JP2004223666A - Cutting tool for rough machining - Google Patents

Cutting tool for rough machining Download PDF

Info

Publication number
JP2004223666A
JP2004223666A JP2003015987A JP2003015987A JP2004223666A JP 2004223666 A JP2004223666 A JP 2004223666A JP 2003015987 A JP2003015987 A JP 2003015987A JP 2003015987 A JP2003015987 A JP 2003015987A JP 2004223666 A JP2004223666 A JP 2004223666A
Authority
JP
Japan
Prior art keywords
cermet
cutting tool
rough machining
mass
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003015987A
Other languages
Japanese (ja)
Other versions
JP4069749B2 (en
Inventor
Takashi Tokunaga
隆司 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003015987A priority Critical patent/JP4069749B2/en
Priority to US10/744,634 priority patent/US7413591B2/en
Priority to DE10361321A priority patent/DE10361321B4/en
Priority to CNB2003101247145A priority patent/CN100566895C/en
Publication of JP2004223666A publication Critical patent/JP2004223666A/en
Application granted granted Critical
Publication of JP4069749B2 publication Critical patent/JP4069749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool for rough machining made of cermet exerting cutting performance equal to or more than that of cemented carbide in a rough machining region. <P>SOLUTION: This cermet made of TiCN group cermet made of a binding phase mainly made of Co and Ni and a hard phase made of carbon nitride of 4a, 5a and 6a group metal in a periodic table mainly made of Ni, containing Co and Ni of 15 to 22 mass% in total amount, containing Ti of 55 to 80 mass% in relation to total amount of 4a, 5a and 6a group metal in the periodic table, and having an average crystal particle size of 0.5 to 1μm of the hard phase of the center part of the cermet is used as the cutting tool for roughing. It is desirable that a binding phase enriched region where binding phase concentration is gradually increased exists at a thickness of 0.01 to 5μm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、TiCN基サーメットからなり、荒加工用として高い切削性能を有する切削工具に関する。
【0002】
【従来の技術】
従来より、切削加工用のスローアウェイチップの素材として炭化タングステンからなる硬質相をCoの結合相で結合した超硬合金(例えば、特許文献1、2参照)や、Tiと、Ti以外の周期律表4a、5aおよび6a族金属のうちの1種以上との複合金属炭窒化物からなる硬質相を、Coおよび/またはNiの結合相にて結合したTiCN基サーメット(例えば、特許文献3、4参照)が主として用いられている。ところで、現状では超硬合金は仕上げ加工から荒加工に至る幅広い加工領域で用いられているものの、TiCN基サーメットは高い耐摩耗性、鋼材との優れた耐反応性を生かして仕上げ加工領域で用いられているのが実状である。
【0003】
【特許文献1】
特開平8−57703号公報
【特許文献2】
特開2001−329331号公報
【特許文献3】
特開2001−277008号公報
【特許文献4】
特開平9―239605号公報
【0004】
【発明が解決しようとする課題】
ところが、近年、炭化タングステンの枯渇が危惧されており、TiCN基サーメットにて広範囲な加工可能領域、特に荒加工領域で高い切削性能を発揮するTiCN基サーメットが切望されている。
【0005】
しかしながら、特許文献3、4などの従来のTiCN基サーメットを荒加工に用いると、仕上げ加工よりも切削工具に加わる衝撃が大きいために、この切削時の衝撃によって工具が早期に欠損しやすく、超硬合金の切削性能には及ばないという問題があった。
【0006】
従って、本発明は、上記課題を解決するためになされたものであり、その目的は、荒加工領域で超硬合金と同等またはそれ以上の切削性能を発揮するTiCN基サーメットからなる荒加工用切削工具を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、上記荒加工用に適したサーメットの構成について検討した結果、Tiおよび結合相の含有量、硬質相の粒径を最適化することにより、荒加工領域にて超硬合金と同等またはそれ以上の高い切削性能を発揮するサーメットが得られることを知見した。
【0008】
即ち、本発明の荒加工用切削工具は、Coおよび/またはNiを主成分とする結合相と、Tiを主とする周期律表4a、5aおよび6a族金属の炭窒化物からなる硬質相とからなるTiCN基サーメットからなり、前記CoおよびNiを総量で15〜22質量%含有し、前記周期律表4a、5aおよび6a族金属総量に対してTiを55〜80質量%含有し、且つサーメット中心部の前記硬質相の平均結晶粒径が0.5〜1μmであることを特徴とする。
【0009】
また、前記サーメットの極表面には、結合相濃度が次第に増加する結合相富化領域が存在することによって、荒加工領域にも耐えうる耐欠損性を有しかつ物理蒸着もしくは化学蒸着膜などを形成した場合においても工具本体との優れた密着性を維持することができる。この前記結合相富化領域は0.01〜5μmの厚みで存在することが望ましい。
【0010】
また、前記サーメットの表面には、(Ti1−x)(C1−y)(ただし、MはTi以外の周期律表4a、5aおよび6a族金属、Al、Siのうちの1種以上、0.4≦x≦1、0≦y≦1)で表わされる硬質被覆層を被覆してなることによって、優れた耐磨耗性と耐欠損性を両立し発揮とすることができる。
【0011】
【発明の実施の形態】
本発明の切削工具は、Coおよび/またはNiを主成分とする結合相と、Tiを主とする周期律表4a、5aおよび6a族金属の炭窒化物からなる硬質相とからなるTiCN基サーメットからなるものであるが、本発明によれば、特に荒加工に適した工具に関わるものである。
【0012】
ここで、本発明における荒加工領域とは、送り0.30mm/rev(回転)以上、かつ、切込み2.0mm以上、切削速度250m/min以上で、湿式または乾式状態での加工、特に旋削加工を指す。
【0013】
この荒加工用に適した工具とする上で、本発明によれば、前記CoおよびNiを総量で15〜22質量%含有することが重要である。すなわち、結合相の含有量が15質量%未満では所望の強度および耐衝撃性を得ることができず、逆に結合相の含有量が22質量%を越えると急激に耐摩耗性が低下する結果、いずれの場合も荒加工用として用いると即時欠損および刃先の塑性変形性が悪く、摩滅してしまい優れた切削性能を得ることができない。CoおよびNiは、特に16〜20質量%、さらには17〜19.5質量%の割合で含有されることが望ましい。
【0014】
また、本発明によれば、サーメット中における前記周期律表4a、5aおよび6a族金属総量に対してTiを55〜80質量%含有することが重要である。これは、前記Ti量が55質量%より少ないと荒加工に必要な強度を確保することができず、逆に、80質量%より多いと靭性が低下して、荒加工時の耐衝撃性が低下する。特に前記Ti量は65〜77質量%であることが望ましい。
【0015】
このTiを含む周期律表4a、5aおよび6a族金属は、硬質相として複合金属炭窒化物を形成しており、特に、硬質相は、TiCNからなる芯部と、Tiと、Ti以外の周期律表4a、5aおよび6a族金属、特にW、Mo、TaおよびNbのうちの1種以上との複合炭化物、複合窒化物、複合炭窒化物の少なくとも1種からなる周辺部とから構成される2重有芯構造、または3重有芯構造をなしていることが、粒成長制御効果を有しサーメット基体が微細で均一な組織となるとともに、結合相との濡れ性に優れてサーメットの高強度化に寄与する点で望ましい。
【0016】
さらに、本発明によれば、切削工具の中心部における前記硬質相の平均結晶粒径が0.5〜1μm、特に0.6〜0.9μm、さらに0.7〜0.9μmであることが重要である。すなわち、この硬質相の平均結晶粒径が0.5μmより小さいと硬質相の凝集が生じやすく不均一な組織となってサーメットの耐衝撃性や硬度が低下し、工具の耐欠損性および耐摩耗性が低下する。逆に、硬質相の平均結晶粒径が1μmを超えるとサーメットの強度が低下してチップの耐欠損性が低下する。
【0017】
また、本発明の切削工具においては、前記サーメットの極表面に結合相濃度が次第に増加する結合相富化領域が存在することが望ましい。このような結合相富化領域の存在によって、切削工具の切刃における熱伝導性を高めることができる結果、切刃の放熱性を増し荒加工時における過酷な切削条件での耐欠損性を高めることができる。また、これによって切刃が被削材における加工面の形状に対してわずかに変形して被削材の加工面の面粗度をなめらかにする効果も有する。前記結合相富化領域の厚みは、切削工具の中心部分の結合相量に対して、1.1倍以上の結合相量を有する領域として、最表面からの厚みが0.01〜5μm、さらに1〜3μm、さらに1〜2.5μmであることが前記熱伝導性を高めるとともに、工具切刃における過度な塑性変形を抑制するために望ましい。
【0018】
また、後述する硬質被覆層との密着性、熱伝導率向上、塑性変形の抑制の点でサーメット基体の表面における硬質相の平均結晶粒径rが、サーメット中心部における硬質相の平均結晶粒径rよりも大きいことが望ましく、具体的にはr=0.5〜2μmであることが望ましい。
【0019】
さらには、本発明によれば、サーメット基体表面に、(Ti1−x)(C1−y)(ただし、MはTi以外の周期律表4a、5aおよび6a族金属、Al、Siのうちの1種以上、0.4<x≦1、0≦y≦1)で表わされる硬質被覆層(以下、Ti系被覆層と略す。)を被覆してもよく、かかる被覆層はサーメット母材の直上に形成することが望ましい。さらには、高硬度や高温安定性などの耐熱性の点で、Mは、Al、Si、ZrおよびCrの群から選ばれる1種、最適にはAlであることが最も望ましい。
【0020】
また、硬質被覆層としては、上記Ti系被覆層に加えて、例えば、ダイヤモンド、立方晶窒化硼素、アルミナ、Zr、Hf、Cr、Siの炭化物、窒化物、炭窒化物の1種以上からなる他の硬質被覆層を形成することもできる。
【0021】
本発明のTiCN基サーメットからなる切削工具を製造するには、まず原料粉末として、硬質相形成成分として、TiCN粉末と、周期律表4a、5aおよび6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種の粉末を用いて、周期律表4a、5aおよび6a族金属総量に対するTi量が55〜80質量%、特に65〜77質量%となるように秤量する。また、硬質相形成成分全体における炭素(C)と窒素(N)とのN/(C+N)の比率が0.4〜0.6となるように調合する。
【0022】
また、このときに用いるTiCN粉末の平均粒径が0.4〜1.0μmの微細な粉末であることが必要である。この時のTiCN粉末の平均粒径が1.0μmよりも大きいと、サーメットにおける硬質相の前記平均結晶粒径を1μm以下にすることが困難となる。また、0.4μmよりも小さいと、硬質相の前記平均結晶粒径を0.5μm以上とすることが困難となる。
【0023】
また、周期律表4a、5aおよび6a族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種の粉末の平均粒径は0.5〜2μmが適当である。
【0024】
また、結合相形成成分として、平均粒径が0.3〜4μmのNiおよび/またはCoの粉末を15〜22質量%の割合で添加する。
【0025】
そしてこれらの秤量された粉末をボールミルなどによって混合した後、プレス成形、押出成形、射出成形などの公知の成形手法によって所定の切削工具形状に成形した後、焼成する。
【0026】
焼成にあたっては、有芯構造の硬質相を形成し、また硬質相の粒成長を抑制するために、真空度0.01Torr以下で、室温から950℃付近までを10〜15℃/分で昇温し、その後、1300℃付近までを1〜5℃/分で昇温し、さらに1500℃〜1600℃までを3℃〜15℃/分で昇温し保持時間1時間以内で放冷で室温まで10℃〜15℃/分で冷却する条件で焼成することが望ましい。
【0027】
また、サーメット表面に結合相富化領域を形成するためには、上記の焼成条件において、室温から1250℃〜1350℃までを窒素ガスを0.1〜0.3kPaの窒素ガス中で処理し、1250℃〜1350℃から1500〜1600℃の昇温過程のみ真空0.01Torr以下とし、1500℃〜1600℃で焼成した後、冷却過程において真空0.01Torr以下として室温まで10℃〜15℃/分で冷却することが望ましい。
【0028】
また、上記の方法によって作製されたTiCN基サーメットを母材として、その表面に、化学気相成長法(CVD法)や、スパッタリング法、イオンプレーティング法、蒸着法などの物理気相成長法(PVD法)などによって前述したような被覆層を形成すればよい。
【0029】
【実施例】
原料粉末として、表1に示す平均粒径のTiCN粉末と、いずれも平均粒径が0.5〜2μmのTiN粉末、TaC粉末、NbC粉末、WC粉末、ZrC粉末、VC粉末、および平均粒径が2μmのCo粉末、Ni粉末またはCoとNiとの合金粉末を用い、これら原料粉末を表1に示される配合組成に配合し、ボールミルで湿式混合粉砕した。なお、上記平均粒径はマイクロトラック法で測定したものである。
【0030】
次に、上記混合粉末を用いて、成形圧98MPaでチップ形状および抗折試験片形状にプレス成形し、それぞれの成形体を0.01Torr以下の真空中で950℃まで12℃/minで昇温し、950℃から1300℃までを2℃/分で昇温し、表1の焼成温度まで5℃/分で昇温し、1時間保持した後、真空中で12℃/分で室温まで降温して、CNMG120408形状のサーメットを作製した。なお、試料No.8、9については、昇温過程で1300℃までは0.2KPaの窒素中とする以外は、上記と同様にして焼成した。
【0031】
作製したサーメットについて、JISR1601に従い、3点曲げ強度を測定するとともに、JISR1607に従い、靱性(IF法)の測定を行った。結果は表2に示した。
【0032】
さらに得られたチップ中心部の断面を電子顕微鏡観察して7×7μmの観察領域2箇所をインターセプト法で硬質相の結晶粒径を測定し、その平均結晶粒径を測定した。
【0033】
さらに、チップの表面付近における結合相のNiとCoの濃度分布をEPMA法で濃度変化を測定し、NiとCoの濃度変化の合算でNi+Coの濃度変化を観察し、表面から、中心部分の濃度に対して1.1倍以上の濃度を有する領域までの厚みを3箇所測定しその平均を求めた。
【0034】
また、得られたスローアウェイチップ各10個ずつについて、下記荒切削条件Aで切削を行い、欠損した時の送りを表1に示した。
切削条件
被削材:SCM435
被削材:4本溝入り丸棒
切削速度:250m/min
送りおよび切削時間:0.1mm/revで10秒間切削後、送りを0.05mm/revずつ上げて各10秒間ずつ切削(最大送り0.5mm/revまで)
切込み:2mm
【0035】
【表1】

Figure 2004223666
【0036】
表1の結果から明らかなように、本発明の試料No.1〜3、5〜11は、いずれも高い強度、硬度を有するとともに荒加工切削においても試料No.16の超硬合金なみの優れた切削特性を示した。
【0037】
これに対して、Ni+Co含有量が15質量%より少ない試料No.13では抗折強度が低く、荒加工条件では早期に欠損が発生してしまった。また、Ni+Co含有量が22質量%を超える試料No.15では,金属冨化層が厚くなり耐酸化性および耐塑性変形性が低下し、刃先が摩滅した。
【0038】
さらに、周期律表4a、5aおよび6a族金属総量に対してTiの含有量が55質量%より少ない試料No.12ではチップの刃先が早期に欠損が発生してしまい、周期律表4a、5aおよび6a族金属総量に対してTiの含有量が80質量%を超える試料No.12では摩耗が進行して早期に切削不能となった。さらに、複合金属炭窒化物の平均粒径が1μmを超える試料No.4、14では、荒加工切削で早期に欠損が発生してしまった。
【0039】
【発明の効果】
以上詳述したように、本発明の切削工具は、TiCN基サーメットでありながら、Tiおよび結合相の含有量、硬質相の粒径を最適化することにより、荒加工領域において超硬合金と同等またはそれ以上の高い切削性能を発揮する工具を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cutting tool made of a TiCN-based cermet and having high cutting performance for roughing.
[0002]
[Prior art]
Conventionally, as a material of a cutting away insert for cutting, a cemented carbide in which a hard phase made of tungsten carbide is bonded with a binder phase of Co (for example, see Patent Documents 1 and 2), Ti, and a periodic rule other than Ti Tables 4a, 5a, and TiCN-based cermets in which a hard phase composed of a composite metal carbonitride with one or more of the Group 6a metals is bonded by a Co and / or Ni binder phase (for example, Patent Documents 3 and 4) ) Are mainly used. By the way, at present, cemented carbide is used in a wide range of processing areas from finishing to roughing, but TiCN-based cermet is used in the finishing area by taking advantage of high wear resistance and excellent reaction resistance with steel materials. It is the fact that it is being done.
[0003]
[Patent Document 1]
JP-A-8-57703 [Patent Document 2]
JP 2001-329331 A [Patent Document 3]
JP 2001-277008 A [Patent Document 4]
Japanese Patent Application Laid-Open No. 9-239605
[Problems to be solved by the invention]
However, in recent years, depletion of tungsten carbide has been feared, and there is a strong demand for a TiCN-based cermet that exhibits high cutting performance in a wide range of workable regions, particularly in a rough machining region.
[0005]
However, when conventional TiCN-based cermets such as Patent Literatures 3 and 4 are used for rough machining, the impact applied to the cutting tool is greater than that of the finishing machining. There is a problem that it does not reach the cutting performance of hard alloy.
[0006]
Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rough machining cutting comprising a TiCN-based cermet that exhibits a cutting performance equal to or higher than that of a cemented carbide in a rough machining region. To provide tools.
[0007]
[Means for Solving the Problems]
The present inventor has studied the configuration of the cermet suitable for the above-mentioned rough machining, and as a result, by optimizing the content of Ti and the binder phase and the grain size of the hard phase, the same as the cemented carbide in the rough machining region Or, it has been found that a cermet exhibiting a higher cutting performance can be obtained.
[0008]
That is, the cutting tool for rough machining of the present invention comprises a binder phase containing Co and / or Ni as a main component, and a hard phase composed of carbonitride of a Group 4a, 5a or 6a group metal mainly composed of Ti. And containing 15 to 22% by mass of Co and Ni in total, and 55 to 80% by mass of Ti with respect to the total amount of Group 4a, 5a and 6a metals, and cermet An average crystal grain size of the hard phase at the center is 0.5 to 1 μm.
[0009]
Further, on the very surface of the cermet, the presence of a binder phase-enriched region in which the binder phase concentration is gradually increased. Even when formed, excellent adhesion to the tool body can be maintained. It is desirable that the binder phase enriched region exists with a thickness of 0.01 to 5 μm.
[0010]
Further, the surface of the cermet, (Ti x M 1-x ) (C y N 1-y) ( however, M is the Periodic Table 4a other than Ti, 5a and 6a metals, Al, of Si By coating at least one kind of hard coating layer represented by 0.4 ≦ x ≦ 1, 0 ≦ y ≦ 1), it is possible to exhibit excellent wear resistance and fracture resistance at the same time. it can.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The cutting tool according to the present invention provides a TiCN-based cermet comprising a binder phase containing Co and / or Ni as a main component and a hard phase composed of a carbonitride of a Group 4a, 5a, or 6a metal mainly containing Ti. According to the present invention, the present invention relates to a tool particularly suitable for rough machining.
[0012]
Here, the rough machining area in the present invention refers to machining in a wet or dry state, particularly turning, with a feed of 0.30 mm / rev (rotation) or more, a cut of 2.0 mm or more, and a cutting speed of 250 m / min or more. Point to.
[0013]
According to the present invention, it is important to contain Co and Ni in a total amount of 15 to 22% by mass in order to obtain a tool suitable for the rough machining. That is, when the content of the binder phase is less than 15% by mass, the desired strength and impact resistance cannot be obtained, and when the content of the binder phase exceeds 22% by mass, the wear resistance rapidly decreases. In any case, when used for roughing, immediate chipping and poor plastic deformation of the cutting edge are abraded, making it impossible to obtain excellent cutting performance. Co and Ni are desirably contained at a ratio of 16 to 20% by mass, more preferably 17 to 19.5% by mass.
[0014]
Further, according to the present invention, it is important to contain 55 to 80% by mass of Ti with respect to the total amount of the metals in the periodic table 4a, 5a and 6a in the cermet. If the Ti content is less than 55% by mass, the strength required for rough working cannot be secured. If the Ti amount is more than 80% by mass, the toughness is reduced, and the impact resistance during rough working is reduced. descend. In particular, the amount of Ti is desirably 65 to 77% by mass.
[0015]
The group 4a, 5a and 6a metals of the periodic table containing Ti form a composite metal carbonitride as a hard phase. In particular, the hard phase is composed of a core made of TiCN, Ti, and a period other than Ti. Consisting of at least one of a complex carbide, a complex nitride, and a complex carbonitride with at least one of Group 4a, 5a, and 6a metals, particularly W, Mo, Ta, and Nb. Having a double cored structure or a triple cored structure has a grain growth control effect, makes the cermet substrate a fine and uniform structure, and has excellent wettability with the binder phase and high cermet height. It is desirable in that it contributes to strengthening.
[0016]
Further, according to the present invention, the average crystal grain size of the hard phase at the center of the cutting tool is 0.5 to 1 μm, particularly 0.6 to 0.9 μm, and further preferably 0.7 to 0.9 μm. is important. That is, if the average crystal grain size of the hard phase is smaller than 0.5 μm, the hard phase is liable to agglomerate, resulting in a non-uniform structure, thereby reducing the impact resistance and hardness of the cermet, and the chip resistance and wear resistance of the tool. Is reduced. Conversely, when the average crystal grain size of the hard phase exceeds 1 μm, the strength of the cermet decreases, and the chip resistance of the chip decreases.
[0017]
Further, in the cutting tool of the present invention, it is desirable that a binder phase-enriched region in which the binder phase concentration gradually increases exists on the extremely surface of the cermet. Due to the presence of such a binder-phase-enriched region, the thermal conductivity of the cutting edge of the cutting tool can be increased, and as a result, the heat dissipation of the cutting edge is increased and the fracture resistance under severe cutting conditions during rough machining is increased. be able to. This also has the effect that the cutting edge is slightly deformed with respect to the shape of the machined surface of the work material to smooth the surface roughness of the machined surface of the work material. The thickness of the binder phase enriched region is a region having a binder phase amount of 1.1 times or more with respect to the binder phase amount of the central portion of the cutting tool, and the thickness from the outermost surface is 0.01 to 5 μm, The thickness is preferably 1 to 3 μm, more preferably 1 to 2.5 μm, in order to increase the thermal conductivity and to suppress excessive plastic deformation in the tool cutting edge.
[0018]
Further, the average crystal grain size r 1 of the hard phase on the surface of the cermet substrate in terms of adhesion to the hard coating layer described later, improvement in thermal conductivity, and suppression of plastic deformation are determined by the average crystal grain size of the hard phase in the center of the cermet. It is desirable that the diameter be larger than the diameter r 2, and more specifically, it is desirable that r 1 = 0.5 to 2 μm.
[0019]
Furthermore, according to the present invention, the cermet substrate surface, (Ti x M 1-x ) (C y N 1-y) ( however, M is the Periodic Table 4a other than Ti, 5a and 6a metals, Al , Si, a hard coating layer (hereinafter abbreviated as Ti-based coating layer) represented by 0.4 <x ≦ 1, 0 ≦ y ≦ 1). Is desirably formed immediately above the cermet base material. Further, in terms of heat resistance such as high hardness and high-temperature stability, M is most preferably selected from the group consisting of Al, Si, Zr and Cr, and most preferably Al.
[0020]
The hard coating layer is made of, for example, at least one of diamond, cubic boron nitride, alumina, Zr, Hf, Cr, and Si carbide, nitride, and carbonitride in addition to the Ti-based coating layer. Other hard coating layers can be formed.
[0021]
In order to manufacture a cutting tool made of the TiCN-based cermet of the present invention, first, TiCN powder as a raw material powder, a hard phase forming component, and carbides, nitrides, and carbonitrides of metals of Group 4a, 5a and 6a of the periodic table. Is weighed using at least one powder selected from the group consisting of the metals in the periodic table 4a, 5a and 6a so that the Ti content is 55 to 80% by mass, especially 65 to 77% by mass. Further, the mixture is prepared so that the ratio of N / (C + N) of carbon (C) and nitrogen (N) in the entire hard phase forming component is 0.4 to 0.6.
[0022]
Further, it is necessary that the TiCN powder used at this time is a fine powder having an average particle diameter of 0.4 to 1.0 μm. If the average particle size of the TiCN powder at this time is larger than 1.0 μm, it is difficult to reduce the average crystal particle size of the hard phase in the cermet to 1 μm or less. On the other hand, when it is smaller than 0.4 μm, it is difficult to make the average crystal grain size of the hard phase 0.5 μm or more.
[0023]
The average particle size of at least one powder selected from the group consisting of carbides, nitrides, and carbonitrides of metals belonging to groups 4a, 5a and 6a of the periodic table is suitably 0.5 to 2 μm.
[0024]
Further, as a bonding phase forming component, Ni and / or Co powder having an average particle diameter of 0.3 to 4 μm is added at a ratio of 15 to 22% by mass.
[0025]
These weighed powders are mixed by a ball mill or the like, formed into a predetermined cutting tool shape by a known molding technique such as press molding, extrusion molding, or injection molding, and then fired.
[0026]
In the firing, in order to form a hard phase having a cored structure and suppress grain growth of the hard phase, the temperature is raised from room temperature to around 950 ° C. at a rate of 10 to 15 ° C./min at a degree of vacuum of 0.01 Torr or less. Then, the temperature is raised to around 1300 ° C. at 1 to 5 ° C./min, and further from 1500 ° C. to 1600 ° C. at 3 ° C. to 15 ° C./min. It is desirable to perform firing under the condition of cooling at 10 ° C. to 15 ° C./min.
[0027]
Further, in order to form a binder phase-enriched region on the cermet surface, under the above-described firing conditions, nitrogen gas is treated from room temperature to 1250 ° C. to 1350 ° C. in 0.1 to 0.3 kPa nitrogen gas, Vacuum is set to 0.01 Torr or less only in the temperature raising process from 1250 ° C. to 1350 ° C. to 1500 to 1600 ° C. After firing at 1500 ° C. to 1600 ° C., the vacuum is reduced to 0.01 Torr or less to 10 ° C. to 15 ° C./min. It is desirable to cool with.
[0028]
Further, using a TiCN-based cermet produced by the above method as a base material, a physical vapor deposition method such as a chemical vapor deposition method (CVD method), a sputtering method, an ion plating method, or a vapor deposition method is applied to the surface thereof. The above-mentioned coating layer may be formed by a PVD method or the like.
[0029]
【Example】
As the raw material powder, a TiCN powder having an average particle diameter shown in Table 1, a TiN powder, a TaC powder, an NbC powder, a WC powder, a ZrC powder, a VC powder, and an average particle diameter each having an average particle diameter of 0.5 to 2 μm. Was used, Co powder, Ni powder or an alloy powder of Co and Ni was used, and these raw material powders were blended in the composition shown in Table 1 and wet-mixed and pulverized with a ball mill. The average particle size is measured by a microtrack method.
[0030]
Next, the mixed powder is press-molded into a chip shape and a bending test piece shape at a molding pressure of 98 MPa, and each molded body is heated to 950 ° C. at a rate of 12 ° C./min in a vacuum of 0.01 Torr or less. Then, the temperature was raised from 950 ° C. to 1300 ° C. at a rate of 2 ° C./min, raised to the firing temperature shown in Table 1 at a rate of 5 ° C./min, held for one hour, and then cooled to room temperature in a vacuum at a rate of 12 ° C./min. Thus, a cermet in the shape of CNMG120408 was produced. The sample No. Regarding 8 and 9, calcination was carried out in the same manner as above except that the temperature was raised up to 1300 ° C. in nitrogen of 0.2 KPa.
[0031]
The prepared cermet was measured for the three-point bending strength according to JISR1601, and the toughness (IF method) was measured according to JISR1607. The results are shown in Table 2.
[0032]
Further, the cross section of the central part of the obtained chip was observed with an electron microscope, and the crystal grain size of the hard phase was measured by an intercept method at two observation regions of 7 × 7 μm, and the average crystal grain size was measured.
[0033]
Further, the concentration distribution of Ni and Co in the binder phase near the surface of the chip was measured by EPMA method, and the change in the concentration of Ni + Co was observed by adding the changes in concentration of Ni and Co. The thickness was measured at three locations up to a region having a density 1.1 times or more of the thickness, and the average was obtained.
[0034]
In addition, cutting was performed under the following rough cutting conditions A for each of the obtained 10 insert away inserts, and the feed at the time of chipping is shown in Table 1.
Cutting conditions Work material: SCM435
Work material: Round bar with 4 grooves Cutting speed: 250 m / min
Feed and cutting time: After cutting at 0.1 mm / rev for 10 seconds, feed is increased by 0.05 mm / rev and cut for 10 seconds each (up to a maximum feed of 0.5 mm / rev)
Cut: 2mm
[0035]
[Table 1]
Figure 2004223666
[0036]
As is clear from the results in Table 1, the sample No. of the present invention. Sample Nos. 1 to 3 and 5 to 11 all have high strength and hardness and are rough even in cutting. 16 showed excellent cutting characteristics comparable to cemented carbide.
[0037]
On the other hand, the sample No. in which the Ni + Co content was less than 15% by mass. In No. 13, the transverse rupture strength was low, and chipping occurred early under rough working conditions. In addition, Sample No. having a Ni + Co content exceeding 22% by mass. In No. 15, the metal-enriched layer became thick, the oxidation resistance and the plastic deformation resistance were reduced, and the cutting edge was worn.
[0038]
Further, in the sample No. 4 in which the content of Ti was less than 55% by mass with respect to the total amount of metals of the group 4a, 5a and 6a of the periodic table. In Sample No. 12, the cutting edge of the chip was early fractured, and the content of Ti in Sample No. 12 in which the content of Ti exceeded 80% by mass with respect to the total amount of metals in Groups 4a, 5a and 6a of the periodic table. In No. 12, abrasion progressed and cutting became impossible early. Further, in Sample No. 1 in which the average particle size of the composite metal carbonitride exceeded 1 μm. In Nos. 4 and 14, chipping occurred early in rough machining cutting.
[0039]
【The invention's effect】
As described above in detail, the cutting tool of the present invention is equivalent to a cemented carbide in a rough machining region by optimizing the content of Ti and a binder phase and the particle size of a hard phase, while being a TiCN-based cermet. Alternatively, it is possible to provide a tool exhibiting higher cutting performance.

Claims (4)

Coおよび/またはNiを主成分とする結合相と、Tiを主とする周期律表4a、5aおよび6a族金属の炭窒化物からなる硬質相とからなるTiCN基サーメットからなり、前記CoおよびNiを総量で15〜22質量%含有し、前記周期律表4a、5aおよび6a族金属総量に対してTiを55〜80質量%含有し、且つサーメット中心部の前記硬質相の平均結晶粒径が0.5〜1μmであることを特徴とする荒加工用切削工具。A TiCN-based cermet composed of a binder phase containing Co and / or Ni as a main component and a hard phase composed of a carbonitride of a metal of Group 4a, 5a or 6a containing Ti as a main component; Is contained in a total amount of 15 to 22% by mass, Ti is contained in an amount of 55 to 80% by mass with respect to the total amount of the metals in the periodic table 4a, 5a and 6a, and the average crystal grain size of the hard phase in the center of the cermet is A cutting tool for rough machining, having a diameter of 0.5 to 1 μm. 前記サーメットの極表面に、結合相濃度が次第に増加する結合相富化領域が存在することを特徴とする請求項1記載の荒加工用切削工具。The cutting tool for rough machining according to claim 1, wherein a binder phase-enriched region in which the binder phase concentration is gradually increased is present on the very surface of the cermet. 前記結合相富化領域が0.01〜5μmの厚みで存在することを特徴とする請求項2記載の荒加工用切削工具。The cutting tool for rough machining according to claim 2, wherein the binder phase enriched region exists with a thickness of 0.01 to 5 µm. 前記サーメットの表面に、(Ti1−x)(C1−y)(ただし、MはTi以外の周期律表4a、5aおよび6a族金属、Al、Siのうちの1種以上、0.4≦x≦1、0≦y≦1)で表わされる硬質被覆層を被覆してなることを特徴とする請求項1乃至請求項3のいずれか記載の荒加工用切削工具。On the surface of the cermet, (Ti x M 1-x ) (C y N 1-y) ( however, M is the Periodic Table 4a other than Ti, 5a and 6a metals, Al, 1 or more of Si The cutting tool according to any one of claims 1 to 3, wherein the cutting tool is coated with a hard coating layer represented by the following formula: 0.4 ≤ x ≤ 1, 0 ≤ y ≤ 1).
JP2003015987A 2002-12-24 2003-01-24 Cutting tool for roughing Expired - Fee Related JP4069749B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003015987A JP4069749B2 (en) 2003-01-24 2003-01-24 Cutting tool for roughing
US10/744,634 US7413591B2 (en) 2002-12-24 2003-12-23 Throw-away tip and cutting tool
DE10361321A DE10361321B4 (en) 2002-12-24 2003-12-24 Disposable tip and method of making same
CNB2003101247145A CN100566895C (en) 2002-12-24 2003-12-24 Throw-away tip and cutting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015987A JP4069749B2 (en) 2003-01-24 2003-01-24 Cutting tool for roughing

Publications (2)

Publication Number Publication Date
JP2004223666A true JP2004223666A (en) 2004-08-12
JP4069749B2 JP4069749B2 (en) 2008-04-02

Family

ID=32903584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015987A Expired - Fee Related JP4069749B2 (en) 2002-12-24 2003-01-24 Cutting tool for roughing

Country Status (1)

Country Link
JP (1) JP4069749B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228085A (en) * 2008-03-25 2009-10-08 Kyocera Corp Cermet
JP2012117121A (en) * 2010-12-01 2012-06-21 Sumitomo Electric Hardmetal Corp Cermet
WO2019181793A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Insert and cutting tool provided with same
WO2019181792A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Insert and cutting tool provided with same
WO2019181794A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Insert and cutting tool provided with same
US11311946B2 (en) 2018-03-20 2022-04-26 Kyocera Corporation Coated tool and cutting tool including the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228085A (en) * 2008-03-25 2009-10-08 Kyocera Corp Cermet
JP2012117121A (en) * 2010-12-01 2012-06-21 Sumitomo Electric Hardmetal Corp Cermet
WO2019181793A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Insert and cutting tool provided with same
WO2019181792A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Insert and cutting tool provided with same
WO2019181794A1 (en) * 2018-03-20 2019-09-26 京セラ株式会社 Insert and cutting tool provided with same
CN111886098A (en) * 2018-03-20 2020-11-03 京瓷株式会社 Cutting insert and cutting tool provided with same
JPWO2019181794A1 (en) * 2018-03-20 2021-03-11 京セラ株式会社 Insert and cutting tool equipped with it
JPWO2019181793A1 (en) * 2018-03-20 2021-03-25 京セラ株式会社 Insert and cutting tool equipped with it
JPWO2019181792A1 (en) * 2018-03-20 2021-04-08 京セラ株式会社 Insert and cutting tool equipped with it
JP7057418B2 (en) 2018-03-20 2022-04-19 京セラ株式会社 Inserts and cutting tools equipped with them
JP7057420B2 (en) 2018-03-20 2022-04-19 京セラ株式会社 Inserts and cutting tools equipped with them
JP7057419B2 (en) 2018-03-20 2022-04-19 京セラ株式会社 Inserts and cutting tools equipped with them
US11311946B2 (en) 2018-03-20 2022-04-26 Kyocera Corporation Coated tool and cutting tool including the same

Also Published As

Publication number Publication date
JP4069749B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP5308427B2 (en) Cemented carbide and cutting tools
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
EP1359130B1 (en) Cubic boron nitride sintered body and cutting tool
WO2011002008A1 (en) Cermet and coated cermet
US20030129456A1 (en) Cemented carbide and cutting tool
KR101859644B1 (en) Sintered alloy for cutting tools and cutting tools for heat resistant alloy
JP5559575B2 (en) Cermet and coated cermet
JP2571124B2 (en) Nitrogen-containing cermet, method for producing the same, and coated nitrogen-containing cermet
JP4069749B2 (en) Cutting tool for roughing
JP5381616B2 (en) Cermet and coated cermet
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2005153098A (en) Surface coated cutting tool
JPH10237650A (en) Wc base cemented carbide and its production
JP2017179474A (en) Hard metal used for tool for processing nonmetallic material
JP4077739B2 (en) Surface-coated Ti-based cermet cutting tool and method for manufacturing the same
JP2005272877A (en) Ti BASED CERMET, ITS PRODUCTION METHOD AND CUTTING TOOL
JP4284153B2 (en) Cutting method
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP4126451B2 (en) Cemented carbide
WO2023188871A1 (en) Sintered body and cutting tool
JP2005153100A (en) Cutting tool for finishing
JP2003129165A (en) Surface coated hard alloy
JP3331916B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent heat plastic deformation
JP4484500B2 (en) Surface coated cutting tool
JP2001114562A (en) Sintered ceramic part and coated sintered ceramic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees