JP4069749B2 - Cutting tool for roughing - Google Patents

Cutting tool for roughing Download PDF

Info

Publication number
JP4069749B2
JP4069749B2 JP2003015987A JP2003015987A JP4069749B2 JP 4069749 B2 JP4069749 B2 JP 4069749B2 JP 2003015987 A JP2003015987 A JP 2003015987A JP 2003015987 A JP2003015987 A JP 2003015987A JP 4069749 B2 JP4069749 B2 JP 4069749B2
Authority
JP
Japan
Prior art keywords
cermet
cutting
phase
mass
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003015987A
Other languages
Japanese (ja)
Other versions
JP2004223666A (en
Inventor
隆司 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003015987A priority Critical patent/JP4069749B2/en
Priority to US10/744,634 priority patent/US7413591B2/en
Priority to CNB2003101247145A priority patent/CN100566895C/en
Priority to DE10361321A priority patent/DE10361321B4/en
Publication of JP2004223666A publication Critical patent/JP2004223666A/en
Application granted granted Critical
Publication of JP4069749B2 publication Critical patent/JP4069749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、TiCN基サーメットからなり、荒加工用として高い切削性能を有する切削工具に関する。
【0002】
【従来の技術】
従来より、切削加工用のスローアウェイチップの素材として炭化タングステンからなる硬質相をCoの結合相で結合した超硬合金(例えば、特許文献1、2参照)や、Tiと、Ti以外の周期律表4a、5aおよび6a族金属のうちの1種以上との複合金属炭窒化物からなる硬質相を、Coおよび/またはNiの結合相にて結合したTiCN基サーメット(例えば、特許文献3、4参照)が主として用いられている。ところで、現状では超硬合金は仕上げ加工から荒加工に至る幅広い加工領域で用いられているものの、TiCN基サーメットは高い耐摩耗性、鋼材との優れた耐反応性を生かして仕上げ加工領域で用いられているのが実状である。
【0003】
【特許文献1】
特開平8−57703号公報
【特許文献2】
特開2001−329331号公報
【特許文献3】
特開2001−277008号公報
【特許文献4】
特開平9―239605号公報
【0004】
【発明が解決しようとする課題】
ところが、近年、炭化タングステンの枯渇が危惧されており、TiCN基サーメットにて広範囲な加工可能領域、特に荒加工領域で高い切削性能を発揮するTiCN基サーメットが切望されている。
【0005】
しかしながら、特許文献3、4などの従来のTiCN基サーメットを荒加工に用いると、仕上げ加工よりも切削工具に加わる衝撃が大きいために、この切削時の衝撃によって工具が早期に欠損しやすく、超硬合金の切削性能には及ばないという問題があった。
【0006】
従って、本発明は、上記課題を解決するためになされたものであり、その目的は、荒加工領域で超硬合金と同等またはそれ以上の切削性能を発揮するTiCN基サーメットからなる荒加工用切削工具を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、上記荒加工用に適したサーメットの構成について検討した結果、Tiおよび結合相の含有量、硬質相の粒径を最適化することにより、荒加工領域にて超硬合金と同等またはそれ以上の高い切削性能を発揮するサーメットが得られることを知見した。
【0008】
即ち、本発明の荒加工用切削工具は、Coおよび/またはNiを主成分とする結合相と、Tiを主とする周期律表4a、5aおよび6a族金属の炭窒化物からなる硬質相とからなるTiCN基サーメットからなり、前記CoおよびNiを総量で15〜22質量%含有し、前記周期律表4a、5aおよび6a族金属総量に対してTiを55〜80質量%含有し、且つサーメット中心部の前記硬質相の平均結晶粒径が0.6〜0.9μmであるとともに、前記サーメットの表面から0.01〜5μmの厚みの極表面に、結合相濃度が次第に増加する結合相富化領域が存在することを特徴とする。
【0009】
また、前記サーメットの極表面には、結合相濃度が次第に増加する結合相富化領域が存在することによって、荒加工領域にも耐えうる耐欠損性を有しかつ物理蒸着もしくは化学蒸着膜などを形成した場合においても工具本体との優れた密着性を維持することができる。この結合相富化領域は0.01〜5μmの厚みで存在することが重要である
【0010】
また、前記サーメットの表面直上には、(Ti1−x)(C1−y)(ただし、MはTi以外の周期律表4a、5aおよび6a族金属、Al、Siのうちの1種以上、0.4≦x≦1、0≦y≦1)で表わされる硬質被覆層を被覆してなることによって、優れた耐磨耗性と耐欠損性を両立し発揮することができる。
【0011】
【発明の実施の形態】
本発明の切削工具は、Coおよび/またはNiを主成分とする結合相と、Tiを主とする周期律表4a、5aおよび6a族金属の炭窒化物からなる硬質相とからなるTiCN基サーメットからなるものであるが、本発明によれば、特に荒加工に適した工具に関わるものである。
【0012】
ここで、本発明における荒加工領域とは、送り0.30mm/rev(回転)以上、かつ、切込み2.0mm以上、切削速度250m/min以上で、湿式または乾式状態での加工、特に旋削加工を指す。
【0013】
この荒加工用に適した工具とする上で、本発明によれば、前記CoおよびNiを総量で15〜22質量%含有することが重要である。すなわち、結合相の含有量が15質量%未満では所望の強度および耐衝撃性を得ることができず、逆に結合相の含有量が22質量%を越えると急激に耐摩耗性が低下する結果、いずれの場合も荒加工用として用いると即時欠損および刃先の塑性変形性が悪く、摩滅してしまい優れた切削性能を得ることができない。CoおよびNiは、特に16〜20質量%、さらには17〜19.5質量%の割合で含有されることが望ましい。
【0014】
また、本発明によれば、サーメット中における前記周期律表4a、5aおよび6a族金属総量に対してTiを55〜80質量%含有することが重要である。これは、前記Ti量が55質量%より少ないと荒加工に必要な強度を確保することができず、逆に、80質量%より多いと靭性が低下して、荒加工時の耐衝撃性が低下する。特に前記Ti量は65〜77質量%であることが望ましい。
【0015】
このTiを含む周期律表4a、5aおよび6a族金属は、硬質相として複合金属炭窒化物を形成しており、特に、硬質相は、TiCNからなる芯部と、Tiと、Ti以外の周期律表4a、5aおよび6a族金属、特にW、Mo、TaおよびNbのうちの1種以上との複合炭化物、複合窒化物、複合炭窒化物の少なくとも1種からなる周辺部とから構成される2重有芯構造、または3重有芯構造をなしていることが、粒成長制御効果を有しサーメット基体が微細で均一な組織となるとともに、結合相との濡れ性に優れてサーメットの高強度化に寄与する点で望ましい。
【0016】
さらに、本発明によれば、切削工具の中心部における前記硬質相の平均結晶粒径が0.6〜0.9μm、さらに0.7〜0.9μmであることが重要である。すなわち、この硬質相の平均結晶粒径が0.6μmより小さいと硬質相の凝集が生じやすく不均一な組織となってサーメットの耐衝撃性や硬度が低下し、工具の耐欠損性および耐摩耗性が低下する。逆に、硬質相の平均結晶粒径が0.9μmを超えるとサーメットの強度が低下してチップの耐欠損性が低下する。
【0017】
また、本発明の切削工具においては、前記サーメットの極表面に結合相濃度が次第に増加する結合相富化領域が存在することが重要である。このような結合相富化領域の存在によって、切削工具の切刃における熱伝導性を高めることができる結果、切刃の放熱性を増し荒加工時における過酷な切削条件での耐欠損性を高めることができる。また、これによって切刃が被削材における加工面の形状に対してわずかに変形して被削材の加工面の面粗度をなめらかにする効果も有する。前記結合相富化領域の厚みは、切削工具の中心部分の結合相量に対して、1.1倍以上の結合相量を有する領域として、最表面からの厚みが0.01〜5μm、さらに1〜3μm、さらに1〜2.5μmであることが前記熱伝導性を高めるとともに、工具切刃における過度な塑性変形を抑制するために重要である
【0018】
また、後述する硬質被覆層との密着性、熱伝導率向上、塑性変形の抑制の点でサーメット基体の表面における硬質相の平均結晶粒径r1が、サーメット中心部における硬質相の平均結晶粒径r2よりも大きいことが望ましく、具体的にはr1=0.5〜2μmであることが望ましい。
【0019】
さらには、本発明によれば、サーメット基体表面に、(Ti1−x)(C1−y)(ただし、MはTi以外の周期律表4a、5aおよび6a族金属、Al、Siのうちの1種以上、0.4<x≦1、0≦y≦1)で表わされる硬質被覆層(以下、Ti系被覆層と略す。)を被覆してもよく、かかる被覆層はサーメット母材の直上に形成することが重要である。さらには、高硬度や高温安定性などの耐熱性の点で、Mは、Al、Si、ZrおよびCrの群から選ばれる1種、最適にはAlであることが最も望ましい。
【0020】
また、硬質被覆層としては、上記Ti系被覆層に加えて、例えば、ダイヤモンド、立方晶窒化硼素、アルミナ、Zr、Hf、Cr、Siの炭化物、窒化物、炭窒化物の1種以上からなる他の硬質被覆層を形成することもできる。
【0021】
本発明のTiCN基サーメットからなる切削工具を製造するには、まず原料粉末として、硬質相形成成分として、TiCN粉末と、周期律表4a、5aおよび6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種の粉末を用いて、周期律表4a、5aおよび6a族金属総量に対するTi量が55〜80質量%、特に65〜77質量%となるように秤量する。また、硬質相形成成分全体における炭素(C)と窒素(N)とのN/(C+N)の比率が0.4〜0.6となるように調合する。
【0022】
また、このときに用いるTiCN粉末の平均粒径が0.4〜1.0μmの微細な粉末であることが必要である。この時のTiCN粉末の平均粒径が1.0μmよりも大きいと、サーメットにおける硬質相の前記平均結晶粒径を1μm以下にすることが困難となる。また、0.4μmよりも小さいと、硬質相の前記平均結晶粒径を0.5μm以上とすることが困難となる。
【0023】
また、周期律表4a、5aおよび6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種の粉末の平均粒径は0.5〜2μmが適当である。
【0024】
また、結合相形成成分として、平均粒径が0.3〜4μmのNiおよび/またはCoの粉末を15〜22質量%の割合で添加する。
【0025】
そしてこれらの秤量された粉末をボールミルなどによって混合した後、プレス成形、押出成形、射出成形などの公知の成形手法によって所定の切削工具形状に成形した後、焼成する。
【0026】
焼成にあたっては、有芯構造の硬質相を形成し、また硬質相の粒成長を抑制するために、真空度0.01Torr以下で、室温から950℃付近までを10〜15℃/分で昇温し、その後、1300℃付近までを1〜5℃/分で昇温し、さらに1500℃〜1600℃までを3℃〜15℃/分で昇温し保持時間1時間以内で放冷で室温まで10℃〜15℃/分で冷却する条件で焼成することが望ましい。
【0027】
また、サーメット表面に結合相富化領域を形成するためには、上記の焼成条件において、室温から1250℃〜1350℃までを窒素ガスを0.1〜0.3kPaの窒素ガス中で処理し、1250℃〜1350℃から1500〜1600℃の昇温過程のみ真空0.01Torr以下とし、1500℃〜1600℃で焼成した後、冷却過程において真空0.01Torr以下として室温まで10℃〜15℃/分で冷却することが望ましい。
【0028】
また、上記の方法によって作製されたTiCN基サーメットを母材として、その表面に、化学気相成長法(CVD法)や、スパッタリング法、イオンプレーティング法、蒸着法などの物理気相成長法(PVD法)などによって前述したような被覆層を形成すればよい。
【0029】
【実施例】
原料粉末として、表1に示す平均粒径のTiCN粉末と、いずれも平均粒径が0.5〜2μmのTiN粉末、TaC粉末、NbC粉末、WC粉末、ZrC粉末、VC粉末、および平均粒径が2μmのCo粉末、Ni粉末またはCoとNiとの合金粉末を用い、これら原料粉末を表1に示される配合組成に配合し、ボールミルで湿式混合粉砕した。なお、上記平均粒径はマイクロトラック法で測定したものである。
【0030】
次に、上記混合粉末を用いて、成形圧98MPaでチップ形状および抗折試験片形状にプレス成形し、それぞれの成形体を0.01Torr以下の真空中で950℃まで12℃/minで昇温し、950℃から1300℃までを2℃/分で昇温し、表1の焼成温度まで5℃/分で昇温し、1時間保持した後、真空中で12℃/分で室温まで降温して、CNMG120408形状のサーメットを作製した。なお、試料No.8、9については、昇温過程で1300℃までは0.2KPaの窒素中とする以外は、上記と同様にして焼成した。
【0031】
作製したサーメットについて、JISR1601に従い、3点曲げ強度を測定するとともに、JISR1607に従い、靱性(IF法)の測定を行った。結果は表2に示した。
【0032】
さらに得られたチップ中心部の断面を電子顕微鏡観察して7×7μmの観察領域2箇所をインターセプト法で硬質相の結晶粒径を測定し、その平均結晶粒径を測定した。
【0033】
さらに、チップの表面付近における結合相のNiとCoの濃度分布をEPMA法で濃度変化を測定し、NiとCoの濃度変化の合算でNi+Coの濃度変化を観察し、表面から、中心部分の濃度に対して1.1倍以上の濃度を有する領域までの厚みを3箇所測定しその平均を求めた。
【0034】
また、得られたスローアウェイチップ各10個ずつについて、下記荒切削条件Aで切削を行い、欠損した時の送りを表1に示した。
切削条件
被削材:SCM435
被削材:4本溝入り丸棒
切削速度:250m/min
送りおよび切削時間:0.1mm/revで10秒間切削後、送りを0.05mm/revずつ上げて各10秒間ずつ切削(最大送り0.5mm/revまで)
切込み:2mm
【0035】
【表1】

Figure 0004069749
【0036】
表1の結果から明らかなように、本発明の試料No.1〜3、5〜7、10、11は、いずれも高い強度、硬度を有するとともに荒加工切削においても試料No.16の超硬合金なみの優れた切削特性を示した。
【0037】
これに対して、Ni+Co含有量が15質量%より少ない試料No.13では抗折強度が低く、荒加工条件では早期に欠損が発生してしまった。また、Ni+Co含有量が22質量%を超える試料No.15では,金属冨化層が厚くなり耐酸化性および耐塑性変形性が低下し、刃先が摩滅した。
【0038】
さらに、周期律表4a、5aおよび6a族金属総量に対してTiの含有量が55質量%より少ない試料No.12ではチップの刃先が早期に欠損が発生してしまい、周期律表4a、5aおよび6a族金属総量に対してTiの含有量が80質量%を超える試料No.12では摩耗が進行して早期に切削不能となった。さらに、複合金属炭窒化物の平均粒径が1μmを超える試料No.4、14では、荒加工切削で早期に欠損が発生してしまった。
【0039】
【発明の効果】
以上詳述したように、本発明の切削工具は、TiCN基サーメットでありながら、Tiおよび結合相の含有量、硬質相の粒径を最適化することにより、荒加工領域において超硬合金と同等またはそれ以上の高い切削性能を発揮する工具を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cutting tool comprising a TiCN-based cermet and having high cutting performance for rough machining.
[0002]
[Prior art]
Conventionally, as a material of a throw-away tip for cutting, a cemented carbide obtained by bonding a hard phase made of tungsten carbide with a binder phase of Co (see, for example, Patent Documents 1 and 2), Ti, and a periodic rule other than Ti Table 4a, 5a and TiCN-based cermets in which a hard phase composed of a composite metal carbonitride with at least one of group 6a metals is bonded with a Co and / or Ni bonded phase (for example, Patent Documents 3 and 4) Are mainly used. By the way, currently, cemented carbide is used in a wide range of machining areas from finishing to roughing, but TiCN-based cermets are used in the finishing area by taking advantage of high wear resistance and excellent reaction resistance with steel materials. It is the reality.
[0003]
[Patent Document 1]
JP-A-8-57703 [Patent Document 2]
JP 2001-329331 A [Patent Document 3]
JP 2001-277008 A [Patent Document 4]
JP-A-9-239605 [0004]
[Problems to be solved by the invention]
However, in recent years, there has been a fear of exhaustion of tungsten carbide, and a TiCN-based cermet that exhibits high cutting performance in a wide range of workable areas, particularly in a rough machining region, is desired.
[0005]
However, when conventional TiCN-based cermets such as Patent Documents 3 and 4 are used for roughing, the impact applied to the cutting tool is larger than that for finishing. There was a problem that it did not reach the cutting performance of hard alloys.
[0006]
Accordingly, the present invention has been made to solve the above-mentioned problems, and the object thereof is cutting for rough machining comprising a TiCN-based cermet that exhibits cutting performance equal to or higher than that of cemented carbide in a rough machining region. To provide a tool.
[0007]
[Means for Solving the Problems]
As a result of studying the structure of the cermet suitable for the above rough machining, the present inventor has optimized the content of Ti and binder phase and the particle size of the hard phase to be equivalent to the cemented carbide in the rough machining region. It was also found that a cermet exhibiting a higher cutting performance than that can be obtained.
[0008]
That is, the roughing cutting tool of the present invention includes a binder phase mainly composed of Co and / or Ni, and a hard phase composed of a carbonitride of periodic table 4a, 5a and 6a metal mainly composed of Ti. A TiCN-based cermet consisting of 15 to 22% by mass of Co and Ni, and 55 to 80% by mass of Ti with respect to the total amount of group 4a, 5a and 6a metals, and cermet A binder phase in which the average crystal grain size of the hard phase in the center is 0.6 to 0.9 μm, and the binder phase concentration gradually increases from the surface of the cermet to the extreme surface of 0.01 to 5 μm in thickness. It is characterized by the presence of an enriched region .
[0009]
In addition, the cermet pole surface has a binder phase enriched region in which the binder phase concentration gradually increases, so that the cermet has a fracture resistance that can withstand roughing regions , and has a physical vapor deposition or chemical vapor deposition film, etc. Even when formed, excellent adhesion to the tool body can be maintained. Binding phase enriched area of this it is important to present a thickness of 0.01 to 5 [mu] m.
[0010]
Further, just above the surface of the cermet, (Ti x M 1-x ) (C y N 1-y ) (where M is a periodic table other than Ti, 4a, 5a and 6a group metals, Al, Si 1 or more, by becoming covering the hard layer represented by 0.4 ≦ x ≦ 1,0 ≦ y ≦ 1), we were both excellent wear resistance and chipping resistance onset volatilizing be able to.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The cutting tool of the present invention is a TiCN-based cermet comprising a binder phase mainly composed of Co and / or Ni and a hard phase composed of a carbonitride of periodic table 4a, 5a and 6a metal mainly composed of Ti. However, according to the present invention, the present invention relates to a tool particularly suitable for rough machining.
[0012]
Here, the roughing region in the present invention refers to processing in a wet or dry state, particularly turning, with a feed of 0.30 mm / rev (rotation) or more, a cutting depth of 2.0 mm or more, and a cutting speed of 250 m / min or more. Point to.
[0013]
According to the present invention, it is important to contain the Co and Ni in a total amount of 15 to 22% by mass in order to obtain a tool suitable for rough machining. That is, when the binder phase content is less than 15% by mass, desired strength and impact resistance cannot be obtained, and conversely, when the binder phase content exceeds 22% by mass, the wear resistance rapidly decreases. In either case, when used for rough machining, the immediate chipping and the plastic deformation of the cutting edge are poor and wear away, making it impossible to obtain excellent cutting performance. Co and Ni are preferably contained in a proportion of 16 to 20% by mass, more preferably 17 to 19.5% by mass.
[0014]
Further, according to the present invention, it is important to contain 55 to 80% by mass of Ti with respect to the total amount of the periodic table 4a, 5a and 6a group metal in the cermet. This is because if the amount of Ti is less than 55% by mass, the strength required for roughing cannot be ensured. Conversely, if the amount of Ti exceeds 80% by mass, the toughness is reduced and the impact resistance during roughing is reduced. descend. In particular, the Ti content is preferably 65 to 77 mass%.
[0015]
The periodic table 4a, 5a and 6a group metals containing Ti form a composite metal carbonitride as a hard phase. In particular, the hard phase has a core portion made of TiCN, Ti, and a period other than Ti. Table 4a, 5a, and 6a group metals, especially composed of at least one of composite carbide, composite nitride, and composite carbonitride with one or more of W, Mo, Ta and Nb The double-core structure or triple-core structure has the effect of controlling grain growth, and the cermet substrate has a fine and uniform structure, and has excellent wettability with the binder phase and high cermet performance. It is desirable in that it contributes to strengthening.
[0016]
Furthermore, according to the present invention, the average crystal grain size of the hard phase at the center of the cutting tool is 0 . It is important that the thickness is 6 to 0.9 μm, and further 0.7 to 0.9 μm. In other words, if the average crystal grain size of the hard phase is smaller than 0.6 μm, the hard phase tends to agglomerate, resulting in a non-uniform structure, and the impact resistance and hardness of the cermet are reduced. Abrasion is reduced. On the other hand, when the average crystal grain size of the hard phase exceeds 0.9 μm, the strength of the cermet is lowered and the chip resistance of the chip is lowered.
[0017]
In the cutting tool of the present invention, it is important that a binder phase-enriched region where the binder phase concentration gradually increases exists on the extreme surface of the cermet. The presence of such a binder phase-enriched region can increase the thermal conductivity of the cutting blade of the cutting tool, thereby increasing the heat dissipation of the cutting blade and increasing the fracture resistance under severe cutting conditions during rough machining. be able to. This also has the effect that the cutting edge is slightly deformed with respect to the shape of the processed surface of the work material and the surface roughness of the processed surface of the work material is smoothed. The thickness of the binder phase-enriched region is 0.01 to 5 μm from the outermost surface as a region having a binder phase amount of 1.1 times or more with respect to the binder phase amount at the center portion of the cutting tool, 1 to 3 [mu] m, further in conjunction with it is 1~2.5μm enhances the heat conductivity, it is important to suppress excessive plastic deformation at the tool cutting edge.
[0018]
In addition, the average crystal grain size r 1 of the hard phase on the surface of the cermet substrate is the average crystal grain of the hard phase at the center of the cermet in terms of adhesion to the hard coating layer, which will be described later, improvement in thermal conductivity, and suppression of plastic deformation. It is desirable that it is larger than the diameter r 2 , specifically, r 1 = 0.5 to 2 μm.
[0019]
Furthermore, according to the present invention, (Ti x M 1-x ) (C y N 1-y ) (where M is a periodic table other than Ti, group 4a, 5a and 6a metals, Al And a hard coating layer (hereinafter abbreviated as Ti-based coating layer) represented by one or more of Si, 0.4 <x ≦ 1, 0 ≦ y ≦ 1). It is important that the cermet is formed immediately above the cermet base material. Furthermore, from the viewpoint of heat resistance such as high hardness and high temperature stability, M is most preferably one selected from the group consisting of Al, Si, Zr and Cr, and most preferably Al.
[0020]
In addition to the Ti-based coating layer, the hard coating layer includes, for example, one or more of diamond, cubic boron nitride, alumina, Zr, Hf, Cr, Si carbide, nitride, and carbonitride. Other hard coating layers can also be formed.
[0021]
To manufacture a cutting tool comprising the TiCN-based cermet of the present invention, first, as raw material powder, as a hard phase forming component, TiCN powder, and carbides, nitrides, and carbonitrides of periodic table 4a, 5a and 6a metals Using at least one kind of powder selected from the group, Ti is weighed so that the Ti amount is 55 to 80% by mass, particularly 65 to 77% by mass with respect to the total amount of the metals in Group 4a, 5a and 6a. Moreover, it mix | blends so that the ratio of N / (C + N) of carbon (C) and nitrogen (N) in the whole hard phase formation component may be 0.4-0.6.
[0022]
Further, the TiCN powder used at this time needs to be a fine powder having an average particle diameter of 0.4 to 1.0 μm. If the average particle size of the TiCN powder at this time is larger than 1.0 μm, it becomes difficult to make the average crystal particle size of the hard phase in the cermet 1 μm or less. Moreover, when smaller than 0.4 micrometer, it will become difficult to make the said average crystal grain diameter of a hard phase 0.5 micrometer or more.
[0023]
The average particle size of at least one powder selected from the group of carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals is suitably 0.5-2 μm.
[0024]
Further, Ni and / or Co powder having an average particle size of 0.3 to 4 μm is added as a binder phase forming component at a ratio of 15 to 22% by mass.
[0025]
These weighed powders are mixed by a ball mill or the like, then formed into a predetermined cutting tool shape by a known forming method such as press molding, extrusion molding or injection molding, and then fired.
[0026]
In firing, in order to form a hard phase with a cored structure and suppress grain growth of the hard phase, the temperature is raised from room temperature to around 950 ° C. at 10 to 15 ° C./min at a vacuum degree of 0.01 Torr or less. After that, the temperature is raised to about 1300 ° C. at 1 to 5 ° C./min, further raised to 1500 ° C. to 1600 ° C. at 3 ° C. to 15 ° C./min, and allowed to cool to room temperature within a holding time of 1 hour. It is desirable to bake under conditions of cooling at 10 ° C. to 15 ° C./min.
[0027]
Further, in order to form a binder phase enriched region on the cermet surface, nitrogen gas is treated in a nitrogen gas of 0.1 to 0.3 kPa from room temperature to 1250 ° C. to 1350 ° C. under the above firing conditions, Only during the temperature rising process from 1250 ° C to 1350 ° C to 1500 to 1600 ° C, the vacuum is set to 0.01 Torr or less, and after firing at 1500 ° C to 1600 ° C, the vacuum is set to 0.01 Torr or less to 10 ° C to 15 ° C / min. It is desirable to cool with.
[0028]
In addition, using the TiCN-based cermet produced by the above method as a base material, a chemical vapor deposition method (CVD method), a physical vapor deposition method such as a sputtering method, an ion plating method, a vapor deposition method (on the surface) A coating layer as described above may be formed by a PVD method or the like.
[0029]
【Example】
As the raw material powder, TiCN powder having an average particle diameter shown in Table 1, and TiN powder having an average particle diameter of 0.5 to 2 μm, TaC powder, NbC powder, WC powder, ZrC powder, VC powder, and average particle diameter Co powder of 2 μm, Ni powder or alloy powder of Co and Ni were used, these raw material powders were blended in the blending composition shown in Table 1, and wet mixed and pulverized by a ball mill. The average particle diameter is measured by the microtrack method.
[0030]
Next, the mixed powder is press-molded into a chip shape and a bent specimen shape at a molding pressure of 98 MPa, and each molded body is heated to 950 ° C. at a rate of 12 ° C./min in a vacuum of 0.01 Torr or less. The temperature was raised from 950 ° C. to 1300 ° C. at 2 ° C./minute, raised to the firing temperature shown in Table 1 at 5 ° C./minute, held for 1 hour, and then cooled to room temperature at 12 ° C./minute in vacuum. Thus, a cermet having a shape of CNMG120408 was produced. Sample No. 8 and 9 were fired in the same manner as described above, except that the temperature was raised to 1300 ° C. in 0.2 KPa nitrogen.
[0031]
About the produced cermet, while measuring three-point bending strength according to JISR1601, the toughness (IF method) was measured according to JISR1607. The results are shown in Table 2.
[0032]
Furthermore, the cross-section of the obtained chip center was observed with an electron microscope, and the crystal grain size of the hard phase was measured by the intercept method at two observation regions of 7 × 7 μm, and the average crystal grain size was measured.
[0033]
Further, the concentration change of Ni and Co in the binder phase near the surface of the chip is measured by EPMA method, the change in concentration of Ni + Co is observed by adding the concentration change of Ni and Co, and the concentration of the central portion from the surface is observed. The thickness up to a region having a concentration of 1.1 times or more of the thickness was measured at three locations, and the average was determined.
[0034]
Further, for each of the 10 throwaway chips obtained, cutting was performed under the following rough cutting condition A, and Table 1 shows the feed when missing.
Cutting condition Work material: SCM435
Work material: Round groove with 4 grooves Cutting speed: 250 m / min
Feeding and cutting time: After cutting at 0.1 mm / rev for 10 seconds, feed is increased by 0.05 mm / rev and cut for 10 seconds each (up to a maximum feed of 0.5 mm / rev)
Cutting depth: 2mm
[0035]
[Table 1]
Figure 0004069749
[0036]
As is clear from the results in Table 1, sample No. 1-3, 5-7, 10 and 11 all have high strength and hardness, and also in sample cutting with rough machining. Excellent cutting characteristics of 16 cemented carbides.
[0037]
In contrast, Sample No. with a Ni + Co content of less than 15% by mass. In No. 13, the bending strength was low, and the chipping occurred early in the roughing condition. Further, Sample No. with Ni + Co content exceeding 22 mass%. In No. 15, the metal hatched layer was thickened, the oxidation resistance and plastic deformation resistance were lowered, and the cutting edge was worn.
[0038]
Furthermore, the sample No. 5 containing less than 55% by mass of Ti with respect to the total amount of the periodic table 4a, 5a and 6a group metals. In No. 12, the cutting edge of the tip was damaged early, and the sample No. No. 1 in which the Ti content exceeded 80% by mass with respect to the total amount of metals in the periodic tables 4a, 5a, and 6a. In No. 12, wear progressed and cutting became impossible early. Further, Sample No. with an average particle size of the composite metal carbonitride exceeding 1 μm. In Nos. 4 and 14, the chipping occurred early in the roughing cutting.
[0039]
【The invention's effect】
As described above in detail, the cutting tool of the present invention is equivalent to a cemented carbide in the rough machining region by optimizing the content of Ti and binder phase and the particle size of the hard phase while being a TiCN-based cermet. Alternatively, a tool that exhibits a higher cutting performance than that can be provided.

Claims (2)

Coおよび/またはNiを主成分とする結合相と、Tiを主とする周期律表4a、5aおよび6a族金属の炭窒化物からなる硬質相とからなるTiCN基サーメットからなり、前記CoおよびNiを総量で15〜22質量%含有し、前記周期律表4a、5aおよび6a族金属総量に対してTiを55〜80質量%含有し、且つサーメット中心部の前記硬質相の平均結晶粒径が0.6〜0.9μmであるとともに、前記サーメットの表面から0.01〜5μmの厚みの極表面に、結合相濃度が次第に増加する結合相富化領域が存在することを特徴とする荒加工用切削工具。A TiCN-based cermet composed of a binder phase mainly composed of Co and / or Ni and a hard phase composed of a carbonitride of the periodic table 4a, 5a and 6a metals mainly composed of Ti, and the Co and Ni 15 to 22% by mass in a total amount, 55 to 80% by mass of Ti with respect to the total amount of metals in the periodic tables 4a, 5a and 6a, and the average crystal grain size of the hard phase in the center of the cermet The roughness is 0.6 to 0.9 μm, and there is a bonded phase enriched region in which the binder phase concentration gradually increases from the surface of the cermet to the extreme surface having a thickness of 0.01 to 5 μm. Cutting tool for machining. 前記サーメットの表面直上に、(Ti1−x)(C1−y)(ただし、MはTi以外の周期律表4a、5aおよび6a族金属、Al、Siのうちの1種以上、0.4≦x≦1、0≦y≦1)で表わされる硬質被覆層を被覆してなることを特徴とする請求項1記載の荒加工用切削工具。Just above the surface of the cermet, (Ti x M 1-x ) (C y N 1-y ) (where M is one of the periodic table 4a, 5a and 6a group metals other than Ti, Al, Si) above, 0.4 ≦ x ≦ 1,0 ≦ y ≦ 1) roughing cutting tool according to claim 1 Symbol mounting, characterized in that formed by coating a hard coating layer represented by.
JP2003015987A 2002-12-24 2003-01-24 Cutting tool for roughing Expired - Fee Related JP4069749B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003015987A JP4069749B2 (en) 2003-01-24 2003-01-24 Cutting tool for roughing
US10/744,634 US7413591B2 (en) 2002-12-24 2003-12-23 Throw-away tip and cutting tool
CNB2003101247145A CN100566895C (en) 2002-12-24 2003-12-24 Throw-away tip and cutting element
DE10361321A DE10361321B4 (en) 2002-12-24 2003-12-24 Disposable tip and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015987A JP4069749B2 (en) 2003-01-24 2003-01-24 Cutting tool for roughing

Publications (2)

Publication Number Publication Date
JP2004223666A JP2004223666A (en) 2004-08-12
JP4069749B2 true JP4069749B2 (en) 2008-04-02

Family

ID=32903584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015987A Expired - Fee Related JP4069749B2 (en) 2002-12-24 2003-01-24 Cutting tool for roughing

Country Status (1)

Country Link
JP (1) JP4069749B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5393044B2 (en) * 2008-03-25 2014-01-22 京セラ株式会社 cermet
JP5740764B2 (en) * 2010-12-01 2015-07-01 住友電工ハードメタル株式会社 cermet
WO2019181794A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Insert and cutting tool provided with same
WO2019181793A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Insert and cutting tool provided with same
KR102412791B1 (en) 2018-03-20 2022-06-24 교세라 가부시키가이샤 Covered tool and cutting tool having same
EP3769873A4 (en) * 2018-03-20 2021-12-01 Kyocera Corporation Insert and cutting tool provided with same
JP7495663B2 (en) 2020-07-31 2024-06-05 三菱マテリアル株式会社 Cermet cutting tools

Also Published As

Publication number Publication date
JP2004223666A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
WO2011002008A1 (en) Cermet and coated cermet
JPWO2011136197A1 (en) Cermet and coated cermet
JP5559575B2 (en) Cermet and coated cermet
JP2571124B2 (en) Nitrogen-containing cermet, method for producing the same, and coated nitrogen-containing cermet
JPH06220571A (en) Sintered hard alloy and coated sintered hard alloy for cutting tool
JP4069749B2 (en) Cutting tool for roughing
WO2006100939A1 (en) TiCN BASE CERMET AND CUTTING TOOL AND METHOD FOR MANUFACTURING CUT ARTICLE USING THE SAME
JP5381616B2 (en) Cermet and coated cermet
JPH04231467A (en) Coated tic-base cermet
JPH10237650A (en) Wc base cemented carbide and its production
JP4077739B2 (en) Surface-coated Ti-based cermet cutting tool and method for manufacturing the same
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JPH06330321A (en) Coated hard alloy member
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JP2009006413A (en) Ti based cermet
JP2005153100A (en) Cutting tool for finishing
JP2004330314A (en) Coated cemented carbide tool
JP4126451B2 (en) Cemented carbide
JP4284153B2 (en) Cutting method
JP2020033597A (en) TiN-BASED SINTERED BODY AND TiN-BASED SINTERED BODY-MADE CUTTING TOOL
JP3762278B2 (en) Cemented carbide and method for producing the same
WO2023188871A1 (en) Sintered body and cutting tool
JP3525359B2 (en) Surface coated cemented carbide cutting tool
JP2003094207A (en) Cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees