の各粒子に、シェルとなるWCを被覆する。このシェルの形成には、CVD法、PVD法などの気相成長法の他、ゾルゲル法などの液相法を用いることができる。シェルの成膜を気相成長法により行うことで、緻密なシェルを比較的容易に形成することができる。   In order to obtain the first hard phase powder and the second hard phase powder having a core-shell structure, first, a powder (core powder) made of core particles is prepared. That is, TiN, TiC, TiCN, or a solid solution core powder in which W is dissolved in each of them is prepared. In addition to core powders of TiN, TiC, and TiCN, various powders having different solid solution amounts of W can be selected from commercially available core powders in which W is dissolved. Next, WC serving as a shell is coated on each particle of the prepared core powder. The shell can be formed by a vapor phase growth method such as a CVD method or a PVD method, or a liquid phase method such as a sol-gel method. By forming the shell by a vapor deposition method, a dense shell can be formed relatively easily.

例えば、CVD法の場合には、コア粉末を容器に入れ、その容器を真空引き後に、容器を回転させながら所定のガスを容器内に導入して、所定の温度で保持することにより、コア粉末の各粒子の表面にWCのシェルを成膜する。容器を回転させることで、コア粉末の各粒子に満遍なくシェルを成膜することができる。容器に導入するガスとしては、原料ガスとしてタングステンのフッ化物(例えばWF6ガス)とメタン(CH4)若しくはアセトニトリル(CH3CN)が挙げられ、キャリアガスとして水素若しくはアルゴンガスが挙げられる。特に、CH3CNガスを用いると、脆性のW2Cよりも化学的に安定で高熱伝導率のWCを成膜し易く、中でも結晶性の高いWCを成膜できるため好ましい。成膜温度は700〜1100℃程度が好ましい。この温度範囲でWCを成膜すると、WCの結晶性が高くなり、WC中での結晶欠陥に伴うフォノンの散乱を抑制でき、シェルを高熱伝導率にできる。また、この温度範囲で成膜を行うと、コアとシェルとの密着性が高くなり、WCの剥がれや、それに伴う焼結工程でのWCのTi元素との固溶体化によるシェルの熱伝導率の低下が抑制できるため、好ましい。 For example, in the case of the CVD method, the core powder is put into a container, the container is evacuated, a predetermined gas is introduced into the container while rotating the container, and the core powder is held at a predetermined temperature. A WC shell is formed on the surface of each particle. By rotating the container, a shell can be uniformly formed on each particle of the core powder. Examples of the gas introduced into the container include tungsten fluoride (for example, WF 6 gas) and methane (CH 4 ) or acetonitrile (CH 3 CN) as a raw material gas, and hydrogen or argon gas as a carrier gas. In particular, it is preferable to use CH 3 CN gas because it is easier to form a WC that is chemically more stable and has a higher thermal conductivity than brittle W 2 C, and in particular, a WC having a high crystallinity can be formed. The film forming temperature is preferably about 700 to 1100 ° C. When a WC film is formed in this temperature range, the crystallinity of the WC increases, phonon scattering accompanying crystal defects in the WC can be suppressed, and the shell can have a high thermal conductivity. In addition, when the film is formed in this temperature range, the adhesion between the core and the shell becomes high, and the thermal conductivity of the shell due to the solid solution of WC with the Ti element in the sintering process accompanying the WC peeling. Since a fall can be suppressed, it is preferable.

一方、PVD法の場合には、例えば次の方法が挙げられる。まず、コア粉末を容器に入れ、その容器を真空引き後に、容器を回転させながらタングステン製ターゲットを用いてタングステンをコア粉末にスパッタ蒸着する。次に、得られたタングステン被覆コア粉末を1300〜1700℃程度の温度で炭化してコア粉末の各粒子表面にWCを形成させる。   On the other hand, in the case of the PVD method, for example, the following method can be mentioned. First, core powder is put in a container, and after vacuuming the container, tungsten is sputter-deposited on the core powder using a tungsten target while rotating the container. Next, the obtained tungsten-coated core powder is carbonized at a temperature of about 1300 to 1700 ° C. to form WC on each particle surface of the core powder.

{混合工程}
上述した各原料粉末は、適宜な混合手段でできるだけ均一に混合して混合粉末とされる。この混合工程においては、第一硬質相(第二硬質相)のコアシェル構造を損傷しないように原料粉末を混合することが重要である。つまり、この混合工程では、シェルに亀裂が生じたり、剥離が生じたりすることのないような混合手段を選択する。具体的には、例えば、原料粉末にエタノールやアセトンなどの有機溶媒を合わせてスラリーとし、このスラリーに超音波を照射しながら、粉砕メディアを用いることなく混合する。この混合方法によれば、原料粉末を実質的に粉砕することなく、かつシェルを損傷させることなく原料粉末を混合することができる。
{Mixing process}
Each raw material powder mentioned above is mixed as uniformly as possible by an appropriate mixing means to obtain a mixed powder. In this mixing step, it is important to mix the raw material powder so as not to damage the core-shell structure of the first hard phase (second hard phase). That is, in this mixing step, a mixing means is selected that does not cause cracks or peeling in the shell. Specifically, for example, the raw material powder is mixed with an organic solvent such as ethanol or acetone to form a slurry, and the slurry is mixed without pulverizing media while being irradiated with ultrasonic waves. According to this mixing method, the raw material powder can be mixed without substantially pulverizing the raw material powder and without damaging the shell.

原料粉末を混合して混合粉末としたら、通常、この混合粉末にバインダを加え、スプレードライヤーなどの乾燥手段を用いて噴霧乾燥して造粒する。バインダとしては、パラフィンワックスやポリエチレングリコールなどが挙げられる。このバインダの含有量は、上記原料粉末とバインダの合計に対して、1〜4質量%程度が好ましい。   When the raw material powder is mixed to obtain a mixed powder, usually, a binder is added to the mixed powder, and the mixture is spray-dried using a drying means such as a spray dryer and granulated. Examples of the binder include paraffin wax and polyethylene glycol. The content of the binder is preferably about 1 to 4% by mass with respect to the total of the raw material powder and the binder.

{成形工程}
混合工程で得られた混合粉末の成形は、混合粉末を金型に充填し、所定の圧力で所定の形状に成形する。成形方法としては、乾式加圧成形法、冷間静水圧成形法、射出成形法、押出成形法などが挙げられる。この成形時の圧力は、50〜200MPa程度が好ましい。また、成形体の形状は、求められる製品の形状に応じて、過度に複雑形状とならないような適宜な形状を選択する。最終的な製品形状へは、必要に応じて、仮焼後もしくは焼結後に適宜な機械加工を行えばよい。
{Molding process}
Molding of the mixed powder obtained in the mixing step is performed by filling the mold with the mixed powder and molding it into a predetermined shape with a predetermined pressure. Examples of the molding method include a dry pressure molding method, a cold isostatic pressing method, an injection molding method, and an extrusion molding method. The molding pressure is preferably about 50 to 200 MPa. Moreover, the shape of a molded object selects the appropriate shape which does not become an excessively complicated shape according to the shape of the product calculated | required. The final product shape may be appropriately machined after calcination or sintering as necessary.

{焼結工程}
成形体の焼結は、液相の生じる温度域で成形体を所定時間保持して行うことが好適である。焼結温度は1300℃以上1600℃以下程度が好ましい。焼結温度を高くし過ぎると、硬質相を構成する粒子が成長し易い。保持時間は0.5時間以上2.0時間以下程度、特に1.0時間以上1.5時間以下程度が好ましい。加熱時の雰囲気は、窒素,アルゴンなどの不活性ガス雰囲気または真空(0.1〜0.5Pa程度)、減圧水素雰囲気とすることが好ましい。
{Sintering process}
It is preferable to perform the sintering of the compact by holding the compact for a predetermined time in a temperature range where a liquid phase is generated. The sintering temperature is preferably about 1300 ° C to 1600 ° C. If the sintering temperature is too high, particles constituting the hard phase tend to grow. The holding time is preferably about 0.5 to 2.0 hours, particularly preferably about 1.0 to 1.5 hours. The atmosphere during heating is preferably an inert gas atmosphere such as nitrogen or argon, or a vacuum (about 0.1 to 0.5 Pa) or a reduced-pressure hydrogen atmosphere.

この焼結工程において、原料粉末の段階からシェルに亀裂や剥離などの損傷が実質的にない第一硬質相(第二硬質相)粉末を用いているため、シェルがバリアとなって液相がコアに接触することを阻止し、コアとシェルの間で構成元素同士の相互拡散が抑止される。また、シェル表面の一部が液相に溶解しても、シェル上に再析出するだけである。その結果、シェルは、コアの金属元素が固溶されて熱伝導率の低い固溶体となることなく、WCのまま維持される。もし一部の第一硬質相(第二硬質相)粒子のシェルに亀裂や剥離があったとしても、そのような第一硬質相(第二硬質相)の粒子はごく一部のため、大半の第一硬質相粒子(第二硬質相)のシェルはTiWNや、TiWC、TiWCNなどの熱伝導率の低い固溶体とならず、WCのまま維持される。コアシェル構造の硬質相全体、即ち第一硬質相(第二硬質相)全体のうち、シェルに亀裂や剥離が認められないコアシェル構造の硬質相粒子の割合は、70%以上、さらには80%以上、特に90%以上であることが好ましい。この割合は、SEMやTEMによる硬質材料の断面の観察により、(シェルに亀裂や剥離が認められないコアシェル構造の硬質相粒子の数/コアシェル構造の硬質相粒子の全数)×100を算出することで求める。その際、コアシェル構造の硬質相粒子の全数は30個以上となるように、必要に応じて複数視野での観察を行う。   In this sintering process, since the first hard phase (second hard phase) powder having substantially no damage such as cracking and peeling is used in the shell from the raw material powder stage, the shell serves as a barrier and the liquid phase becomes Contact with the core is prevented, and interdiffusion between constituent elements between the core and the shell is suppressed. Moreover, even if a part of the shell surface is dissolved in the liquid phase, it only re-deposits on the shell. As a result, the shell is maintained as WC without solidifying the core metal element into a solid solution with low thermal conductivity. Even if some of the shells of the first hard phase (second hard phase) are cracked or peeled, the particles of such first hard phase (second hard phase) are very small, The shell of the first hard phase particles (second hard phase) does not become a solid solution with low thermal conductivity such as TiWN, TiWC, or TiWCN, but is maintained as WC. The ratio of hard-phase particles with a core-shell structure in which no cracks or delamination is observed in the entire hard phase of the core-shell structure, that is, the first hard phase (second hard phase), is 70% or more, and more than 80%. In particular, it is preferably 90% or more. This ratio is calculated by observing the cross section of the hard material by SEM or TEM (number of hard-phase particles with core-shell structure in which no cracks or delamination is observed in the shell / total number of hard-phase particles with core-shell structure) x 100 Ask for. At that time, observation with a plurality of visual fields is performed as necessary so that the total number of hard-phase particles having a core-shell structure is 30 or more.

また、焼結工程において、焼結温度を所定の時間保持して加熱した成形体を冷却する際、真空、またはアルゴン(Ar)といった不活性ガス雰囲気で冷却することが好ましい。   Further, in the sintering step, when cooling the heated compact while maintaining the sintering temperature for a predetermined time, it is preferable to cool in a vacuum or an inert gas atmosphere such as argon (Ar).

〔切削工具〕
本発明の硬質材料を用いた切削工具は、例えば図2に示すように、基材110と、基材110を覆う硬質被覆120とを備える。図2では、切削工具の上面がすくい面、左斜面が逃げ面で、両面の稜線部が切刃である。
〔Cutting tools〕
The cutting tool using the hard material of the present invention includes, for example, a base 110 and a hard coating 120 that covers the base 110 as shown in FIG. In FIG. 2, the upper surface of the cutting tool is a rake face, the left slope is a flank face, and the ridge lines on both sides are cutting edges.

{切刃周辺領域}
この切削工具では、基材全体を上述した本発明の硬質材料で構成し、基材110の全面を硬質被覆120で覆っている。但し、本発明の硬質材料で構成する箇所は、少なくとも切削に関与する領域、つまり切刃とその近傍を含む切刃周辺領域であればよく、硬質被覆120の形成領域も同様である。切刃周辺領域は、逃げ面摩耗、クレータ摩耗が生じ易い領域や、切り屑が接触する領域をも含む。本発明の硬質材料からなる基材110を切刃周辺領域に用いることで、耐摩耗性だけでなく、耐欠損性、特に耐熱衝撃性に優れた切削工具とすることができる。特に、基材110を構成する第一硬質相(第二硬質相を含む場合は第二硬質相)では、コアがシェルに覆われて露出されていないため、次述する硬質被覆120がコアではなくシェルを構成するWC上に形成されることになり、硬質被覆120の基材110に対する密着性を高めることができる。これは、硬質被覆120が部分的に異なる材質(TiN、TiC、TiCN、WC)に対して形成されるのではなく、一様な材質(WC)に対して形成されるためであると考えられる。特に、硬質被覆120をPVD法で成膜した場合、硬質被覆120の構成材料の核がWC上に形成され易いことも、この密着力の向上に寄与していると考えられる。一方、切削工具では刃先処理を行うことがある。その場合、刃先処理領域はシェルが損傷し、コアが露出されることがある。但し、その場合でも、刃先処理領域でない逃げ面とすくい面の少なくとも一部では、コアが露出することなくシェルに覆われている。そのため、基材110の全被覆領域に亘ってシェルの損傷した第一硬質相粒子の割合が高い場合に比べれば、硬質被覆120の基材110に対する密着性は十分に高い。
{Cutting edge area}
In this cutting tool, the entire substrate is made of the hard material of the present invention described above, and the entire surface of the substrate 110 is covered with the hard coating 120. However, the portion formed of the hard material of the present invention may be at least a region related to cutting, that is, a region surrounding the cutting edge including the cutting blade and the vicinity thereof, and the region where the hard coating 120 is formed is the same. The peripheral region of the cutting edge includes a region where flank wear and crater wear are likely to occur, and a region where chips come into contact. By using the base material 110 made of the hard material of the present invention in the peripheral region of the cutting edge, it is possible to obtain a cutting tool that is excellent not only in wear resistance but also in chipping resistance, particularly thermal shock resistance. In particular, in the first hard phase constituting the substrate 110 (the second hard phase when the second hard phase is included), the core is not exposed by being covered with the shell. Therefore, it is formed on the WC constituting the shell, and the adhesion of the hard coating 120 to the substrate 110 can be improved. This is probably because the hard coating 120 is not formed on partially different materials (TiN, TiC, TiCN, WC) but on a uniform material (WC). . In particular, when the hard coating 120 is formed by the PVD method, it is considered that the core of the constituent material of the hard coating 120 is easily formed on the WC, which contributes to the improvement of the adhesion. On the other hand, cutting edge processing may be performed with a cutting tool. In that case, the cutting edge processing region may damage the shell and expose the core. However, even in that case, the core is covered with the shell without exposing at least a part of the flank face and the rake face which are not the blade edge processing region. Therefore, the adhesion of the hard coating 120 to the base material 110 is sufficiently high as compared with the case where the ratio of the first hard phase particles having the damaged shell over the entire coating region of the base material 110 is high.

{硬質被覆}
この切削工具は、基材110の少なくとも切刃周辺領域に硬質被覆120を備えていることが好ましい。硬質被覆を設けることで、より高い耐摩耗性を得ることができる。
{Hard coating}
This cutting tool is preferably provided with a hard coating 120 at least in the peripheral region of the cutting edge of the substrate 110. By providing the hard coating, higher wear resistance can be obtained.

硬質被覆120の材質は、周期表4,5,6族の金属,Al,SiおよびBからなる群から選択される1種以上の元素と、炭素、窒素、酸素および硼素からなる群から選択される1種以上の元素との化合物からなる化合物とすることが好ましい。具体例としては、TiCN,Al2O3,TiAlN,TiN,AlCrN、AlTiSiNなどが挙げられる。硬質被覆120の膜構造は、1層でも多層でもよい。硬質被覆120の合計厚さは1〜20μm程度が好ましい。硬質被覆120の形成方法は、熱CVD法などのCVD法、カソードアークイオンプレーティング法、スパッタ法などのPVD法のいずれもが利用できる。 The material of the hard coating 120 is selected from the group consisting of one or more elements selected from the group consisting of metals of Groups 4, 5, and 6 of the periodic table, Al, Si and B, and carbon, nitrogen, oxygen and boron. Preferably, the compound is composed of a compound with one or more elements. Specific examples include TiCN, Al 2 O 3 , TiAlN, TiN, AlCrN, and AlTiSiN. The film structure of the hard coating 120 may be a single layer or multiple layers. The total thickness of the hard coating 120 is preferably about 1 to 20 μm. As a method for forming the hard coating 120, any of a CVD method such as a thermal CVD method, a PVD method such as a cathode arc ion plating method, and a sputtering method can be used.

なお、図2では硬質被覆120を有する切削工具を示しているが、この被覆がなく基材110だけで構成される切削工具であってもよい。   Although FIG. 2 shows a cutting tool having the hard coating 120, it may be a cutting tool having only this base material 110 without this coating.

<試験例1>
まず、第一硬質相を作製する。コア粉末として平均粒径3μmのTiN粉末を準備し、その粉末をステンレス製容器に装入して真空引きした後、容器を回転させながら、1000℃に容器を加熱して、WF6ガスとCH3CN、H2、Arガスを流し、圧力6kPaの条件でTiN粉末の各粒子(コア)に平均厚み0.08μmのWC(シェル)を被覆する。この被覆粉末のシェルの平均厚みはコアの平均粒径の約2.7%である。シェルの平均厚みはTEMにより測定できる。
<Test Example 1>
First, a first hard phase is produced. Prepare a TiN powder with an average particle size of 3 μm as the core powder, put the powder in a stainless steel container and evacuate it, then heat the container to 1000 ° C. while rotating the container, WF 6 gas and CH 3 CN, H 2 , and Ar gas are allowed to flow, and each particle (core) of TiN powder is coated with WC (shell) having an average thickness of 0.08 μm under a pressure of 6 kPa. The average thickness of the shell of this coating powder is about 2.7% of the average particle size of the core. The average thickness of the shell can be measured by TEM.

同様に、第二硬質相として、平均粒径3μmのTiC粉末をコアとし、WCをシェルとする粉末と、平均粒径3μmのTiCN粉末をコアとし、WCをシェルとする粉末とを用意する。第二硬質相におけるシェルの平均厚みもコアの平均粒径の約2.7%である。   Similarly, a TiC powder having an average particle diameter of 3 μm as a core and a powder using WC as a shell and a powder having a TiCN powder having an average particle diameter of 3 μm as a core and WC as a shell are prepared as the second hard phase. The average thickness of the shell in the second hard phase is also about 2.7% of the average particle size of the core.

作製したコアシェル構造を有する複合粉末に、WC、TaC、NbC、TaNbC、Cr3C2などの第三硬質相粉末およびCo、Niの結合相粉末の原料粉末を添加して表1に示す組成とする。第三硬質相の各材質の平均粒径は、WC粉末は3μm、その他の粉末は1μmである。続いて、上記組成の粉末を、複合粉末のシェルを壊さないように混合する。具体的には、粉砕メディアを用いずに超音波を用いてエタノール中で原料粉末を混合し、コアシェル構造の粒子を用いた発明品1-1〜1-7と、コアシェル構造の粒子を用いていない比較品1-1〜1-4の混合粉末を作製する(表1参照)。これら比較品の硬質相に用いたTiCNは「第二硬質相」の欄に記載しているが、コアシェル構造ではないTiCNである。これらの混合粉末を樟脳とエタノールを用いて造粒し、1ton/cm2(約98MPa)の圧力でプレス成型して成形体とする。その後、最高温度1410℃、1時間保持の条件で真空下にて成形体を焼結して、焼結体を得る。焼結体の組成はほぼ原料粉末の配合組成と一致していることをEPMA(Electron Probe Micro Analyzer)にて確認できる。表1において、「第一硬質相」の「TiN/WC」は、コアがTiNでシェルがWCであることを示しており、この点は「第二硬質相」においても同様である。 The composite powder having the core-shell structure prepared was added with the raw material powder of the third hard phase powder such as WC, TaC, NbC, TaNbC, Cr 3 C 2 and the binder phase powder of Co, Ni, and the composition shown in Table 1 To do. The average particle size of each material of the third hard phase is 3 μm for the WC powder and 1 μm for the other powders. Subsequently, the powder having the above composition is mixed so as not to break the shell of the composite powder. Specifically, the raw material powder is mixed in ethanol using ultrasonic waves without using a grinding medium, and the inventive products 1-1 to 1-7 using the core-shell structure particles and the core-shell structure particles are used. Make a mixed powder of non-comparative products 1-1 to 1-4 (see Table 1). TiCN used for the hard phase of these comparative products is described in the column of “second hard phase”, but is TiCN not having a core-shell structure. These mixed powders are granulated using camphor and ethanol, and press-molded at a pressure of 1 ton / cm 2 (about 98 MPa) to obtain a molded body. Thereafter, the compact is sintered under vacuum at a maximum temperature of 1410 ° C. and held for 1 hour to obtain a sintered compact. It can be confirmed by EPMA (Electron Probe Micro Analyzer) that the composition of the sintered body almost matches the composition of the raw material powder. In Table 1, “TiN / WC” in the “first hard phase” indicates that the core is TiN and the shell is WC, and this point is the same in the “second hard phase”.

Figure 0005906813
Figure 0005906813

得られた焼結体を♯200のダイヤモンド砥石で座面の平面研削を行い、刃先処理を行って、SFKR12T3AZEN(逃げ面、すくい面は研削加工なし)なる形状の基材とする。この基材をSEMやTEMで観察したところ、逃げ面、すくい面のうち、刃先処理が及んでいない領域はシェルに亀裂や剥離の生じたコアシェル構造の複合粒子が実質的に存在しなかった。さらに、この基材の表面に公知のPVD法でTiAlN膜(硬質被覆)を5μmの平均厚みに被覆して切削工具とした。   The obtained sintered body is subjected to surface grinding of the bearing surface with a # 200 diamond grindstone and then subjected to cutting edge processing to obtain a base material having a shape of SFKR12T3AZEN (the flank and rake face are not ground). When this base material was observed by SEM or TEM, in the flank and rake surfaces, the region where the blade edge treatment did not reach was substantially free of core-shell composite particles in which the shell was cracked or peeled off. Further, a TiAlN film (hard coating) was coated on the surface of this base material with an average thickness of 5 μm by a known PVD method to obtain a cutting tool.

この工具を用いて切削速度200m/min、送り量0.3mm/刃、切り込み2.0mm、5分間、湿式の条件で、SCM435製の被削材をフライス切削試験し、工具の硬質材料(基材)に導入された亀裂本数を計測して耐欠損性(耐熱衝撃性)テストを行う。亀裂本数は、基材のSEMの組成像で観察して計測する。   Using this tool, milling test was performed on SCM435 work material under the wet conditions of cutting speed 200m / min, feed rate 0.3mm / blade, cutting depth 2.0mm, 5 minutes, hard material (base material) of the tool Measures the number of cracks introduced in, and performs a fracture resistance (thermal shock resistance) test. The number of cracks is measured by observing the SEM composition image of the substrate.

また、同じ形状の工具を用いて、切削速度150m/min、送り量0.25mm/刃、切り込み1.5mm、乾式の条件で、SK5製の被削材を切削試験し、逃げ面摩耗量(mm)を計測して耐摩耗性テストを行う。   Also, using a tool with the same shape, cutting test was performed on SK5 work material at a cutting speed of 150 m / min, feed rate of 0.25 mm / blade, cutting depth of 1.5 mm, and dry conditions, and flank wear (mm) Measure the wear resistance test.

両試験の結果を表2に示す。表2より、コアがTiNでシェルがWCのコアシェル構造の第一硬質相を有する発明品1-1〜1-8はコアシェル構造を有さない比較品1-1〜1-4と比較して優れた耐欠損性及び耐摩耗性を有することがわかる。   The results of both tests are shown in Table 2. From Table 2, the invention products 1-1 to 1-8 having the first hard phase of the core-shell structure with the core TiN and the shell WC are compared with the comparative products 1-1 to 1-4 having no core-shell structure. It can be seen that it has excellent chipping resistance and wear resistance.

Figure 0005906813
Figure 0005906813

<試験例2>
試験例1と同様にして、コア粉末の粒子の組成、平均粒径、並びにシェルの平均厚みが異なるコアシェル構造の複合粉末を準備する。但し、比較例2-1〜2-3を構成する複合粉末は、WF6前駆体、H2、イソプロピルベンゼンを原料ガスとし、TiN粉末を装入したステンレス製容器を600℃に加熱し、その容器を回転させながらTiN粉末にW2Cを被覆することで形成した。また、比較例2-3は原料粉末を遊星ミルで粉砕して混合粉末とした。その複合粉末の組成、コアの平均粒径(d)、シェルの平均厚み(t)、厚みtの平均粒径dに対する比率(厚み/径)を表3に示す。これらの第一硬質相の複合粉末が85質量%、第三硬質相のWCが5質量%、ZrCが0.5質量%、Cr3C2が0.5質量%、Coが9質量%の組成となるように、試験例1と同様に混合粉末を作製し、続いてプレス成型、焼結、機械加工を行い、SFKR12T3AZENなる形状の基材とする。第三硬質相の各材質の平均粒径は、WCは3μm、その他は1μmである。さらに、試験例1と同様にして、基材にPVD法でTiAlN膜を平均厚み5μmに被覆して切削工具とし、その工具に対して耐欠損性テストおよび耐摩耗性テストを行う。
<Test Example 2>
In the same manner as in Test Example 1, core-shell composite powders having different core powder particle compositions, average particle diameters, and average shell thicknesses are prepared. However, the composite powder composing Comparative Examples 2-1 to 2-3 is a WF 6 precursor, H 2 , isopropylbenzene as a raw material gas, a stainless steel container charged with TiN powder is heated to 600 ° C., It was formed by coating W 2 C on TiN powder while rotating the container. In Comparative Example 2-3, the raw material powder was pulverized with a planetary mill to obtain a mixed powder. Table 3 shows the composition of the composite powder, the average particle diameter (d) of the core, the average thickness (t) of the shell, and the ratio of the thickness t to the average particle diameter d (thickness / diameter). The composite powder of these first hard phase is 85% by mass, WC of the third hard phase is 5% by mass, ZrC is 0.5% by mass, Cr 3 C 2 is 0.5% by mass, and Co is 9% by mass. In addition, a mixed powder is prepared in the same manner as in Test Example 1, followed by press molding, sintering, and machining to obtain a base material having a shape of SFKR12T3AZEN. The average particle size of each material of the third hard phase is 3 μm for WC, and 1 μm for the others. Further, in the same manner as in Test Example 1, the base material is coated with a TiAlN film with an average thickness of 5 μm by the PVD method to form a cutting tool, and a fracture resistance test and an abrasion resistance test are performed on the tool.

Figure 0005906813
Figure 0005906813

その結果を表4に示す。表4の結果より、コアの組成がTiNである発明品2-1〜2-7は、コアの組成がTiNでシェルがW2Cである比較品2-1、比較品2-2や、コアの組成がTiNでシェルがW2Cであり、遊星ミルで粉砕して作製した比較品2-3よりも優れた耐欠損性を有することがわかる。中でも、シェルの平均厚みがコアの平均粒径の3%を下回る発明品2-1〜2-2、2-5〜2-7は、耐欠損性が発明品2-3〜2-4よりも優れている。さらに、コアの平均粒径が2〜7μmの範囲内にある発明品2-5〜2-7は、コアの平均粒径が1.6μmの発明品2-1〜2-4よりも耐欠損性が顕著に優れている。特に、コアの平均粒径が大きい発明品2-6は、耐欠損性に優れていることがわかる。これは、発明品2-6については、コアの平均粒径を大きくすることで粒界が少なくなり基材の熱伝導性が向上したためと考えられる。一方、遊星ミルで原料粉末を粉砕混合した比較品2-3は、比較品2-1、2-2よりも早期に欠損する。これは、粉砕混合により、シェルに亀裂や剥離等の損傷が生じ、その損傷箇所を介して焼結時に生じた液相がコアに接触し、シェルが固溶体化したためであると考えられる。 The results are shown in Table 4. From the results of Table 4, invention products 2-1 to 2-7 in which the core composition is TiN are comparative products 2-1, comparative product 2-2 in which the core composition is TiN and the shell is W 2 C, It can be seen that the core composition is TiN and the shell is W 2 C, and the fracture resistance is superior to that of Comparative Product 2-3 produced by pulverization with a planetary mill. Among them, the inventive products 2-1 to 2-2 and 2-5 to 2-7, in which the average thickness of the shell is less than 3% of the average particle diameter of the core, are more resistant to defects than the inventive products 2-3 to 2-4. Is also excellent. Furthermore, invention products 2-5 to 2-7 having an average core particle size in the range of 2 to 7 μm are more resistant to defects than invention products 2-1 to 2-4 having an average core particle size of 1.6 μm. Is significantly better. In particular, it can be seen that Invention 2-6 having a large average particle diameter of the core is excellent in fracture resistance. This is presumably because, for Invention 2-6, increasing the average particle size of the core reduced the grain boundaries and improved the thermal conductivity of the substrate. On the other hand, the comparative product 2-3 obtained by pulverizing and mixing the raw material powder in the planetary mill is deficient earlier than the comparative products 2-1 and 2-2. This is considered to be because the shell was damaged by cracking and peeling due to the pulverization and mixing, and the liquid phase generated during the sintering contacted the core through the damaged portion, and the shell became a solid solution.

Figure 0005906813
Figure 0005906813

<試験例3>
試験例1の発明品1-5と同様の製造法でコアの組成のみが異なる表5に示す発明品3-1〜3-5を作製した。Wの固溶量の異なるコアの粒子は、TiとWを所定量の比(コアを構成する金属元素(ここではTiとW)に占めるWの原子比)で配合し、1700〜2000℃程度の温度で窒化することで得られる。さらに、これら発明品3-1〜3-5の切削工具に対して、試験例1と同様にして、耐欠損性テストおよび耐摩耗性テストを行う。
<Test Example 3>
Invention products 3-1 to 3-5 shown in Table 5 were produced by the same production method as that of Invention product 1-5 of Test Example 1 except for the core composition. Core particles with different solid solution amounts of W are composed of Ti and W in a certain amount ratio (atomic ratio of W in the metal elements constituting the core (Ti and W in this case)), about 1700-2000 ° C It can be obtained by nitriding at a temperature of Furthermore, the chipping resistance test and the abrasion resistance test are performed on the cutting tools of the inventive products 3-1 to 3-5 in the same manner as in Test Example 1.

Figure 0005906813
Figure 0005906813

その結果を表6に示す。表6の結果より、コアにWを1〜30原子%含む発明品3-2〜3-4は、コアにWを含まない発明品3-1よりも優れた耐欠損性及び耐摩耗性を有することがわかる。さらに、コアにWを30原子%を超えて含む発明品3-5であっても、発明品1-5と遜色ない耐欠損性と耐摩耗性を有することがわかる。   The results are shown in Table 6. From the results shown in Table 6, invention products 3-2 to 3-4 containing 1 to 30 atomic% of W in the core have better fracture resistance and wear resistance than invention products 3-1 that do not contain W in the core. You can see that Furthermore, it can be seen that even the invention 3-5 containing more than 30 atomic% of W in the core has the same chipping resistance and wear resistance as the invention 1-5.

Figure 0005906813
Figure 0005906813

今回開示された実施の形態および試験例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。   It should be considered that the embodiments and test examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の硬質材料は、耐摩耗性と共に高い耐熱衝撃性を備えることから、従来の超硬合金の代替材料としての利用が期待される。特に、この硬質材料は、鋼と反応し難いことから、鋼加工用の切削工具として好適に利用することができる。また、本発明の硬質材料の製造方法は、切削工具の製造分野などに利用することができる。   Since the hard material of the present invention has high thermal shock resistance as well as wear resistance, it is expected to be used as an alternative material for conventional cemented carbide. In particular, since this hard material hardly reacts with steel, it can be suitably used as a cutting tool for steel processing. Moreover, the manufacturing method of the hard material of this invention can be utilized for the manufacture field | area etc. of a cutting tool.

10 硬質相 10A 第一硬質相粒子 10B 第三硬質相粒子
11 コア 12 シェル
20 結合相
110 基材 120 硬質被覆
10 Hard phase 10A First hard phase particle 10B Third hard phase particle
11 core 12 shell
20 bonded phase
110 Base material 120 Hard coating

Claims (7)

第一硬質相と、鉄族金属を含む結合相とを備える硬質材料であって、
前記第一硬質相は、
Tiの窒化物からなると共に、Wを含む固溶体であるコアと、
WCで構成されて、前記コアを覆うシェルとを有し、
前記コアにおけるWの固溶量がTiに対する原子比で1%以上30%以下である硬質材料。
A hard material comprising a first hard phase and a binder phase containing an iron group metal,
The first hard phase is
A core made of a nitride of Ti and a solid solution containing W ,
Consists of WC, have a shell that covers the core,
Hard material solid solution amount of W in the core is less than 1% to 30% by atomic ratio to Ti.
前記シェルの平均厚みは、前記コアの平均粒径の3%未満である請求項1に記載の硬質材料。 The average thickness of the shell is made of a hard material according to Motomeko 1 Ru less than 3% der having an average particle diameter of the core. さらに第二硬質相を含み、
その第二硬質相は、
Tiの炭化物および炭窒化物の少なくとも一方からなるコアと、
WCで構成されて、前記コアを覆うシェルとを有する請求項1または請求項2に記載の硬質材料。
Including a second hard phase,
Its second hard phase is
A core comprising at least one of Ti carbide and carbonitride;
It consists of WC, the hard material according to Motomeko 1 or claim 2 that have a shell that covers the core.
さらに第三硬質相として、第一硬質相のコアとは異なる材質からなり、第二硬質相を含む場合は第二硬質相のコアとも異なる材質からなって、周期表4,5,6族元素から選ばれる少なくとも一種の金属元素とCおよびNの少なくとも一方の元素との化合物の少なくとも一種を2〜80質量%含有する請求項1〜請求項3のいずれか一項に記載の硬質材料。 Further, as a third hard phase, made of different materials than the core of the first hard phase, when containing the second hard phase consists of a material which differs the core of the second hard phase, periodic table Group 4, 5, 6 at least one rigid at least one of any one of Motomeko 1 to claim 3 you containing from 2 to 80 wt% of a compound of at least one element of the metal elements and C and N selected from the following element material. 前記コアの平均粒径は0.5μm以上である請求項1〜請求項4のいずれか一項に記載の硬質材料。 Hard material as claimed in any one of the average particle size is Ru der than 0.5μm Motomeko 1 to claim 4 of the core. 前記コアの平均粒径は2μm以上である請求項5に記載の硬質材料。 Rigid material according to Motomeko 5 average particle diameter of the core is Ru der than 2 [mu] m. 逃げ面およびすくい面の両面の稜線部で構成される切刃とその近傍とを含む切刃周辺領域を備える切削工具であって、
少なくとも前記切刃周辺領域は、
請求項1〜請求項6のいずれか一項に記載の硬質材料からなる基材と、
この基材を覆う硬質被覆とを備え、
前記基材を構成する硬質材料は、前記逃げ面およびすくい面の少なくとも一部において前記コアが露出することなくシェルで覆われている切削工具。
A cutting tool comprising a cutting edge peripheral region including a cutting edge composed of ridges on both sides of the flank and rake face and the vicinity thereof,
At least the peripheral area of the cutting edge is
A substrate made of the hard material according to any one of claims 1 to 6 ,
With a hard coating covering this substrate,
The hard material forming the substrate, the tool cutting off that covered with no shell said core is exposed at least part of said flank and rake face.
JP2012044396A 2012-02-29 2012-02-29 Hard materials and cutting tools Active JP5906813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044396A JP5906813B2 (en) 2012-02-29 2012-02-29 Hard materials and cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044396A JP5906813B2 (en) 2012-02-29 2012-02-29 Hard materials and cutting tools

Publications (2)

Publication Number Publication Date
JP2013181188A JP2013181188A (en) 2013-09-12
JP5906813B2 true JP5906813B2 (en) 2016-04-20

Family

ID=49272066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044396A Active JP5906813B2 (en) 2012-02-29 2012-02-29 Hard materials and cutting tools

Country Status (1)

Country Link
JP (1) JP5906813B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200340083A1 (en) * 2018-05-15 2020-10-29 Sumitomo Electric Industries, Ltd. Cermet, Cutting Tool Containing the Same, and Method of Manufacturing Cermet
US20220016715A1 (en) * 2019-10-25 2022-01-20 Sumitomo Electric Industries, Ltd. Cemented carbide and cutting tool including same as substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HU222859B1 (en) * 1997-05-13 2003-12-29 Richard Edmund Toth Sintered material and powder metallurgy powder for making sintered articles
EP1768804A4 (en) * 2004-06-10 2010-09-15 Allomet Corp Method for consolidating tough coated hard powders

Also Published As

Publication number Publication date
JP2013181188A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5716577B2 (en) Hard material, manufacturing method thereof, and cutting tool
KR102326622B1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP4690475B2 (en) Cermet and coated cermet tools
JP5305056B1 (en) Cutting tool made of cubic boron nitride based sintered body
JPWO2011002008A1 (en) Cermet and coated cermet
JP5807851B1 (en) Cermets and cutting tools
JP6439975B2 (en) Cermet manufacturing method
JP5652113B2 (en) WC-based cemented carbide cutting tool and surface-coated WC-based cemented carbide cutting tool exhibiting excellent fracture resistance in heat-resistant alloy cutting
JPWO2017191744A1 (en) Cemented carbide and cutting tools
JP5559575B2 (en) Cermet and coated cermet
JP5971472B2 (en) Hard material, manufacturing method of hard material, cutting tool and friction stir welding tool
JP5971616B2 (en) Hard material, manufacturing method of hard material, cutting tool and friction stir welding tool
JP2017119343A (en) Surface-coated cubic boron nitride sintered compact tool
JP2011235410A (en) Cutting tool made from wc-based cemented carbide and cutting tool made from surface coating wc-based cemented carbide which exhibit excellent chipping resistance in cutting work of heat resistant alloy
JP5906813B2 (en) Hard materials and cutting tools
JP2007136655A (en) Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting excellent wear resistance in high-speed heavy cutting of high-hardness steel
JP5381616B2 (en) Cermet and coated cermet
JP7170964B2 (en) Cemented Carbide and Coated Cemented Carbide
JP5843171B2 (en) Hard materials and cutting tools
JP7035820B2 (en) Base material and cutting tools
JP2012086298A (en) Cutting tool made of surface-coated wc-based cemented carbide exhibiting excellent defect resistance in high-speed intermittent cutting of steel
JP2012041595A (en) Cermet
JP2013108152A (en) Hard particle and manufacturing method thereof
JP2014221942A (en) Hard particles, hard material, cutting tool, method of producing hard particles
JP5233124B2 (en) Cemented carbide and coated cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5906813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250