JP2019155570A - Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance - Google Patents

Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance Download PDF

Info

Publication number
JP2019155570A
JP2019155570A JP2018048434A JP2018048434A JP2019155570A JP 2019155570 A JP2019155570 A JP 2019155570A JP 2018048434 A JP2018048434 A JP 2018048434A JP 2018048434 A JP2018048434 A JP 2018048434A JP 2019155570 A JP2019155570 A JP 2019155570A
Authority
JP
Japan
Prior art keywords
layer
thickness
cutting
cutting tool
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018048434A
Other languages
Japanese (ja)
Inventor
翔 龍岡
Sho Tatsuoka
翔 龍岡
翔太 近藤
Shota KONDO
翔太 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018048434A priority Critical patent/JP2019155570A/en
Publication of JP2019155570A publication Critical patent/JP2019155570A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a surface-coated cutting tool having a long service life even when using in such a cutting work that the temperature of a blade tip becomes high like the case of a heat resistant alloy.SOLUTION: In an objective surface-coated cutting tool, the upper and lower layers are formed on any tool substrate of WC-based hard metal, TiCN-based cermet and CBN-based superhigh pressure sintered body. The upper layer comprises an AlOlayer having an α type crystal structure, and the lower layer consists of a Ti-Al composite nitride layer or composite carbonitride layer including at least the crystalline layer of NaCl type face-centered cubic structure. The cutting tool satisfies T=0.0 to 5.0 μm, T=1.0 to 20.0 μm and T<Twhen defining the thickness in a blade tip edge of the upper layer as Tand that of the point separate from the blade tip edge by 500 μm in a cutting face direction as Tand besides, the tool satisfies T=0.0 to 5.0 μm, T=1.0 to 20.0 μm and T<Twhen defining the thickness in the blade tip edge of the lower layer as Tand that of the point separate from the blade tip edge by 500 μm in the cutting face direction as T.SELECTED DRAWING: Figure 1

Description

この発明は、刃先が高温となる耐熱合金を切削加工した場合に、硬質被覆層が優れた耐酸化性や耐溶着性を備え、さらにはチッピング、欠損、剥離等の発生が抑えられ、長期の使用にわって優れた耐溶着性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, when a heat resistant alloy having a high cutting edge is machined, the hard coating layer has excellent oxidation resistance and welding resistance, and further, occurrence of chipping, chipping, peeling, etc. is suppressed, and long-term The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent welding resistance after use.

切削工具の切削性能の改善を目的として、従来、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して基体ということがある)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, for the purpose of improving the cutting performance of cutting tools, tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN). ) A Ti-Al composite nitride layer is coated as a hard coating layer on the surface of a tool substrate composed of a super-high-pressure sintered body (hereinafter collectively referred to as a substrate) by vapor deposition. There are formed coated tools, which are known to exhibit excellent wear resistance.
Although the conventional coated tool formed by coating the conventional Ti-Al based composite nitride layer is relatively excellent in wear resistance, it is hard to cause abnormal wear such as chipping when used under high-speed cutting conditions. Various proposals for improving the coating layer have been made.

例えば、特許文献1には、
TiN層および/またはTiCN層の接合層を有する超硬合金、サーメットまたはセラミックスから構成される基体が、硬質材料で被覆され、CVDによって成膜された複数の層を有する切削工具であって、
Ti1−xAlN層および/またはTi1−xAlC層および/またはTi1−xAlCN層(xは0.65〜0.95である)とAl外層との間にTiCN層が配置され、
(Ti1−xAlN、Ti1−xAlCN、Ti1−xAlC)の群からの1つ以上の二重層または三重層で構成される多層中間層が前記Al外層の下に配置されており、
前記外層の厚さは1〜5μmであり、
前記Ti1−xAlN層および/またはTi1−xAlC層および/またはTi1−xAlCN層の厚さは1〜5μmであり、
前記接合層または前記中間層の厚さが1〜5μmであり、
前記Ti1−xAlN層、Ti1−xAlC層、またはTi1−xAlCN層が最大25%の六方晶AlNを含有する、
切削工具が記載され、被覆層が断熱効果を有するとされている。
For example, Patent Document 1 discloses that
A cutting tool having a plurality of layers in which a substrate made of cemented carbide, cermet or ceramics having a TiN layer and / or a TiCN layer bonding layer is coated with a hard material and deposited by CVD,
Ti 1-x Al x N layer and / or Ti 1-x Al x C layer and / or Ti 1-x Al x CN layer (x is 0.65 to 0.95) and Al 2 O 3 outer layer A TiCN layer is disposed between
(Ti 1-x Al x N, Ti 1-x Al x CN, Ti 1-x Al x C) A multilayer intermediate layer composed of one or more double layers or triple layers from the group of n is the Al 2 O 3 is placed under the outer layer,
The outer layer has a thickness of 1 to 5 μm,
The thickness of the Ti 1-x Al x N layer and / or the Ti 1-x Al x C layer and / or the Ti 1-x Al x CN layer is 1 to 5 μm,
The bonding layer or the intermediate layer has a thickness of 1 to 5 μm,
The Ti 1-x Al x N layer, Ti 1-x Al x C layer, or Ti 1-x Al x CN layer contains up to 25% hexagonal AlN;
A cutting tool is described, and the coating layer is said to have a heat insulating effect.

また、特許文献2には、
超硬合金、サーメットまたはセラミックスで構成される基体に、硬質材料で被覆され、CVD法によって成膜された複数の層を有する切削工具であって、
外層はTi1−xAlN、Ti1−xAlC、および/またはTi1−xAlCN(0.65≦x≦0.9)からなり、この外層が100〜1100MPaの範囲内の圧縮応力を有し、TiCN層またはAl層がこの外層の下に配置されており、
前記外層は、立方晶構造を有する単相、あるいは、最大25質量%の六方晶AlN、あるいは、最大30質量%の非結晶成分を有し、
塩素の含有率が0.01〜3原子%である、
切削工具が記載され、耐熱性、サイクル疲労特性を有しているとされている。
In addition, in Patent Document 2,
A cutting tool having a plurality of layers coated with a hard material and formed by a CVD method on a substrate made of cemented carbide, cermet or ceramics,
The outer layer is made of Ti 1-x Al x N, Ti 1-x Al x C, and / or Ti 1-x Al x CN (0.65 ≦ x ≦ 0.9), and the outer layer is in the range of 100 to 1100 MPa. A TiCN layer or an Al 2 O 3 layer is disposed under this outer layer,
The outer layer has a single phase having a cubic structure, or a maximum of 25% by mass of hexagonal AlN, or a maximum of 30% by mass of an amorphous component,
The chlorine content is 0.01-3 atomic%,
A cutting tool is described and is said to have heat resistance and cycle fatigue characteristics.

さらに、特許文献3には、
基材と、該基材表面に形成された被覆層とを含む表面被覆切削工具であって、
前記被覆層は、1層または複数の層により構成され、
すくい面の中心における前記被覆層表面の法線と2つの逃げ面が交差する稜とを含む平面で前記表面被覆切削工具を切断した断面において、前記被覆層のうち、刃先稜線部において最も薄くなる部分の厚みをT、刃先稜線からすくい面方向に1mm離れた地点における厚みをTとする場合、T<Tを満たし、かつ、
前記被覆層表面において、刃先稜線からすくい面方向に距離D離れた地点をaとし、逃げ面方向に距離D離れた地点をbとする場合、前記Dは0.05mm≦D≦0.5mmを満たし、前記Dは0.01mm≦D≦0.2mmを満たすものであって、地点aから地点bまでの前記被覆層における、表面から厚み0.1T〜0.9Tを占める領域Eの10%以上の領域において、前記被覆層を構成する結晶粒の結晶方位のずれが5度以上10度未満となる、
表面被覆切削工具が記載されている。
Furthermore, Patent Document 3 includes:
A surface-coated cutting tool comprising a substrate and a coating layer formed on the substrate surface,
The coating layer is composed of one or more layers,
In the cross section obtained by cutting the surface-coated cutting tool on a plane including a normal line of the surface of the coating layer at the center of the rake face and a ridge where two flank surfaces intersect, the thinnest edge portion of the cutting edge of the coating layer When the thickness of the part is T 1 and the thickness at a point 1 mm away from the edge of the cutting edge in the rake face direction is T 2 , T 1 <T 2 is satisfied, and
On the surface of the coating layer, when a point a distance D a away from the edge of the cutting edge in the rake face direction is a and a point a distance D b away in the flank direction is b, the D a is 0.05 mm ≦ D a ≦ 0.5 mm is satisfied, and D b satisfies 0.01 mm ≦ D b ≦ 0.2 mm, and the coating layer from point a to point b has a thickness of 0.1T 1 to 0.9T from the surface. In a region of 10% or more of the region E occupying 1 , the deviation of crystal orientation of the crystal grains constituting the coating layer is 5 degrees or more and less than 10 degrees
A surface coated cutting tool is described.

つづいて、特許文献4には、
高圧相型窒化硼素を20体積%以上含む硬質焼結体基材の表面の切削に関与する箇所に中間層を介して、
(Ti、Al)N層またはTiN層とAlN層の積層である第1硬質耐摩耗被覆層と、該第1硬質耐摩耗被覆層の外側の少なくとも一部にAl層またはAl層とTiCN層とを積層した第2硬質耐摩耗被覆層とを有し、
さらに、前記硬質焼結体基材のすくい面に対応する箇所の切削に関与する箇所が前記第1硬質耐摩耗被覆層および前記第2硬質耐摩耗被覆層を有し、逃げ面に対応する箇所が前記第1硬質耐摩耗被覆層のみを有し、
前記中間層は、膜厚が0.05〜5μmのTiN、TiC、TiCNおよびTiCNから少なくとも1種選択されるものであり、
前記第1および第2硬質耐摩耗被覆層の外側表面の少なくとも一部に膜厚が0.1〜5μmのTiC、TiN、TiCNおよびTiCNOから少なくとも1種選択される表面層を有し、焼入鋼や鋳鉄に使用する、
硬質耐摩耗層複合被覆切削工具が記載されている。
Subsequently, Patent Document 4 describes:
Through an intermediate layer at a location related to cutting of the surface of the hard sintered base material containing 20% by volume or more of high-pressure phase boron nitride,
A first hard wear-resistant coating layer that is a (Ti, Al) N layer or a laminate of a TiN layer and an AlN layer, and an Al 2 O 3 layer or Al 2 O on at least a part of the outer side of the first hard wear-resistant coating layer Having a second hard wear-resistant coating layer in which three layers and a TiCN layer are laminated,
Furthermore, the part which participates in the cutting of the part corresponding to the rake face of the hard sintered base has the first hard wear-resistant coating layer and the second hard wear-resistant coating layer, and the part corresponding to the flank Has only the first hard wear-resistant coating layer,
The intermediate layer is at least one selected from TiN, TiC, TiCN and TiCN having a thickness of 0.05 to 5 μm,
At least a part of the outer surface of the first and second hard wear-resistant coating layers has a surface layer selected from TiC, TiN, TiCN and TiCNO having a film thickness of 0.1 to 5 μm, and is quenched. Used for steel and cast iron,
A hard wear layer composite coated cutting tool is described.

加えて、特許文献5には、
すくい面と、逃げ面と、すくい面と逃げ面とが交差する位置にある切刃と、酸化アルミニウムで作られ、硬質材料層上に堆積された層を含む耐摩耗性の多層コーティングとを含む、セラミック、サーメット、または超硬合金製の切削工具であって、
前記コーティングが、前記酸化アルミニウム層にわたって堆積された1つ以上の層を含み、この/これらのさらなる層が、前記酸化アルミニウム層とともに逃げ面のみで除去されて、下地の前記硬質材料層が、少なくとも部分的に露出される、
切削工具が記載されており、
下地の前記硬質材料層の露出が、機械的除去、流体噴射による除去、レーザによる除去のいずれかであることも記載されている。
In addition, Patent Document 5 includes
Includes a rake face, a flank face, a cutting edge where the rake face and the flank face intersect, and an abrasion resistant multilayer coating made of aluminum oxide and including a layer deposited on a hard material layer A cutting tool made of ceramic, cermet or cemented carbide,
The coating includes one or more layers deposited over the aluminum oxide layer, this / these additional layers being removed with the aluminum oxide layer only at the flank, and the underlying hard material layer is at least Partially exposed,
Cutting tools are listed,
It is also described that the exposure of the hard material layer of the base is any one of mechanical removal, removal by fluid ejection, and removal by a laser.

特表2011−516722号公報Special table 2011-516722 gazette 特表2011−513594号公報Special table 2011-513594 gazette 特開2012−20391号公報JP 2012-20391 A 特開平8−323506号公報JP-A-8-323506 特表2007−528795号公報JP-T-2007-528795

特許文献1、2には、切削工具被覆層に断熱性または耐熱性、サイクル疲労強度を持たせることについての開示はあるものの、切削工具被覆層としての刃先稜線とすくい面のそれぞれに求められる特性に対処することについての開示はなされていない。   Although Patent Documents 1 and 2 disclose that the cutting tool coating layer has heat insulation or heat resistance and cycle fatigue strength, the characteristics required for each of the edge line and the rake face as the cutting tool coating layer are disclosed. There is no disclosure of how to deal with this.

特許文献3の切削工具では、逃げ面とすくい面を直線近似した刃先稜線部の被覆層の膜厚を薄膜化し、被覆層の上部に歪みが生じているために、刃先強度を増強でき、その結果として、被覆層により耐摩耗性を向上しつつ、被覆層の脱落やチッピングを防ぐことができるものの、特許文献3は、特許文献1、2と同様に、切削工具被覆層としての刃先稜線とすくい面のそれぞれに求められる特性に対処することについての開示はなされていない。   In the cutting tool of Patent Document 3, since the film thickness of the coating layer of the cutting edge ridge line part that linearly approximates the flank and the rake face is thinned, and distortion occurs in the upper part of the coating layer, the cutting edge strength can be enhanced. As a result, while the coating layer can improve wear resistance and prevent the coating layer from falling off and chipping, Patent Document 3 is similar to Patent Documents 1 and 2, and the edge of the cutting edge as a cutting tool coating layer There is no disclosure about dealing with the characteristics required of each rake face.

特許文献4には、逃げ面は機械的摩耗が支配的であり、すくい面は熱的な摩耗の割合が高くなるとの記載があり、被覆層の逃げ面、すくい面に、それぞれ、求められる物性についての開示はなされている。しかし、特許文献4に記載の切削工具の切削対象は、焼入鋼や鋳鉄であり、耐熱合金の切削には十分に対応できない。   In Patent Document 4, there is a description that mechanical wear is dominant in the flank face, and that the rake face has a high thermal wear ratio. The physical properties required for the flank face and rake face of the coating layer, respectively. Disclosure has been made. However, the cutting object of the cutting tool described in Patent Document 4 is hardened steel or cast iron, and cannot sufficiently handle cutting of a heat-resistant alloy.

特許文献5の切削工具は、すくい面のAlにのみ着目しており、耐熱合金の切削には十分に対応できない。 The cutting tool of Patent Document 5 focuses only on the rake face Al 2 O 3 and cannot sufficiently cope with cutting of a heat-resistant alloy.

そこで、本発明は、耐熱合金のような刃先が高温になる切削に用いても、摩耗が進行せず工具寿命の長い被覆工具を提供することを目的とする。   Therefore, an object of the present invention is to provide a coated tool having a long tool life without causing wear even when the cutting edge such as a heat-resistant alloy is used for cutting at a high temperature.

本発明者は、上述のとおり、耐熱合金のような刃先が高温になる切削に用いても、耐酸化性・耐溶着性を発揮するとともにチッピング、欠損、剥離等の発生の抑制がなされ、長期の使用にわたって優れた耐摩耗性を有する被覆工具を提供するとの観点から、被覆層における逃げ面と刃先稜線に、それぞれ、求められる特性について鋭意検討を重ねた結果、次のような新たな知見を得た。   As described above, the present inventor, even when used for cutting at a high temperature such as a heat-resistant alloy, exhibits oxidation resistance and welding resistance and suppresses occurrence of chipping, chipping, peeling, etc. From the viewpoint of providing a coated tool that has excellent wear resistance over the use of each of the above, the following new findings were obtained as a result of intensive studies on the required characteristics of the flank and edge of the coating layer. Obtained.

すなわち、下部層としてTiとAlとの複合窒化物層または複合炭窒化物層を設け、この下部層の層厚が刃先稜線およびすくい面の所定の位置において所定の層厚を有しているとき、この下部層の上の上部層として、すくい面側に、刃先稜線よりも厚い所定の層厚の化学的に安定なAl層を設けると、すくい面の耐酸化性、耐溶着性が高まり耐摩耗性が向上すること、その一方で、刃先稜線には、すくい面側よりも薄い所定の層厚のAl層を設けても耐摩耗性は低下しないということを見出した。 That is, when a composite nitride layer or composite carbonitride layer of Ti and Al is provided as the lower layer, and the layer thickness of the lower layer has a predetermined layer thickness at a predetermined position on the edge of the cutting edge and the rake face When a chemically stable Al 2 O 3 layer having a predetermined layer thickness thicker than the edge of the cutting edge is provided on the rake face side as an upper layer above the lower layer, the rake face has oxidation resistance and welding resistance. It has been found that the wear resistance is improved and the wear resistance is not lowered even if an Al 2 O 3 layer having a predetermined layer thickness thinner than the rake face side is provided on the edge of the cutting edge. .

本発明は、前記知見に基づいてなされたものであり、以下のとおりのものである。
「WC基超硬合金、TiCN基サーメットまたはcBN基超高圧焼結体のいずれかで構成された工具基体の表面に、上部層(α)、下部層(β)の少なくとも2層を含む硬質被覆層が形成されている表面被覆切削工具において、
(a)前記上部層(α)はα型の結晶構造を有するAl層からなり、
(b)前記下部層(β)はTiとAlの複合窒化物または複合炭窒化物層からなり、
(c)前記TiとAlの複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造の結晶層を少なくとも含み
(d)前記上部層(α)の刃先稜線における厚みをTα1、刃先稜線からすくい面方向に500μm離れた地点における厚みをTα2とするとき、Tα1は0.0〜5.0μm、Tα2は1.0〜20.0μmを満足し、かつTα1<Tα2を満たし、
(e)前記下部層(β)の刃先稜線における厚みをTβ1、刃先稜線からすくい面方向に500μm離れた地点における厚みをTβ2とするとき、Tβ1、Tβ2は1.0〜20.0μmを満足し、かつTβ2<Tβ1を満たすことを特徴とする表面被覆切削工具。
(2)前記上部層(α)は、0.005〜0.050原子%の塩素を含有することを特徴とする(1)に記載の表面被覆切削工具。
(3)前記下部層(β)におけるTiとAlの複合窒化物層または複合炭窒化物層は、平均組成を(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XおよびCのCとNの合量に占める平均含有割合Y(但し、X、Yはいずれも原子比)は、それぞれ、0.60≦X≦0.95、0≦Y≦0.005を満足することを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4)前記工具基体と前記下部層(β)の間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20.0μmの合計平均層厚を有する結合層が存在することを特徴とする(1)〜(3)のいずれかに記載の表面被覆切削工具。」
This invention is made | formed based on the said knowledge, and is as follows.
“A hard coating comprising at least two layers of an upper layer (α) and a lower layer (β) on the surface of a tool base composed of either a WC-based cemented carbide, TiCN-based cermet or cBN-based ultrahigh pressure sintered body In a surface-coated cutting tool in which a layer is formed,
(A) The upper layer (α) comprises an Al 2 O 3 layer having an α-type crystal structure,
(B) The lower layer (β) is composed of a composite nitride or composite carbonitride layer of Ti and Al,
(C) The Ti and Al composite nitride or composite carbonitride layer includes at least a crystal layer having a NaCl-type face-centered cubic structure. (D) The thickness of the upper layer (α) at the edge of the cutting edge is T α1 , When the thickness at a point 500 μm away from the edge of the cutting edge in the rake face direction is T α2 , T α1 satisfies 0.0 to 5.0 μm, T α2 satisfies 1.0 to 20.0 μm, and T α1 <T satisfies α2 ,
(E) When the thickness of the lower layer (β) at the cutting edge ridge line is T β1 and the thickness at a point 500 μm away from the cutting edge ridge line in the rake face direction is T β2 , T β1 and T β2 are 1.0 to 20. A surface-coated cutting tool characterized by satisfying 0 μm and satisfying T β2 <T β1 .
(2) The surface-coated cutting tool according to (1), wherein the upper layer (α) contains 0.005 to 0.050 atomic% of chlorine.
(3) When the average composition of the composite nitride layer or composite carbonitride layer of Ti and Al in the lower layer (β) is represented by (Ti 1-X Al X ) (C Y N 1-Y ), The average content ratio X in the total amount of Ti and Al in Al and the average content ratio Y in the total amount of C and N in C (where X and Y are atomic ratios) are 0.60 ≦ X, respectively. The surface-coated cutting tool according to (1) or (2), wherein ≦ 0.95 and 0 ≦ Y ≦ 0.005 are satisfied.
(4) One or two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer between the tool base and the lower layer (β) The surface-coated cutting tool according to any one of (1) to (3), wherein a bonding layer comprising a compound layer and having a total average layer thickness of 0.1 to 20.0 μm exists. "

下部層として、刃先稜線およびすくい面の所定位置で所定の層厚を有するTiとAlとの複合窒化物層または複合炭窒化物層を設け、この下部層の上に上部層として、高温に曝されるすくい面側に、刃先稜線よりも厚く所定の層厚の化学的に安定なAl層を設けることにより、すくい面側の耐酸化性、耐溶着性が高まり耐摩耗性が向上すること、その一方で、刃先稜線には、すくい面側よりも薄く所定の層厚のAl層を設けても耐摩耗性は低下しないため、被覆工具の寿命が向上するという顕著な効果を本発明は奏するものである。 As a lower layer, a composite nitride layer or composite carbonitride layer of Ti and Al having a predetermined layer thickness is provided at a predetermined position on the edge of the cutting edge and the rake face, and the upper layer is exposed to a high temperature on the lower layer. By providing a chemically stable Al 2 O 3 layer with a predetermined layer thickness that is thicker than the edge of the cutting edge on the rake face side, the oxidation resistance and welding resistance on the rake face side are increased and wear resistance is improved. On the other hand, since the wear resistance is not lowered even if an Al 2 O 3 layer having a predetermined layer thickness is provided on the edge of the cutting edge, which is thinner than the rake face side, the life of the coated tool is significantly improved. The present invention has an effect.

本発明の表面被覆切削工具において、刃先稜線とすくい面側の上部層(α型のAl層)および下部層(TiとAlとの複合窒化物層または複合炭窒化物層)の層厚を示す模式図である。In the surface-coated cutting tool of the present invention, the edge ridgeline and the rake face side upper layer (α-type Al 2 O 3 layer) and lower layer (Ti-Al composite nitride layer or composite carbonitride layer) It is a schematic diagram which shows thickness.

本発明を実施するための形態について、以下に説明する。   The form for implementing this invention is demonstrated below.

刃先稜線
本発明でいう刃先稜線とは、すくい面と逃げ面とをそれぞれ直線で近似し、その直線を延長した場合に両延長線が交差する交点Aをとし、刃先稜線からの距離は、当該直線の交点Aからそれぞれの直線に沿った距離をいう。刃先稜線の膜厚とは、当該直線のなす角を2等分するように直線を引き、インサート表面との交点Bとしたときの交点Bでの膜厚をいう。
Cutting edge ridge line In the present invention, the cutting edge ridge line approximates the rake face and the flank face with straight lines, and when the straight line is extended, the intersection A intersects both extension lines, and the distance from the cutting edge ridge line is The distance along the straight line from the intersection A of the straight line. The film thickness of the cutting edge ridge line refers to the film thickness at the intersection point B when a straight line is drawn so as to divide the angle formed by the straight line into two equal parts and set as the intersection point B with the insert surface.

TiとAlとの複合窒化物層または複合炭窒化物層からなる下部層(β)
TiとAlとの複合窒化物層または複合炭窒化物層からなる下部層は、熱CVD装置を用いて、少なくともNaCl型の面心立方構造の相を含むように形成する。
成膜条件の一例として、
反応ガス組成(容量%)
ガス群A:NH:0.8〜1.6%、H:45〜55%
ガス群B:AlCl:0.5〜0.7%、Al(CH:0.00〜0.08%、
TiCl:0.1〜0.3%、N:0.0〜10.0%、H:残
反応雰囲気圧力:4.0〜5.0kPa
反応雰囲気温度:700〜900℃
を挙げることができる。
ここで、ガス群Aとガス群Bとは、熱CVD装置の反応容器内の空間で被成膜物の直前までガスを分離して供給し、被成膜物の直前でガス群Aとガス群Bが混合し、反応させるようにする。これは、互いに反応活性の高いガス種を成膜領域にわたって均一に成膜するために有効であり、詳細な技術内容は、例えば特開2015−131984号公報に開示されている。
また、下部層の層厚は、刃先稜線においてTβ1、刃先稜線からすくい面方向に500μm離れた地点のものをTβ2としたとき、Tβ1およびTβ2は、共に1.0〜20.0μmとなるように成膜する。その後、層厚がTβ2<Tβ1を満たすようにすくい面に、例えば、機械研磨またはウエットブラスト処理を施して下部層の層厚を薄くする。TiとAlとの複合窒化物または複合炭窒化物層は、硬さが高く、すぐれた耐摩耗性を有するが、特に、Tβ1、Tβ2が1.0〜20.0μmのとき、その効果が際立って発揮される。その理由は、1.0μm未満では、層厚が薄いため長期の使用にわたっての耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiとAlの複合窒化物または複合炭窒化物層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなるためである。
ここで、後述するTα1<Tα2という上部層の厚さと相俟って、下部層の厚さはすくい面側が刃先稜線に比して薄い層厚であったとしても、耐摩耗性、耐チッピング性に優れるという知見から、下部層の層厚がTβ1>Tβ2と規定した。
また、下部層の組成は、平均組成を(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XおよびCのCとNの合量に占める平均含有割合Y(但し、X、Yはいずれも原子比)は、それぞれ、0.60≦X≦0.95、0≦Y≦0.005を満足することが好ましい。その理由は、Alの平均含有割合Xが0.60未満であると、(Ti1−XAl)(C1−Y)層は耐酸化性に劣り、耐熱合金鋼等の切削加工に供した場合には、耐摩耗性が十分でないことがあり、一方、Alの平均含有割合Xが0.95超えると、硬さに劣る六方晶の析出量が増大し硬さが低下するため、耐摩耗性が低下する可能性があるためである。また、(Ti1−XAl)(C1−Y)層に含まれるC成分の平均含有割合Yは、0≦Y≦0.005の範囲であるとき、潤滑性がより一層向上することによって切削時の衝撃を緩和し、結果として(Ti1−XAl)(C1−Y)層の耐チッピング性、耐欠損性が向上する。一方、C成分の平均含有割合Yが0≦Y≦0.005の範囲を逸脱すると、(Ti1−XAl)(C1−Y)層の靭性が低下するため耐チッピング性、耐欠損性が低下することがあって好ましくない。したがって、Cの平均含有割合Yは、0≦Y≦0.005が好ましい。
なお、複合窒化物または複合炭窒化物層のAlの平均含有割合Xについては、電子線マイクロアナライザ(Electron−Probe−Micro−Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均から求めた。Cの平均含有割合Yについては、二次イオン質量分析(Secondary−Ion−Mass−Spectroscopy:SIMS)により求めた。すなわち、イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合YはTiとAlの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。
加えて、前記(Ti1−XAl)(C1−Y)層におけるNaCl型の面心立方晶構造を有する結晶粒が存在することが必要であり、その面積割合として少なくとも40面積%以上が好ましい。これにより、高硬度であるNaCl型の面心立方晶構造を有する結晶粒の面積比率がある程度存在するため、硬さが向上する。さらに、この面積割合が60面積以上となると、NaCl型の面心立方晶構造を有する結晶粒が六方晶構造の結晶粒に比べて相対的に高くなり、硬さがより向上するという効果を得ることができる。この面積率は、より好ましくは75面積%以上である。
Lower layer (β) composed of a composite nitride layer or composite carbonitride layer of Ti and Al
The lower layer formed of a composite nitride layer or composite carbonitride layer of Ti and Al is formed using a thermal CVD apparatus so as to include at least a phase of a NaCl type face centered cubic structure.
As an example of film formation conditions,
Reaction gas composition (volume%)
Gas group A: NH 3 : 0.8 to 1.6%, H 2 : 45 to 55%
Gas group B: AlCl 3 : 0.5 to 0.7%, Al (CH 3 ) 3 : 0.00 to 0.08%,
TiCl 4 : 0.1 to 0.3%, N 2 : 0.0 to 10.0%, H 2 : residual reaction atmosphere pressure: 4.0 to 5.0 kPa
Reaction atmosphere temperature: 700-900 ° C
Can be mentioned.
Here, the gas group A and the gas group B are separated and supplied in the space in the reaction vessel of the thermal CVD apparatus until just before the film formation object, and the gas group A and the gas just before the film formation object. Allow Group B to mix and react. This is effective for uniformly forming gas species having high reaction activity over the film forming region, and detailed technical contents are disclosed in, for example, Japanese Patent Application Laid-Open No. 2015-131984.
Further, when the layer thickness of the lower layer is T β1 at the edge of the blade edge and T β2 at a point 500 μm away from the edge of the edge in the rake face direction, both T β1 and T β2 are 1.0 to 20.0 μm. It forms into a film so that it may become. Thereafter, the rake face is subjected to, for example, mechanical polishing or wet blasting so as to reduce the thickness of the lower layer so that the layer thickness satisfies T β2 <T β1 . The composite nitride or composite carbonitride layer of Ti and Al is high in hardness and has excellent wear resistance. Particularly, when T β1 and T β2 are 1.0 to 20.0 μm, the effect is obtained. Is prominently demonstrated. The reason is that if the layer thickness is less than 1.0 μm, the layer thickness is thin, so that sufficient wear resistance over a long period of use cannot be ensured. On the other hand, if the average layer thickness exceeds 20.0 μm, Ti and Al This is because the crystal grains of the composite nitride or composite carbonitride layer are likely to be coarsened and chipping is likely to occur.
Here, in combination with the thickness of the upper layer of T α1 <T α2 to be described later, even if the thickness of the lower layer is thinner than the edge of the cutting edge, From the knowledge that chipping properties are excellent, the layer thickness of the lower layer was defined as T β1 > T β2 .
In addition, the composition of the lower layer is the average content ratio X and C of C in the total amount of Ti and Al in the case where the average composition is represented by (Ti 1-X Al X ) (C Y N 1-Y ). The average content ratio Y in the total amount of N and N (where X and Y are both atomic ratios) preferably satisfy 0.60 ≦ X ≦ 0.95 and 0 ≦ Y ≦ 0.005, respectively. . The reason is that when the average content ratio X of Al is less than 0.60, the (Ti 1-X Al X ) (C Y N 1-Y ) layer is inferior in oxidation resistance, and cutting of heat-resistant alloy steel or the like If the average content ratio X of Al exceeds 0.95, the amount of precipitated hexagonal crystals inferior in hardness increases and the hardness decreases. This is because the wear resistance may be reduced. Further, when the average content Y of the C component contained in the (Ti 1-X Al X ) (C Y N 1-Y ) layer is in the range of 0 ≦ Y ≦ 0.005, the lubricity is further improved. alleviate the impact during cutting by chipping resistance of the resulting (Ti 1-X Al X) (C Y N 1-Y) layer, chipping resistance is improved. On the other hand, when the average content ratio Y of the C component deviates from the range of 0 ≦ Y ≦ 0.005, the toughness of the (Ti 1-X Al X ) (C Y N 1-Y ) layer decreases, so that chipping resistance, It is not preferable because the chipping resistance is lowered. Therefore, the average content ratio Y of C is preferably 0 ≦ Y ≦ 0.005.
Note that the average content ratio X of Al in the composite nitride or composite carbonitride layer was measured by using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA) and the surface was polished. Irradiated from the surface side, it was determined from the average of 10 points of the analysis results of the characteristic X-rays obtained. About the average content rate Y of C, it calculated | required by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). That is, the ion beam was irradiated in a range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the component emitted by the sputtering action. The average content ratio Y of C shows the average value of the depth direction about the composite nitride or composite carbonitride layer of Ti and Al.
In addition, it is necessary that crystal grains having a NaCl-type face-centered cubic structure in the (Ti 1-X Al X ) (C Y N 1-Y ) layer exist, and the area ratio is at least 40 areas. % Or more is preferable. As a result, there is a certain area ratio of crystal grains having a NaCl-type face-centered cubic structure with high hardness, and thus the hardness is improved. Further, when the area ratio is 60 areas or more, the crystal grains having the NaCl-type face-centered cubic structure are relatively higher than the crystal grains having the hexagonal crystal structure, thereby obtaining an effect that the hardness is further improved. be able to. This area ratio is more preferably 75 area% or more.

α型の結晶構造を有するAl(以下、α−Alという)からなる上部層(α)
上部層の成膜は下部層の層厚を調整したのち再度実施する。α−Alの成膜に当たっては、初期の核生成段階とその後の成長段階で条件を変えて成膜を行い、その後、後述する層厚を満足するように刃先稜線に、例えば、機械研磨またはウエットブラスト処理を施して上部層の層厚を薄くする。
成膜条件の一例として、
<α−Al初期の核生成段階>
反応ガス組成(容量%):AlCl:1.0〜3.0%、CO:1.0〜5.0%、HCl:0.3〜1.0%、残部:H
反応雰囲気圧力:5.0〜15.0kPa
反応雰囲気温度:800〜900℃
<α−Al成長段階>
反応ガス組成(容量%):AlCl:1.5〜5.0%、CO:2.0〜8.0%、HCl:3.0〜8.0%、HS:0.5〜1.0%、残部:H
反応雰囲気圧力:5.0〜15.0kPa、
反応雰囲気温度:800〜900℃、
を挙げることができる。
また、上部層の層厚は、刃先稜線においてTα1、刃先稜線から逃げ面方向に500μm離れた地点でTα2としたとき、Tα1は0.0〜5.0μm、Tα2は1.0〜20.0μm、かつTα1<Tα2を満足していなければならない。
上部層の層厚をこの範囲とする理由は、α−Alは刃先稜線に存在しなくても(Tα1=0.0μmでも)耐摩耗性・耐チッピング性には影響せず、Tα1が5.0μmを超えると上部層の剥離やチッピングが生じる可能性があって、CVD法により成膜したTiとAlの複合窒化物層または複合炭窒化物層の耐摩耗性を低下させるためであり、また、Tα2は、1.0μm未満では、α−Alによる熱遮蔽効果が不十分であり、上部層の摩滅が生じやすく、熱的に不安定な準安定相であるTiとAlの複合窒化物層または複合炭窒化物層が露出して耐摩耗性が損なわれ、Tα2は20.0μmを超えるとα−Alによる熱遮蔽効果が飽和するためである。そして、刃先稜線はすくい面側よりも薄い層厚のAl層であっても耐摩耗性・耐チッピング性が優れるとの知見により、Tα1<Tα2を規定した。
また、比較的低温(800〜900℃)でα−Al層を成膜した場合、反応ガス成分である塩素が層中に混入されるようになる。α−Al層中への塩素の混入は必須の要件ではないが、混入される場合は、層中に含有される塩素含有量が0.005原子%以上であると、α−Al層が潤滑性を具備するようになり、刃先に機械的衝撃が作用する断続切削に供したときに機械的衝撃を吸収し、チッピング等の異常損傷を抑制する効果をより発揮する。一方、塩素含有量が0.050原子%を超え過度に含有されると、α−Al層の耐摩耗性の劣化を招くことになる。したがって、α−Al層からなる上部層における塩素含有量は、0.005〜0.050原子%とすることが望ましい。
Upper layer (α) made of Al 2 O 3 having an α-type crystal structure (hereinafter referred to as α-Al 2 O 3 )
The upper layer is formed again after adjusting the thickness of the lower layer. In the film formation of α-Al 2 O 3 , film formation is performed by changing the conditions in the initial nucleation stage and the subsequent growth stage, and then the cutting edge edge line is formed so as to satisfy the layer thickness described later, for example, mechanical Polishing or wet blasting is performed to reduce the thickness of the upper layer.
As an example of film formation conditions,
<Α-Al 2 O 3 initial nucleation stage>
Reaction gas composition (volume%): AlCl 3 : 1.0 to 3.0%, CO 2 : 1.0 to 5.0%, HCl: 0.3 to 1.0%, balance: H 2
Reaction atmosphere pressure: 5.0 to 15.0 kPa
Reaction atmosphere temperature: 800-900 ° C
<Α-Al 2 O 3 growth stage>
Reaction gas composition (volume%): AlCl 3 : 1.5 to 5.0%, CO 2 : 2.0 to 8.0%, HCl: 3.0 to 8.0%, H 2 S: 0.5 to 1.0%, the balance: H 2
Reaction atmosphere pressure: 5.0 to 15.0 kPa,
Reaction atmosphere temperature: 800 to 900 ° C.
Can be mentioned.
Further, the thickness of the upper layer is T α1 at the edge of the blade edge, and T α2 at a point 500 μm away from the edge of the edge in the flank direction, T α1 is 0.0 to 5.0 μm, and T α2 is 1.0. ˜20.0 μm and T α1 <T α2 must be satisfied.
The reason why the thickness of the upper layer is in this range is that α-Al 2 O 3 does not affect the wear resistance and chipping resistance even if it is not present on the edge of the blade edge (even if T α1 = 0.0 μm). T [alpha] 1 is there is a possibility that peeling or chipping of the upper layer caused exceeds 5.0 .mu.m, decreases the wear resistance of the composite nitride layer or a composite carbonitride layer of the formed Ti and Al by a CVD method Further, if T α2 is less than 1.0 μm, the heat shielding effect by α-Al 2 O 3 is insufficient, the upper layer is easily worn out, and is a thermally unstable metastable phase. A certain Ti and Al composite nitride layer or composite carbonitride layer is exposed and wear resistance is impaired, and when T α2 exceeds 20.0 μm, the heat shielding effect by α-Al 2 O 3 is saturated. is there. Further, T α1 <T α2 was defined based on the knowledge that the cutting edge ridge line is excellent in wear resistance and chipping resistance even when the Al 2 O 3 layer is thinner than the rake face side.
Further, when the α-Al 2 O 3 layer is formed at a relatively low temperature (800 to 900 ° C.), chlorine as a reaction gas component is mixed into the layer. Although mixing of chlorine into the α-Al 2 O 3 layer is not an essential requirement, if it is mixed, if the chlorine content contained in the layer is 0.005 atomic% or more, α-Al The 2 O 3 layer comes to have lubricity, and when subjected to intermittent cutting in which mechanical impact acts on the cutting edge, it absorbs the mechanical impact and more effectively suppresses abnormal damage such as chipping. On the other hand, if the chlorine content exceeds 0.050 atomic% and is contained excessively, the wear resistance of the α-Al 2 O 3 layer is deteriorated. Accordingly, the chlorine content in the upper layer composed of the α-Al 2 O 3 layer is preferably 0.005 to 0.050 atomic%.

基体とTiとAlの複合窒化物層または複合炭窒化物層との間の結合層
基体とTiとAlの複合窒化物層または複合炭窒化物層との間には、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20.0μmの合計平均層厚を有する結合層を設けると、基体とTiとAlの複合窒化物層または複合炭窒化物層との間の結合がより一層優れたものとなる。
Bonding layer between substrate and Ti and Al composite nitride layer or composite carbonitride layer Ti carbide layer, nitrided between substrate and Ti and Al composite nitride layer or composite carbonitride layer A bonded layer having a total average layer thickness of 0.1 to 20.0 μm, comprising one or more Ti compound layers of a physical layer, a carbonitride layer, a carbonate layer and a carbonitride layer. When provided, the bond between the substrate and the composite nitride layer or composite carbonitride layer of Ti and Al is further improved.

次に、本発明の被覆工具を実施例により具体的に説明する。なお、以下の実施例ではWC基超硬合金を工具基体とする被覆工具について述べるが、工具基体としてはTiCN基サーメットやcBN基超高圧焼結体を用いた場合も同様である。   Next, the coated tool of the present invention will be specifically described with reference to examples. In the following examples, a coated tool using a WC-based cemented carbide as a tool base will be described. However, the same applies when a TiCN-based cermet or a cBN-based ultrahigh-pressure sintered body is used as the tool base.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、三菱マテリアル株式会社製のSEMT13T3AGSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. WC-based cemented carbide tool substrate A having a insert shape of SEMT13T3AGSN manufactured by Mitsubishi Materials Corporation after sintering under vacuum at a predetermined temperature within a range of 1470 ° C. for 1 hour. C was produced respectively.

Figure 2019155570
Figure 2019155570

次に、これらの工具基体A〜Cの表面に、CVD装置を用い、まず、表2および表3に示される条件で、下部層である所定の組成を有する(Ti1−XAl)(C1−Y)層を目標層厚になるまで蒸着形成した後、ウエットブラスト法によりすくい面の下部層を一部除去した。そして、同じく表2および表3に示される条件で上部層であるAl層を形成し、その後、刃先稜線にウエットブラスト法により刃先稜線の上部層を一部除去して、表4に示される本発明被覆工具1〜15を製造した。なお、本発明被覆工具6〜15については、下部層を形成する前に表4に示す結合層を公知の方法により形成した。 Next, a CVD apparatus is used on the surfaces of these tool bases A to C. First, under the conditions shown in Tables 2 and 3, the lower base layer has a predetermined composition (Ti 1-X Al X ) ( After the C Y N 1-Y ) layer was formed by vapor deposition until the target layer thickness was reached, a part of the lower layer on the rake face was removed by wet blasting. Then, an Al 2 O 3 layer that is an upper layer is formed under the conditions shown in Table 2 and Table 3, and then a part of the upper layer of the cutting edge ridge line is removed from the cutting edge ridge line by wet blasting. Present invention coated tools 1-15 were produced. In addition, about this invention coated tools 6-15, before forming a lower layer, the bonding layer shown in Table 4 was formed by the well-known method.

また、比較の目的で、工具基体A〜Dの表面に、表2および表3に示される条件で本発明被覆工具1〜15と同様に、下部層を形成し、上部層を蒸着形成するものの、ウエットブラスト法による層の一部除去を行っていない、表5に示される比較被覆工具1〜15を製造した。なお、比較被覆工具6〜15については、下部層を形成する前に表5に示す結合層を公知の方法により形成した。   For comparison purposes, the lower layer is formed on the surfaces of the tool bases A to D under the conditions shown in Tables 2 and 3 in the same manner as the coated tools 1 to 15 of the present invention, and the upper layer is formed by vapor deposition. Comparative coated tools 1 to 15 shown in Table 5 were manufactured without partial removal of the layer by the wet blast method. In addition, about the comparison coating tools 6-15, before forming a lower layer, the bonding layer shown in Table 5 was formed by the well-known method.

本発明被覆工具1〜15、比較被覆工具1〜15の各構成層の断面を、走査型電子顕微鏡(倍率5000倍)を用いて、Tα1、Tα2、Tβ1、および、Tβ2を測定した。 T α1 , T α2 , T β1 , and T β2 are measured for the cross-sections of the constituent layers of the inventive coated tools 1 to 15 and comparative coated tools 1 to 15 using a scanning electron microscope (5000 magnifications). did.

Figure 2019155570
Figure 2019155570

Figure 2019155570
Figure 2019155570

Figure 2019155570
Figure 2019155570

Figure 2019155570
Figure 2019155570

次に、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜15、比較被覆工具1〜15について、耐熱合金、Ni−19Cr−19Fe−3Mo−0.9Ti−0.5Al−5.1(Nb+Ta)合金の時効硬化処理材の湿式正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表6に示す。   Next, with respect to the present invention coated tools 1 to 15 and comparative coated tools 1 to 15, the heat-resistant alloy in a state in which each of the various coated tools is clamped to the tip of a tool steel cutter having a cutter diameter of 125 mm by a fixing jig. , Ni-19Cr-19Fe-3Mo-0.9Ti-0.5Al-5.1 (Nb + Ta) alloy age hardened material wet face milling, center cut cutting test, cutting edge flank wear width Was measured. The results are shown in Table 6.

切削試験:湿式正面フライス、センターカット切削加工
カッタ径: 125mm
被削材: 上記耐熱合金 幅100mm、長さ400mmのブロック材
回転速度: 127min−1
切削速度: 50m/min
切り込み: 1.0mm
一刃送り量: 0.12mm/刃
切削時間: 5分
Cutting test: wet face milling, center cut cutting cutter diameter: 125mm
Work material: The above heat-resistant alloy Block material having a width of 100 mm and a length of 400 mm Rotational speed: 127 min −1
Cutting speed: 50 m / min
Cutting depth: 1.0mm
Single blade feed: 0.12 mm / tooth Cutting time: 5 minutes

Figure 2019155570
Figure 2019155570

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.03mmのホーニング加工を施すことによりISO規格CNMG120408のインサート形状をもったWC基超硬合金製の工具基体α〜γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. After blending into the composition shown in Table 7, adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press molding into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.03 mm. Tool bases α to γ made of WC-base cemented carbide having the insert shape of CNMG120408 were manufactured.

Figure 2019155570
Figure 2019155570

次に、これらの工具基体α〜γおよび工具基体δの表面に、CVD装置を用い、実施例1〜15と同様の方法により表2および表3に示される条件で、表8に示される本発明被覆工具16〜30を製造した。なお、本発明被覆工具21〜30については、下部層を形成する前に表8に示す結合層を公知の方法により形成した。   Next, using the CVD apparatus on the surface of these tool bases α to γ and tool base δ, the book shown in Table 8 under the conditions shown in Table 2 and Table 3 in the same manner as in Examples 1-15. Invention coated tools 16-30 were produced. In addition, about this invention coated tools 21-30, before forming a lower layer, the bonding layer shown in Table 8 was formed by the well-known method.

また、比較の目的で、同じく工具基体α〜γおよび工具基体δの表面に、通常のCVD装置を用い、表2および表3に示される条件で、比較例1〜15と同様の方法により表9に示される比較被覆工具16〜30を製造した。なお、比較被覆工具21〜30については、下部層を形成する前に表9に示す結合層を公知の方法により形成した。   Further, for the purpose of comparison, on the surfaces of the tool bases α to γ and the tool base δ, an ordinary CVD apparatus was used, and the conditions shown in Tables 2 and 3 were used in the same manner as in Comparative Examples 1 to 15. Comparative coated tools 16-30 shown in 9 were produced. In addition, about the comparison coating tools 21-30, the bonding layer shown in Table 9 was formed by the well-known method before forming a lower layer.

本発明被覆工具16〜30、比較被覆工具16〜30の各構成層の断面を、走査電子型顕微鏡(倍率5000倍)を用いて、Tα1、Tα2、Tβ1、および、Tβ2を測定した。 Measure T α1 , T α2 , T β1 , and T β2 using a scanning electron microscope (magnification 5000 times) for the cross-section of each component layer of the inventive coated tool 16-30 and comparative coated tool 16-30. did.

Figure 2019155570
Figure 2019155570

Figure 2019155570
Figure 2019155570

次に、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16〜30、比較被覆工具16〜30について、耐熱合金、Ni−19Cr−19Fe−3Mo−0.9Ti−0.5Al−5.1(Nb+Ta)合金の時効硬化処理材の湿式連続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。   Next, in the state where each of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the invention coated tools 16 to 30 and the comparative coated tools 16 to 30 are heat resistant alloy, Ni A wet continuous cutting test was performed on the age-hardened material of a -19Cr-19Fe-3Mo-0.9Ti-0.5Al-5.1 (Nb + Ta) alloy, and the flank wear width of the cutting edge was measured in all cases.

切削試験:耐熱合金の湿式連続切削加工
被削材:上記耐熱合金の丸棒
切削速度: 80 m/min
切り込み: 1.2mm
送り: 0.2mm/rev
切削時間: 5分
切削試験の結果を表10に示す。
Cutting test: Wet continuous cutting of heat-resistant alloy Work material: Round bar of the above heat-resistant alloy Cutting speed: 80 m / min
Cutting depth: 1.2mm
Feed: 0.2mm / rev
Cutting time: 5 minutes Table 10 shows the results of the cutting test.

Figure 2019155570
Figure 2019155570

表6、表10に示される結果から、本発明の被覆工具は、α−Alからなる上部層(α)の刃先稜線における厚みをTα1、刃先稜線からすくい面方向に500μm離れた地点における厚みをTα2とするとき、Tα1は0.0〜5.0μm、Tα2は1.0〜20.0μmを満足し、かつTα1<Tα2を満たし、TiとAlとの複合窒化物層または複合炭窒化物層からなる下部層βの刃先稜線における厚みをTβ1、刃先稜線からすくい面方向に500μm離れた地点における厚みをTβ2とするとき、Tβ1、Tβ2は1.0〜20.0μmを満足することで、耐熱合金の切削加工のように刃先が高温になる切削に用いた場合でも、耐チッピング性、耐欠損性に優れ、その結果、長期の使用にわって優れた耐摩耗性を発揮することが明らかである。 From the results shown in Tables 6 and 10, in the coated tool of the present invention, the thickness of the upper edge (α) made of α-Al 2 O 3 at the cutting edge ridge line is T α1 , 500 μm away from the cutting edge ridge line in the rake face direction. When the thickness at the point is T α2 , T α1 satisfies 0.0 to 5.0 μm, T α2 satisfies 1.0 to 20.0 μm, and satisfies T α1 <T α2 and is a composite of Ti and Al. the thickness at the cutting edge of the lower layer β a nitride layer or a composite carbonitride layer T .beta.1, when the thickness at a point distant 500μm the rake face direction from the edge line and T β2, T β1, T β2 1 By satisfying 0.0-20.0 μm, it is excellent in chipping resistance and chipping resistance even when it is used for cutting where the cutting edge is hot like cutting of heat-resistant alloy. Excellent wear resistance It is clear.

これに対して、本発明の発明特定事項を満たしていない比較被覆工具1〜30については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。   On the other hand, the comparative coated tools 1 to 30 that do not satisfy the invention-specific matters of the present invention are used for high-speed intermittent cutting in which high heat is generated and intermittent and impact high loads act on the cutting edge. It is clear that the life is shortened in a short time due to occurrence of chipping, chipping or the like.

前述のように、本発明の被覆工具は、耐熱合金鋼の切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用にわたってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for cutting heat-resistant alloy steel, but also as a coated tool for various work materials, and has excellent chipping resistance and wear resistance over a long period of use. Therefore, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

Claims (4)

WC基超硬合金、TiCN基サーメットまたはcBN基超高圧焼結体のいずれかで構成された工具基体の表面に、上部層(α)、下部層(β)の少なくとも2層を含む硬質被覆層が形成されている表面被覆切削工具において、
(a)前記上部層(α)はα型の結晶構造を有するAl層からなり、
(b)前記下部層(β)はTiとAlの複合窒化物または複合炭窒化物層からなり、
(c)前記TiとAlの複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造の結晶層を少なくとも含み
(d)前記上部層(α)の刃先稜線における厚みをTα1、刃先稜線からすくい面方向に500μm離れた地点における厚みをTα2とするとき、Tα1は0.0〜5.0μm、Tα2は1.0〜20.0μmを満足し、かつTα1<Tα2を満たし、
(e)前記下部層(β)の刃先稜線における厚みをTβ1、刃先稜線からすくい面方向に500μm離れた地点における厚みをTβ2とするとき、Tβ1、Tβ2は1.0〜20.0μmを満足し、かつTβ2<Tβ1を満たすことを特徴とする表面被覆切削工具。
A hard coating layer including at least two layers of an upper layer (α) and a lower layer (β) on the surface of a tool base composed of either a WC-based cemented carbide, a TiCN-based cermet, or a cBN-based ultrahigh pressure sintered body In the surface-coated cutting tool in which is formed,
(A) The upper layer (α) comprises an Al 2 O 3 layer having an α-type crystal structure,
(B) The lower layer (β) is composed of a composite nitride or composite carbonitride layer of Ti and Al,
(C) The Ti and Al composite nitride or composite carbonitride layer includes at least a crystal layer having a NaCl-type face-centered cubic structure. (D) The thickness of the upper layer (α) at the edge of the cutting edge is T α1 , When the thickness at a point 500 μm away from the edge of the cutting edge in the rake face direction is T α2 , T α1 satisfies 0.0 to 5.0 μm, T α2 satisfies 1.0 to 20.0 μm, and T α1 <T satisfies α2 ,
(E) When the thickness of the lower layer (β) at the cutting edge ridge line is T β1 and the thickness at a point 500 μm away from the cutting edge ridge line in the rake face direction is T β2 , T β1 and T β2 are 1.0 to 20. A surface-coated cutting tool characterized by satisfying 0 μm and satisfying T β2 <T β1 .
前記上部層(α)は、0.005〜0.050原子%の塩素を含有することを特徴とする請求項1に記載の表面被覆切削工具。   The surface-coated cutting tool according to claim 1, wherein the upper layer (α) contains 0.005 to 0.050 atomic% of chlorine. 前記下部層(β)におけるTiとAlの複合窒化物層または複合炭窒化物層は、平均組成を(Ti1−XAl)(C1−Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XおよびCのCとNの合量に占める平均含有割合Y(但し、X、Yはいずれも原子比)は、それぞれ、0.60≦X≦0.95、0≦Y≦0.005を満足することを特徴とする請求項1または2に記載の表面被覆切削工具。 When the average composition of the composite nitride layer or composite carbonitride layer of Ti and Al in the lower layer (β) is expressed as (Ti 1-X Al X ) (C Y N 1-Y ), Ti of Al The average content ratio X in the total amount of Al and Al and the average content ratio Y in the total amount of C and N in C (where X and Y are both atomic ratios) are 0.60 ≦ X ≦ 0. 95, 0 ≦ Y ≦ 0.005 is satisfied, The surface-coated cutting tool according to claim 1 or 2. 前記工具基体と前記下部層(β)の間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20.0μmの合計平均層厚を有する結合層が存在することを特徴とする請求項1〜3のいずれか一項に記載の表面被覆切削工具。   Between one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer between the tool base and the lower layer (β) The surface-coated cutting tool according to claim 1, wherein a bonding layer having a total average layer thickness of 0.1 to 20.0 μm is present.
JP2018048434A 2018-03-15 2018-03-15 Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance Pending JP2019155570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018048434A JP2019155570A (en) 2018-03-15 2018-03-15 Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018048434A JP2019155570A (en) 2018-03-15 2018-03-15 Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance

Publications (1)

Publication Number Publication Date
JP2019155570A true JP2019155570A (en) 2019-09-19

Family

ID=67992246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018048434A Pending JP2019155570A (en) 2018-03-15 2018-03-15 Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance

Country Status (1)

Country Link
JP (1) JP2019155570A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021203039A1 (en) 2020-03-31 2021-09-30 Tungaloy Corporation COATED CUTTING TOOL
US11660678B2 (en) * 2020-06-24 2023-05-30 Tungaloy Corporation Coated cutting tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021203039A1 (en) 2020-03-31 2021-09-30 Tungaloy Corporation COATED CUTTING TOOL
JP2021160017A (en) * 2020-03-31 2021-10-11 株式会社タンガロイ Coated cutting tool
JP7051052B2 (en) 2020-03-31 2022-04-11 株式会社タンガロイ Cover cutting tool
US11433459B2 (en) 2020-03-31 2022-09-06 Tungaloy Corporation Coated cutting tool
US11660678B2 (en) * 2020-06-24 2023-05-30 Tungaloy Corporation Coated cutting tool

Similar Documents

Publication Publication Date Title
JP6677932B2 (en) Surface coated cutting tool that demonstrates excellent chipping and wear resistance in heavy interrupted cutting
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
EP1626105B1 (en) Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance in high-speed intermittent cutting work
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
WO2011052767A1 (en) Surface coated cutting tool with excellent chip resistance
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2018164961A (en) Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5023896B2 (en) Surface coated cutting tool
JP4716254B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2019084671A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP5267767B2 (en) Surface coated cutting tool
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP2020151794A (en) Surface-coated cutting tool
JP2019166584A (en) Surface-coated cutting tool allowing hard coating layer to exhibit excellent wear resistance
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP7373110B2 (en) Surface-coated cutting tools with hard coating layer that exhibits excellent wear resistance
JP5170830B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed interrupted cutting