JP2020151794A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2020151794A
JP2020151794A JP2019051271A JP2019051271A JP2020151794A JP 2020151794 A JP2020151794 A JP 2020151794A JP 2019051271 A JP2019051271 A JP 2019051271A JP 2019051271 A JP2019051271 A JP 2019051271A JP 2020151794 A JP2020151794 A JP 2020151794A
Authority
JP
Japan
Prior art keywords
layer
average
group
crystal grain
aavg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019051271A
Other languages
Japanese (ja)
Other versions
JP7190111B2 (en
Inventor
翔 龍岡
Sho Tatsuoka
翔 龍岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019051271A priority Critical patent/JP7190111B2/en
Publication of JP2020151794A publication Critical patent/JP2020151794A/en
Application granted granted Critical
Publication of JP7190111B2 publication Critical patent/JP7190111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a surface-coated cutting tool exerting excellent chipping resistance and wear resistance for an extended period even in high-speed high-feed processing or the like of a ductile cast iron and the like.SOLUTION: In a surface-coated cutting tool, the hard coating layer of a tool substrate includes a composite nitride layer or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0-20.0 μm and having crystal grains of the NaCl type face-centered cubic structure. In the analysis about a cut surface parallel to the tool substrate, the composition of a crystal grain A group is (Ti1-XAAlXA)(CYAN1-YA), and the average of XA, XAavg and average of YA, YAavg satisfy 0.75≤XAavg≤0.95 and 0.0000≤YAavg≤0.0150, respectively. The composition of a crystal grain B group is (Ti1-XBAlXB)(CYBN1-YB), and the average of XB, XBavg satisfies 0.70≤XBavg≤0.90, and 0.05≤XAavg-XBavg≤0.25. Besides, the average of YB, YBavg satisfies 0.0000≤YBavg≤0.0150, and the area ratio of the crystal grain A group is in the range of 20 to 80%.SELECTED DRAWING: Figure 1

Description

本発明は、高熱発生を伴うとともに、切刃に対して強い衝撃的な負荷が作用する高速高送り断続切削加工において、硬質被覆層が優れた耐チッピング性、耐摩耗性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 INDUSTRIAL APPLICABILITY The present invention provides a hard coating layer with excellent chipping resistance and abrasion resistance in high-speed, high-feed intermittent cutting, which is accompanied by high heat generation and exerts a strong impact load on the cutting edge, for a long period of time. It relates to a surface-coated cutting tool (hereinafter, may be referred to as a coated tool) that exhibits excellent cutting performance over its use.

従来、炭化タングステン(以下、WCで示す)基超硬合金等で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速高送り断続切削条件で用いた場合に異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, Ti-Al-based composite nitride is used as a hard coating layer on the surface of a tool substrate (hereinafter, collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or the like. There are coating tools in which a material layer is coated and formed by a vapor deposition method, and these are known to exhibit excellent abrasion resistance.
However, although the conventional covering tool coated with the Ti-Al-based composite nitride layer has relatively excellent wear resistance, abnormal wear is likely to occur when used under high-speed, high-feed intermittent cutting conditions. , Various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、工具基体の表面に、(Ti1−xAl)(C1−y)層(但し、Alの平均含有割合xavgおよびCの平均含有割合yavgは、0.60≦xavg≦0.95、0≦yavg≦0.005を満たす)を被覆形成した被覆工具であって、該層のNaCl型の面心立方構造を有する結晶粒は{111}配向を有し、該NaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wは0.1〜2.0μm、平均アスペクト比Aは2〜10である柱状組織を有し、また、該NaCl型の面心立方構造を有する個々の結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な組成変化が存在し、周期的に変化するxの極大値の平均と極小値の平均の差Δxが0.03〜0.25である被覆工具が記載されている。 For example, in Patent Document 1, the (Ti 1-x Al x ) (C y N 1-y ) layer (provided that the average content of Al x avg and the average content of C y avg are described on the surface of the tool substrate. , 0.60 ≤ x avg ≤ 0.95, 0 ≤ y avg ≤ 0.005), and the crystal grains having a NaCl-type face-centered cubic structure of the layer are {111. } An individual crystal grain having an orientation and a face-centered cubic structure of NaCl type has a columnar structure having an average particle width W of 0.1 to 2.0 μm and an average aspect ratio A of 2 to 10. Further, in the individual crystal grains having the NaCl-type face-centered cubic structure, there is a periodic composition change of Ti and Al in the composition formula: (Ti 1-x Al x ) ( Cy N 1-y ). However, a covering tool is described in which the difference Δx between the average of the maximum values of x and the average of the minimum values, which changes periodically, is 0.03 to 0.25.

また、例えば、特許文献2には、工具基体と、CVDプロセスにより適用され3μm〜25μmの範囲内の厚みの単層または多層の摩耗保護コーティングと、を有し、
該摩耗保護コーティングは、1.5μm〜17μmの厚みの少なくとも1つのTi1−xAl(0.70≦x<1、0≦y<0.25、0.75≦z<1.15)層であって、前記Ti1−xAl層が150nm以下複数の層を備える層状構造であって、同じ結晶構造(結晶相)を有し、Ti及びAlの化学量論的割合が交互に異なる周期的に交番する領域で形成されていること、および、少なくとも90vol%の面心立方結晶構造を有すること、を特徴とする被覆工具が記載されている。
Further, for example, Patent Document 2 includes a tool substrate and a single-layer or multi-layer wear protection coating having a thickness in the range of 3 μm to 25 μm applied by a CVD process.
The wear protective coating, at least one of Ti 1-x Al x thickness of 1.5μm~17μm C y N z (0.70 ≦ x <1,0 ≦ y <0.25,0.75 ≦ z < 1.15) A layered structure in which the Ti 1-x Al x Cy N z layer has a plurality of layers of 150 nm or less, has the same crystal structure (crystal phase), and is composed of Ti and Al. Covering tools are described that are formed in regions where stoichiometric proportions alternate and alternate periodically and have a face-centered cubic crystal structure of at least 90 vol%.

特開2016−64485号公報Japanese Unexamined Patent Publication No. 2016-64485 特表2017−508632号公報Special Table 2017-508632

近年の切削加工における省力化および省エネルギー化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわたって優れた耐摩耗性が求められている。 In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and covering tools have even more chipping resistance and chipping resistance. Abnormal damage resistance such as peeling resistance is required, and excellent wear resistance is required over a long period of use.

そこで、本発明はこのような状況をかんがみてなされたもので、ダクタイル鋳鉄等の高速高送り切削加工等に供した場合であっても、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することを目的とする。 Therefore, the present invention has been made in view of such a situation, and even when it is subjected to high-speed high-feed cutting of ductile cast iron or the like, it has excellent chipping resistance and abrasion resistance over a long period of use. The purpose is to provide a covering tool that demonstrates its performance.

本発明者は、TiとAlの複合窒化物層または複合炭窒化物層(以下、これらを総称して、「TiAlCN層」ということがある)を含む被覆工具の耐チッピング性、耐摩耗性の向上をはかるべく、鋭意検討を重ねた。 The present inventor has a chipping resistance and abrasion resistance of a covering tool including a composite nitride layer of Ti and Al or a composite carbonitride layer (hereinafter, these may be collectively referred to as "TiAlCN layer"). In order to improve it, we repeated diligent studies.

その結果、工具基体に平行なTiAlCN層の切断面において、Al含有割合の所定の差を有するNaCl型の面心立方構造を有する結晶粒の2つの群が特定の割合で存在するとき、Alの含有割合の違いに起因する熱膨張係数の差がTiAlCN層内に局所的な歪みを発生させ、耐欠損性を向上させるという新規な知見を得た。 As a result, on the cut surface of the TiAlCN layer parallel to the tool substrate, when two groups of crystal grains having a NaCl-type face-centered cubic structure having a predetermined difference in the Al content ratio are present in a specific ratio, Al We have obtained a new finding that the difference in the coefficient of thermal expansion due to the difference in the content ratio causes local strain in the TiAlCN layer and improves the fracture resistance.

本発明は、この知見に基づくもので以下のとおりのものである。
「(1)工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具であって、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物層または複合炭窒化物層は、NaCl型の面心立方構造の結晶粒を少なくとも含み、
(c)前記工具基体の表面に垂直な方向から、前記工具基体に平行な切断面について解析した場合、TiとAlの組成が異なる前記NaCl型の面心立法構造の結晶粒が複数存在し、ぞれぞれを、結晶粒A群と結晶粒B群と区分するとき、
前記結晶粒A群を組成式:(Ti1−XAAlXA)(CYA1−YA)で表すとき、AlのTiとAlの合量に占める含有割合Xの平均XAavg、および、CのCとNの合量に占める含有割合Yの平均YAavg(但し、XAavg、YAavgはいずれも原子比)が、それぞれ、0.75≦XAavg≦0.95、0.0000≦YAavg≦0.0150を満足し、
前記結晶粒B群を組成式:(Ti1−XBAlXB)(CYB1−YB)で表すとき、AlのTiとAlの合量に占める含有割合Xの平均XBavg、および、CのCとNの合量に占める含有割合Yの平均YBavg(但し、XBavg、YBavgはいずれも原子比)が、0.70≦XBavg≦0.90、0.05≦XAavg−XBavg≦0.25、0.0000≦YBavg≦0.0150を満足し、
(d)前記切断面において、前記結晶粒A群の占める面積割合が20〜80%である、
ことを特徴とする表面被覆切削工具。
(2)前記結晶粒A群の結晶粒内に、TiとAlの周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、周期的に変化するXの極大値の平均値と極小値の平均値との差ΔXが0.03〜0.25であることを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記結晶粒B群の結晶粒内に、TiとAlの周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、周期的に変化するXの極大値の平均値と極小値の平均値との差ΔXが0.03〜0.25であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(4)前記工具基体と前記TiとAlの複合窒化物または複合炭窒化物層との間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする前記(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(5)前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1〜25μmの合計平均層厚で存在することを特徴とする前記(1)乃至(4)のいずれかに記載の表面被覆切削工具。」
The present invention is based on this finding and is as follows.
"(1) A surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate.
(A) The hard coating layer contains at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm.
(B) The Ti and Al composite nitride layer or composite carbonitride layer contains at least crystal grains having a NaCl-type face-centered cubic structure.
(C) When the cut surface parallel to the tool substrate is analyzed from the direction perpendicular to the surface of the tool substrate, a plurality of crystal grains having the NaCl-type face-centered cubic structure having different Ti and Al compositions are present. When each is divided into crystal grain A group and crystal grain B group,
When the crystal grain A group is represented by the composition formula: (Ti 1-XA Al XA ) (C YA N 1-YA ), the average X Aavg of the content ratio X A of Al in the total amount of Ti and Al, and The average Y Aavg of the content ratio Y A in the total amount of C and N of C (however, X Aavg and Y Aavg are both atomic ratios) are 0.75 ≤ X Aavg ≤ 0.95 and 0.0000 , respectively. Satisfying ≤Y Aavg ≤ 0.0150,
When the crystal grain B group is represented by the composition formula: (Ti 1-XB Al XB ) ( CYB N 1-YB ), the average X Bavg of the content ratio X B of Al in the total amount of Ti and Al, and The average Y Bavg of C and Y B in the total amount of C and N (however, X Bavg and Y Bavg are both atomic ratios) is 0.70 ≤ X Bavg ≤ 0.90, 0.05 ≤ X. Satisfying Aavg- X Bavg ≤ 0.25, 0.0000 ≤ Y Bavg ≤ 0.0150,
(D) The area ratio of the crystal grain A group on the cut surface is 20 to 80%.
A surface coating cutting tool characterized by that.
(2) In the crystal grains of the crystal grain A group, a periodic composition change of Ti and Al exists along one of the equivalent crystal orientations represented by <001> of the crystal grains. , periodically varying difference [Delta] X a between the average value of the average value and the minimum value of the maximum value of X a to the surface-coated cutting according to (1), which is a 0.03 to 0.25 tool.
(3) In the crystal grains of the crystal grain B group, a periodic composition change of Ti and Al exists along one of the equivalent crystal orientations represented by <001> of the crystal grains. , according to the difference [Delta] X B between the average value of the average value and the minimum value of the maximum value of X B which changes periodically it is characterized in that it is a 0.03 to 0.25 (1) or (2) Surface coating cutting tool.
(4) Of the carbide layer, nitride layer, carbonitride layer, coal oxide layer and carbonitride oxide layer of Ti between the tool substrate and the composite nitride or composite carbonitride layer of Ti and Al. The surface coating cutting tool according to any one of (1) to (3) above, which comprises one layer or two or more layers of the above and has a lower layer having a total average layer thickness of 0.1 to 20 μm. ..
(5) The above (1) to (4), wherein an upper layer including at least an aluminum oxide layer is present above the composite nitride or composite carbonitride layer with a total average layer thickness of 1 to 25 μm. The surface coating cutting tool described in any of. "

本発明の切削工具は、ダクタイル鋳鉄等の高速高送り切削加工等に供した場合であっても、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮する。 The cutting tool of the present invention exhibits excellent chipping resistance and abrasion resistance over a long period of use even when it is used for high-speed high-feed cutting of ductile cast iron or the like.

本発明のTiAlCN層の工具基体に平行な切断面における組織を示す模式図であり、各組織の形状や寸法は、実際の焼結組織を模写したものではない。It is a schematic diagram which shows the structure in the cut surface parallel to the tool substrate of the TiAlCN layer of this invention, and the shape and dimension of each structure are not copying the actual sintered structure. TiとAlの周期的な組成変化の周期、極大値、局所値を示す模式図である。It is a schematic diagram which shows the cycle, the maximum value, and the local value of the periodic composition change of Ti and Al. TiとAlの周期的な組成変化が存在するNaCl型の面心立法構造を有する結晶粒子において組成変化を示す模式図である。It is a schematic diagram which shows the composition change in the crystal particle which has a NaCl type face-centered cubic structure in which the composition change of Ti and Al exists periodically.

以下、本発明の被覆工具について、より詳細に説明する。なお、本明細書、特許請求の範囲において、数値範囲を「〜」を用いて表現する場合、その範囲は上限および下限の数値を含むものとする。 Hereinafter, the covering tool of the present invention will be described in more detail. In the present specification and claims, when the numerical range is expressed by using "~", the range shall include the numerical values of the upper limit and the lower limit.

1.硬質被覆層の平均層厚:
硬質被覆層は、TiAlCN層を少なくとも含む。このTiAlCN層を含む硬質被覆層は、硬さが高く、優れた耐摩耗性を有するが、特に平均層厚が1.0〜20.0μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1.0μm未満では、平均層厚が薄いため長期の使用にわたって耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlCN層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなるためである。
1. 1. Average thickness of hard coating layer:
The hard coating layer contains at least a TiAlCN layer. The hard coating layer including the TiAlCN layer has high hardness and excellent wear resistance, but the effect is remarkably exhibited particularly when the average layer thickness is 1.0 to 20.0 μm. The reason is that if the average layer thickness is less than 1.0 μm, sufficient wear resistance cannot be ensured over a long period of use because the average layer thickness is thin, while if the average layer thickness exceeds 20.0 μm, This is because the crystal grains of the TiAlCN layer are likely to be coarsened and chipping is likely to occur.

2.TiAlCN層におけるNaCl型の面心立方構造の結晶粒
TiAlCN層においてNaCl型の面心立方構造の結晶粒が含まれていなければ本発明の目的を達成することは困難である。この目的を達成するためには、工具基体表面に平行な断面において、NaCl型の面心立方構造の結晶粒の占める面積割合が60%以上、好ましくは80%以上、より好ましくは、100%(全ての結晶粒がNaCl型の面心立方構造)であるとよい。
2. 2. Crystal grains of NaCl-type face-centered cubic structure in the TiAlCN layer It is difficult to achieve the object of the present invention unless the crystals of the NaCl-type face-centered cubic structure are contained in the TiAlCN layer. In order to achieve this purpose, in the cross section parallel to the surface of the tool substrate, the area ratio occupied by the crystal grains of the NaCl-type face-centered cubic structure is 60% or more, preferably 80% or more, more preferably 100% ( It is preferable that all the crystal grains have a NaCl-type face-centered cubic structure).

3.硬質被覆層を構成するTiAlCN層の組成:
硬質被覆層を構成するTiAlCN層は、Al含有割合が異なる結晶粒A群と結晶粒B群を含む。
結晶粒A群の組成は、組成式:(Ti1−XAAlXA)(CYA1−YA)で表すとき、AlのTiとAlの合量に占める含有割合Xの平均XAavgおよびCのCとNの合量に占める含有割合Yの平均YAavg(但し、XAavg、YAavgはいずれも原子比)が、それぞれ、0.75≦XAavg≦0.95、0.0000≦YAavg≦0.0150を満足し、
結晶粒B群の組成は、組成式:(Ti1−XBAlXB)(CYB1−YB)で表すとき、AlのTiとAlの合量に占める含有割合Xの平均XBavgおよびCのCとNの合量に占める含有割合Yの平均YBavg(但し、XBavg、YBavgはいずれも原子比)が、0.70≦XBavg≦0.90、0.05≦XAavg−XBavg≦0.25、0.0000≦YBavg≦0.0150を満足することが好ましい。
3. 3. Composition of TiAlCN layer constituting the hard coating layer:
The TiAlCN layer constituting the hard coating layer contains crystal grain A group and crystal grain B group having different Al content ratios.
The composition of the crystal grain A group is represented by the composition formula: (Ti 1-XA Al XA ) (C YA N 1-YA ), and the average X Aavg of the content ratio X A of Al in the total amount of Ti and Al and The average Y Aavg of the content ratio Y A in the total amount of C and N of C (however, X Aavg and Y Aavg are both atomic ratios) are 0.75 ≤ X Aavg ≤ 0.95 and 0.0000 , respectively. Satisfying ≤Y Aavg ≤ 0.0150,
The composition of the crystal grain B group is expressed by the composition formula: (Ti 1-XB Al XB ) ( CYB N 1-YB ), and the average X Bav of the content ratio X B of Al in the total amount of Ti and Al and The average Y Bavg of C and Y B in the total amount of C and N (however, X Bavg and Y Bavg are both atomic ratios) is 0.70 ≤ X Bavg ≤ 0.90, 0.05 ≤ X. It is preferable to satisfy Aavg −X Bavg ≦ 0.25 and 0.0000 ≦ Y Bavg ≦ 0.0150.

次に、結晶粒A群および結晶粒B群の組成を前記範囲を好ましいとする理由について説明する。
(1)Alの平均含有割合
Alの平均含有割合が、結晶粒A群では、0.75≦XAavg≦0.95、結晶粒B群では、0.70≦XBavg≦0.90を満足することより、TiAlCN層は硬さを確保し、ダクタイル鋳鉄等の高速高送り切削に供した場合に、耐摩耗性が十分となり、しかも、相対的にTiの含有割合が減少させることがないため、脆化を招くことなく、耐チッピング性確保できるためである。
そして、結晶粒A群と結晶粒B群のAl含有割合が0.05≦XAavg−XBavg≦0.25を満足することにより、結晶粒A群と結晶粒B群との間で熱膨張係数の差が適切となって、適度な局所的な歪みが入り、耐欠損性が向上する。
Next, the reason why the composition of the crystal grain A group and the crystal grain B group is preferably in the above range will be described.
(1) Average content ratio of Al The average content ratio of Al satisfies 0.75 ≤ X Aavg ≤ 0.95 in the crystal grain A group and 0.70 ≤ X Bavg ≤ 0.90 in the crystal grain B group. As a result, the TiAlCN layer secures hardness, and when it is subjected to high-speed high-feed cutting of ductile cast iron or the like, its wear resistance is sufficient, and the Ti content ratio does not decrease relatively. This is because chipping resistance can be ensured without causing brittleness.
Then, by satisfying the Al content ratio of the crystal grain A group and the crystal grain B group of 0.05 ≤ X Aavg- X Bavg ≤ 0.25, thermal expansion occurs between the crystal grain A group and the crystal grain B group. The difference in the coefficients becomes appropriate, appropriate local strain is applied, and the fracture resistance is improved.

(2)Cの平均含有割合
結晶粒A群および結晶粒B群のCの平均含有割合YAavgとYBavgが共に、0.0000以上、0.0150以下の範囲の微量であるとき、TiAlCN層と工具基体もしくは後述する下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果としてTiAlCN層の耐欠損性および耐チッピング性が向上する。一方、Cの平均含有割合がこの範囲を逸脱すると、TiAlCN層の靭性が低下するため耐欠損性および耐チッピング性が逆に損なわれるため好ましくない。
(2) Average content ratio of C The average content ratio of C in the crystal grain A group and the crystal grain B group When both Y Aavg and Y Bavg are in trace amounts in the range of 0.0000 or more and 0.0150 or less, the TiAlCN layer. The adhesion between the and the tool substrate or the lower layer described later is improved, and the impact during cutting is alleviated by improving the lubricity, and as a result, the chipping resistance and chipping resistance of the TiAlCN layer are improved. On the other hand, if the average content of C deviates from this range, the toughness of the TiAlCN layer is lowered, and the fracture resistance and chipping resistance are conversely impaired, which is not preferable.

ここで、TiAlCN層のAlの平均含有割合XAavg、XBavg、Cの平均含有割合YAavg、YBavgは、以下のように求めた。工具基体の表面に垂直な方向から、工具基体に平行な表面研磨面に対して、電子線マイクロアナライザ(EPMA,Electron−Probe−Micro−Analyser)を用い、電子線を試料表面側から照射し、マッピング分析を行う。前記マッピング分析結果よりそれぞれの結晶粒毎に平均組成を求め、Al含有量が相対的に高い結晶粒群と相対的に低い結晶粒群に分けられ、Al含有量が相対的に高い結晶粒群(結晶粒A群)のAlの平均含有割合XAavg、Cの平均含有割合YAavg、Al含有量が相対的に低い結晶粒群(結晶粒B群)のAlの平均含有割合XBavg、Cの平均含有割合YBavgを求めた。 Here, the average contents of Al in the TiAlCN layer, X Aavg , X Bavg , and the average contents of C, Y Aavg and Y Bavg , were determined as follows. From the direction perpendicular to the surface of the tool substrate, the surface polished surface parallel to the tool substrate is irradiated with an electron beam from the sample surface side using an electron probe microanalyzer (EPMA, Electron-Probe-Micro-Analyzer). Perform mapping analysis. From the mapping analysis result, the average composition was obtained for each crystal grain, and it was divided into a crystal grain group having a relatively high Al content and a crystal grain group having a relatively low Al content, and a crystal grain group having a relatively high Al content. Average Al Content of (Crystal A Group) X Aavg , Average Content of C Y Aavg , Average Al Content of Crystal Grain Group (Crystal B Group) with Relatively Low Al Content X Bavg , C The average content ratio Y Bavg of was determined.

4.結晶粒A群と結晶粒B群との鑑別
前記に記載の通り、結晶粒A群と結晶粒B群との鑑別を行う。結晶粒内にTiとAlの周期的な組成変化が存在する試料等について、前記手法で鑑別が困難な場合、下記手法を追加で用いることで鑑別する。工具基体の表面に垂直な方向から、工具基体に平行な表面研磨面に対して、透過型電子顕微鏡を用いて、エネルギー分散型X線分析(Energy Dispersive X−ray Spectrometry:EDS)により、マッピング分析を行う。前記マッピング分析結果よりそれぞれの結晶粒毎に平均組成を求めと、Al含有量が相対的に高い結晶粒群と相対的に低い結晶粒群に分けられ、Al含有量が相対的に高い結晶粒群を結晶粒A群とし、Al含有量が相対的に低い結晶粒群を結晶粒B群とする。
4. Discrimination between Crystal Grain A Group and Crystal Grain B Group As described above, the crystal grain A group and the crystal grain B group are discriminated from each other. When it is difficult to distinguish a sample or the like in which a periodic composition change of Ti and Al exists in the crystal grains by the above method, the following method is additionally used to distinguish the sample. Mapping analysis by energy dispersive X-ray Spectrometry (EDS) using a transmission electron microscope on the surface polishing surface parallel to the tool substrate from the direction perpendicular to the surface of the tool substrate. I do. When the average composition was obtained for each crystal grain from the mapping analysis result, it was divided into a crystal grain group having a relatively high Al content and a crystal grain group having a relatively low Al content, and the crystal grains having a relatively high Al content. The group is referred to as a crystal grain A group, and the crystal grain group having a relatively low Al content is referred to as a crystal grain B group.

5.結晶粒A群の占める面積割合
工具基体に平行な断面において結晶粒A群の占める面積割合は、20〜80面積%であることが好ましい。この範囲とする理由は、20面積%未満であると、相対的に結晶粒B群の面積割合が増えて、結晶粒A群との熱膨張係数差に起因して生じる局所的なひずみの発生が小さくなり、一方、80面積%を超えると相対的に結晶粒A群の面積割合が支配的となり、結晶粒B群との熱膨張係数差に起因して生じる局所的なひずみの発生が小さくなるためである。より好ましい面積割合は、40〜60面積%である。
5. Area ratio occupied by the crystal grain A group The area ratio occupied by the crystal grain A group in the cross section parallel to the tool substrate is preferably 20 to 80 area%. The reason for setting this range is that if it is less than 20 area%, the area ratio of the crystal grain B group increases relatively, and local strain occurs due to the difference in the coefficient of thermal expansion from the crystal grain A group. On the other hand, when it exceeds 80 area%, the area ratio of the crystal grain A group becomes relatively dominant, and the occurrence of local strain caused by the difference in the coefficient of thermal expansion from the crystal grain B group is small. This is to become. A more preferable area ratio is 40 to 60 area%.

6.結晶粒A群内および結晶粒B群内の組成変化
(1)結晶粒A群
結晶粒A群の結晶粒内に、TiとAlの周期的な組成変化が、その結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在することが好ましい。
ここで、周期的な組成変化とは、結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って、ライン分析を行い、Alの含有割合Xの変化をグラフ化したとき、Xの値がある間隔で繰り返されることを云う。図2に示すように、Xの変化を直線(Xm)で近似する。この直線は、直線と繰り返し変化を示す曲線に囲まれた領域の面積が直線の上側と下側とで等しくなるように引いたものである。この繰り返し変化をこの直線が横切る領域毎に、極大値(Pmax)と極小値(Pmin)を求め、この極大値の平均値と極小値の平均値との差ΔXが0.03〜0.25であることが好ましい。ΔXがこの範囲にあると、十分な硬度や耐欠損性がより一層向上する。
なお、グラフ化に当たり公知の測定ノイズ除去方法(例えば、移動平均法)を行うことはいうまでもない。
6. Compositional changes in crystal grain A group and crystal grain B group (1) Crystal grain A group In the crystal grain of crystal grain A group, a periodic composition change of Ti and Al occurs at <001> of the crystal grain. It preferably exists along one of the equivalent crystal orientations represented.
Here, the cyclic composition changes, along one of the orientation of the crystal orientation of the equivalent represented by the crystal grains <001>, performs line analysis graph the change in the proportion X A of Al when ized refers to be repeated at intervals with the value of X a. As shown in FIG. 2, to approximate the change in X A with a straight line (Xm). This straight line is drawn so that the area of the area surrounded by the straight line and the curve showing the repetitive change is equal on the upper side and the lower side of the straight line. The repeated change for each area where the straight line crosses, calculated maximum value (P max) and minimum value (P min), the difference [Delta] X A between the average value of the average value and the minimum value of the maximum value 0.03 It is preferably 0.25. When ΔX A is in this range, sufficient hardness and fracture resistance are further improved.
Needless to say, a known measurement noise removing method (for example, a moving average method) is used for graphing.

(2)結晶粒B郡
結晶粒B群の結晶粒内に、TiとAlの周期的な組成変化が、その結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在することが好ましい。
ここで、周期的な組成変化は、結晶粒A群と同じようにして求めるものであって、この極大値の平均値と極小値の平均値との差ΔXが0.03〜0.25であることが好ましい。ΔXがこの範囲にあると、十分な硬度や耐欠損性がより一層向上する。
(2) Crystal grain B group In the crystal grain of the crystal grain B group, the periodic composition change of Ti and Al becomes one of the equivalent crystal orientations represented by <001> of the crystal grain. It preferably exists along.
Here, the periodic change in composition, there is determined in the same way as the grain group A, the difference [Delta] X B between the average value of the average value and the minimum value of the maximum value 0.03 to 0.25 Is preferable. When ΔX B is in this range, sufficient hardness and fracture resistance are further improved.

(3)TiとAlの周期的な組成変化の測定
TiとAlの周期的な組成変化は、透過型電子顕微鏡(TEM:例えば、倍率200000倍)を用いたTiAlCN層の観察にてその存在を確認する。その後、例えば、EDSを用いて、工具基体表面に平行な断面における400nm×400nmの領域について面分析を行い、NaCl型の面心立方構造の立方晶の結晶粒において縞状に色の濃淡の変化が見られたとき(図3を参照)、前記立方晶の結晶粒内に、TiAlCNにおけるTiとAlの周期的な組成変化が存在すると判断する。そして、当該結晶粒について、電子線解析を行うことにより周期的な組成変化がNaCl型の面心立方構造を有する結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在することを確認し、その方位に沿った、前記面分析の結果に基づいて濃淡から10周期分程度の組成変化が測定範囲に入る様に倍率を設定した上で、工具基体表面の法線方向に沿ってEDSによる線分析を5周期分の範囲で行い、その変化をグラフにプロットし、Alの含有割合の変化を直線近似した直により画定される領域ごとに、Alの含有割合の変化の極大値と極小値を求め、その差の平均値の差を算出する。
(3) Measurement of periodic composition change of Ti and Al The existence of the periodic composition change of Ti and Al is observed by observing the TiAlCN layer using a transmission electron microscope (TEM: for example, magnification of 200,000 times). Confirm. Then, for example, using EDS, a surface analysis was performed on a region of 400 nm × 400 nm in a cross section parallel to the surface of the tool substrate, and a change in color shading in stripes in cubic crystal grains having a NaCl-type face-centered cubic structure. When is observed (see FIG. 3), it is determined that there is a periodic compositional change of Ti and Al in TiAlCN in the cubic crystal grains. Then, by performing electron beam analysis on the crystal grains, the periodic composition change is set to one of the equivalent crystal orientations represented by <001> of the crystal grains having a NaCl-type face-centered cubic structure. After confirming that it exists along the direction and setting the magnification so that the composition change for about 10 cycles from the shade is within the measurement range based on the result of the surface analysis along the direction, the surface of the tool substrate A line analysis by EDS was performed along the normal direction in the range of 5 cycles, the change was plotted on a graph, and the change in the Al content ratio was linearly approximated to each region defined by the direct line. Find the maximum and minimum values of the change in, and calculate the difference between the average values of the differences.

7.下部層
TiAlCN層を含む硬質被覆層は、それだけでも十分な耐チッピング性、耐摩耗性を奏するが、Tiの炭化物層、窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20.0μmの合計平均層厚を有する下部層を設けた場合には、この層が奏する効果と相俟って、より一層優れた耐チッピング性、耐摩耗性が発揮される。ただし、Tiの炭化物層、窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
7. The hard coating layer including the lower TiAlCN layer exhibits sufficient chipping resistance and abrasion resistance by itself, but one of Ti's carbide layer, nitride layer, carbon oxide layer and carbon dioxide oxide layer or When a lower layer composed of two or more Ti compound layers and having a total average layer thickness of 0.1 to 20.0 μm is provided, in combination with the effect of this layer, even more excellent chipping resistance is achieved. Demonstrates resistance and wear resistance. However, when the lower layer composed of one or more Ti compound layers of the carbide layer, the nitride layer, the coal oxide layer and the carbon dioxide oxide layer of Ti is provided, the total average layer thickness of the lower layers is 0. If it is less than .1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 20.0 μm, the crystal grains are likely to be coarsened and chipping is likely to occur.

8.上部層
TiAlCN層の上部に、酸化アルミニウムを含む層を1.0〜25.0μmの合計平均層厚で上部層を設けると、より一層優れた耐チッピング性、耐摩耗性が発揮されて好ましい。ここで、合計平均層厚が1.0μm未満であると、上部層を設けた効果が十分に発揮されず、一方、25μmを超えると、チッピングが発生しやすくなる。
8. Upper layer It is preferable that a layer containing aluminum oxide is provided on the upper part of the TiAlCN layer with a total average layer thickness of 1.0 to 25.0 μm because further excellent chipping resistance and abrasion resistance are exhibited. Here, if the total average layer thickness is less than 1.0 μm, the effect of providing the upper layer is not sufficiently exhibited, while if it exceeds 25 μm, chipping is likely to occur.

9.工具基体
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
9. Tool Base As the tool base, any base material conventionally known as this type of tool base can be used as long as it does not hinder the achievement of the object of the present invention. For example, cemented carbide (WC-based cemented carbide, WC, as well as those containing Co or added with carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, TiN, etc.) , TiCN or the like as a main component), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body is preferable.

10.製造方法
TiAlCN層は、例えば、工具基体もしくは当該工具基体上にある前記下部層の上に、
特定組成の反応ガスを所定条件でCVD装置に供給することにより得ることができる。
すなわち、反応ガスは、NH、N、Hからなるガス群Aと、AlCl、Al(CH、TiCl、N、Hとからなガス群Bを別々にCVD装置に供給して、被成膜体の直前で混合する。
10. Manufacturing Method The TiAlCN layer is, for example, on a tool substrate or the lower layer on the tool substrate.
It can be obtained by supplying a reaction gas having a specific composition to a CVD apparatus under predetermined conditions.
That is, the reaction gas is a separate CVD apparatus for the gas group A consisting of NH 3 , N 2 , and H 2 and the gas group B consisting of AlCl 3 , Al (CH 3 ) 3 , TiCl 4 , N 2 , and H 2. And mix just before the film-deposited body.

反応ガスの組成は、例えば、
ガス群A:NH:0.8〜1.6%、N:0.0〜2.0%、H:30.0〜35.0%
ガス群B:AlCl:0.5〜0.7%、Al(CH:0.00〜0.08%、
TiCl:0.1〜0.3%、N:0.0〜6.0%、H:残り
(ガス群Aとガス群Bの%は、ガス群Aとガス群Bガスの合計に対する体積%である)
であり、
反応雰囲気圧力:4.5〜5.0kPa
反応雰囲気温度:750〜800℃
である。
The composition of the reaction gas is, for example,
Gas group A: NH 3 : 0.8 to 1.6%, N 2 : 0.0 to 2.0%, H 2 : 30.0 to 35.0%
Gas group B: AlCl 3 : 0.5 to 0.7%, Al (CH 3 ) 3 : 0.00 to 0.08%,
TiCl 4 : 0.1 to 0.3%, N 2 : 0.0 to 6.0%, H 2 : Remaining (% of gas group A and gas group B is the total of gas group A and gas group B gas) By volume% of
And
Reaction atmosphere pressure: 4.5-5.0 kPa
Reaction atmosphere temperature: 750-800 ° C
Is.

具体的なガス群Aとガス群Bの供給は、特開2016−117934号公報、または、特開2017−20111号公報の記載に従い、ガス供給管の回転速度、およびガス供給管の噴出孔角度を所定の値とする。 Specific supply of the gas group A and the gas group B is performed according to the description of JP-A-2016-117934 or JP-A-2017-201711, and the rotational speed of the gas supply pipe and the ejection hole angle of the gas supply pipe. Is a predetermined value.

次に、実施例について説明する。
ここでは、本発明被覆工具の実施例として、工具基体としてWC基超高圧焼結体を用いたインサート切削工具に適用したものについて述べるが、工具基体として、前記したものを用いた場合であっても同様であるし、ドリル、エンドミルに適用した場合も同様である。
Next, an embodiment will be described.
Here, as an example of the coated tool of the present invention, a tool applied to an insert cutting tool using a WC-based ultra-high pressure sintered body as a tool substrate will be described, but the above-mentioned tool substrate is used. The same applies when applied to drills and end mills.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、三菱マテリアル社製JOMU140715ZZER−Mのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder having an average particle size of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. It was blended into the composition, further added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was pressed in a vacuum of 5 Pa at 1370. Vacuum sintered at a predetermined temperature within the range of ~ 1470 ° C. under the condition of holding for 1 hour, and after sintering, a tool base A made of WC-based superhard alloy having an insert shape of JOMU140715ZZER-M manufactured by Mitsubishi Materials Co., Ltd. C was produced respectively.

次に、これら工具基体A〜Cの表面に、特開2016−117934号公報に記載されたCVD装置を用いて、表2に示される条件により、TiAlCN層をCVDにより形成し、表5に示される本発明被覆工具1〜10を得た。 Next, a TiAlCN layer is formed on the surfaces of these tool bases A to C by CVD using the CVD apparatus described in JP-A-2016-117934 under the conditions shown in Table 2, and is shown in Table 5. The covering tools 1 to 10 of the present invention were obtained.

TiAlCN層を成膜するためのガス組成等は概ね以下のとおりである。
ガス群A:NH:0.8〜1.6%、N:0.0〜2.0%、H:30.0〜35.0%
ガス群B:AlCl:0.5〜0.7%、Al(CH:0.00〜0.08%、
TiCl:0.1〜0.3%、N:0.0〜6.0%、H:残り
(ガス群Aとガス群Bの%は、ガス群Aとガス群Bガスの合計に対する体積%である)
反応雰囲気圧力:4.5〜5.0kPa
反応雰囲気温度:750〜800℃
The gas composition and the like for forming the TiAlCN layer are generally as follows.
Gas group A: NH 3 : 0.8 to 1.6%, N 2 : 0.0 to 2.0%, H 2 : 30.0 to 35.0%
Gas group B: AlCl 3 : 0.5 to 0.7%, Al (CH 3 ) 3 : 0.00 to 0.08%,
TiCl 4 : 0.1 to 0.3%, N 2 : 0.0 to 6.0%, H 2 : Remaining (% of gas group A and gas group B is the total of gas group A and gas group B gas) By volume% of
Reaction atmosphere pressure: 4.5-5.0 kPa
Reaction atmosphere temperature: 750-800 ° C

ここで、ガス群Aとガス群Bは、それぞれ、前記特開2016−117934号公報に記載されたCVD装置の、原料ガスA、原料ガスBとして供給され、ガス供給管の回転速度、ガス供給管の噴出孔角度は以下のとおりである。
ガス供給管の回転速度:10〜30rpm
ガス供給管の噴出孔角度:
α:60〜90°
β1およびβ2:90〜120°
γ1およびγ2:180°
Here, the gas group A and the gas group B are supplied as the raw material gas A and the raw material gas B of the CVD apparatus described in JP-A-2016-117934, respectively, and the rotational speed of the gas supply pipe and the gas supply are supplied. The ejection hole angle of the pipe is as follows.
Rotation speed of gas supply pipe: 10 to 30 rpm
Gas supply pipe outlet angle:
α: 60-90 °
β1 and β2: 90-120 °
γ1 and γ2: 180 °

なお、本発明被覆工具は4〜10は、表3に記載された成膜条件により、表4に示された下部層および/または上部層を形成した。 In the covering tools of the present invention, 4 to 10 formed the lower layer and / or the upper layer shown in Table 4 under the film forming conditions shown in Table 3.

また、比較の目的で、工具基体A〜Cの表面に、表2に示される条件によりCVDを行うことにより、表5に示されるTiAlCN層を含む硬質被覆層を蒸着形成して比較被覆工具1〜10を製造した。
なお、比較被覆工具4〜10については、表3に示される形成条件により、表4に示された下部層および/または上部層を形成した。
Further, for the purpose of comparison, a hard coating layer containing the TiAlCN layer shown in Table 5 is deposited and formed on the surfaces of the tool substrates A to C by performing CVD under the conditions shown in Table 2 to form a comparative coating tool 1. 10 was manufactured.
For the comparative covering tools 4 to 10, the lower layer and / or the upper layer shown in Table 4 were formed according to the formation conditions shown in Table 3.

また、本発明被覆工具1〜10、比較被覆工具1〜10の硬質被覆層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表4および表5に示される平均層厚を示した。
前記本発明被覆工具1〜10、比較被覆工具1〜10の硬質被覆層について、前述した方法を用いて、平均Al含有割合XAavg、XBavgと平均C含有割合YAavg、YBavgを算出した。また、TiとAlの組成変化の<001>で表される等価の方位に沿った周期の有無とAl含有割合の極大値の平均値と極小値の平均との差ΔX、ΔXを求めた。
これらの結果を表5にまとめた。なお、表5には記載していないが、発明被覆工具1〜10、比較被覆工具1〜10のいずれも、NaCl型面心立方構造の面積率は60%以上であることを確認している。
Further, the cross section of the coating tools 1 to 10 of the present invention and the comparative coating tools 1 to 10 in the direction perpendicular to the tool substrate of the hard coating layer was measured using a scanning electron microscope (magnification of 5000 times) and within the observation field. When the layer thicknesses at 5 points were measured and averaged to obtain the average layer thickness, the average layer thicknesses shown in Tables 4 and 5 were shown in each case.
For the hard coating layers of the coating tools 1 to 10 of the present invention and the comparative coating tools 1 to 10, the average Al content ratios X Aavg and X Bavg and the average C content ratios Y Aavg and Y Bavg were calculated by using the above-mentioned method. .. In addition, the difference between the presence or absence of a period along the equivalent orientation represented by <001> of the composition change of Ti and Al and the average value of the maximum value and the average value of the minimum value of the Al content ratio, ΔX A and ΔX B, are obtained. It was.
These results are summarized in Table 5. Although not shown in Table 5, it has been confirmed that the area ratio of the NaCl-type face-centered cubic structure is 60% or more in both the invention covering tools 1 to 10 and the comparative covering tools 1 to 10. ..

Figure 2020151794
Figure 2020151794

Figure 2020151794
Figure 2020151794

Figure 2020151794
Figure 2020151794

Figure 2020151794
Figure 2020151794

Figure 2020151794
Figure 2020151794

続いて、前記本発明被覆工具1〜10および比較被覆工具1〜10について、いずれもカッタ径63mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、ダクタイル鋳鉄の湿式正面フライス切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。 Subsequently, with respect to the covering tools 1 to 10 and the comparative covering tools 1 to 10 of the present invention, wet face milling of ductile cast iron was performed in a state where they were clamped to the tip of a tool steel cutter having a cutter diameter of 63 mm with a fixing jig. A machining test was carried out and the flank wear width of the cutting edge was measured.

切削試験は以下のとおりである。
切削試験:湿式正面フライス切削加工
被削材:ダクタイル鋳鉄FCD450:幅 45mm
切削速度: 200m/min
切り込み: 1.0mm
一刃送り量: 1.0mm/刃
切削時間: 7分
(通常の切削速度: 150m/min)
表6に切削試験の結果を示す。なお、比較被覆工具1〜10については、チッピング発生が原因で寿命に至ったため、寿命に至るまでの時間を示す。
The cutting test is as follows.
Cutting test: Wet face milling work material: Ductile cast iron FCD450: Width 45 mm
Cutting speed: 200m / min
Notch: 1.0 mm
Single blade feed amount: 1.0 mm / blade cutting time: 7 minutes (normal cutting speed: 150 m / min)
Table 6 shows the results of the cutting test. Since the comparative covering tools 1 to 10 have reached the end of their life due to the occurrence of chipping, the time until the end of their life is shown.

Figure 2020151794
Figure 2020151794

表6に示される結果から、本発明被覆工具1〜10は、いずれも硬質被覆層が優れた耐チッピング性、耐剥離性を有しているため、ダクタイル鋳鉄等の高速高送り切削加工に用いた場合であってもチッピングの発生がなく、長期にわたって優れた耐摩耗性を発揮する。これに対して、本発明の被覆工具に規定される事項を満足していない比較被覆工具1〜10は、ダクタイル鋳鉄等の高速高送り切削加工に用いた場合チッピングが発生し、短時間で使用寿命に至っている。 From the results shown in Table 6, all of the coating tools 1 to 10 of the present invention are used for high-speed high-feed cutting of ductile cast iron and the like because the hard coating layer has excellent chipping resistance and peeling resistance. Even if it is present, chipping does not occur and excellent wear resistance is exhibited for a long period of time. On the other hand, the comparative covering tools 1 to 10 which do not satisfy the matters specified in the covering tool of the present invention cause chipping when used for high-speed high-feed cutting of ductile cast iron and the like, and are used in a short time. It has reached the end of its life.

前述のように、本発明の被覆工具は、ダクタイル鋳鉄の高速高送り切削加工の被覆工具として用いることができ、しかも、長期にわたって優れた耐チッピング性、耐剥離性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化及び省エネルギー化、さらには低コスト化に十分に満足できる対応が可能である。 As described above, the covering tool of the present invention can be used as a covering tool for high-speed high-feed cutting of ductile cast iron, and further exhibits excellent chipping resistance and peeling resistance for a long period of time. It is possible to fully satisfy the high performance of cutting equipment, labor saving and energy saving of cutting processing, and cost reduction.

Claims (5)

工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具であって、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物層または複合炭窒化物層は、NaCl型の面心立方構造の結晶粒を少なくとも含み、
(c)前記工具基体の表面に垂直な方向から、前記工具基体に平行な切断面について解析した場合、TiとAlの組成が異なる前記NaCl型の面心立法構造の結晶粒が複数存在し、ぞれぞれを、結晶粒A群と結晶粒B群と区分するとき、
前記結晶粒A群を組成式:(Ti1−XAAlXA)(CYA1−YA)で表すとき、AlのTiとAlの合量に占める含有割合Xの平均XAavg、および、CのCとNの合量に占める含有割合Yの平均YAavg(但し、XAavg、YAavgはいずれも原子比)が、それぞれ、0.75≦XAavg≦0.95、0.0000≦YAavg≦0.0150を満足し、
前記結晶粒B群を組成式:(Ti1−XBAlXB)(CYB1−YB)で表すとき、AlのTiとAlの合量に占める含有割合Xの平均XBavg、および、CのCとNの合量に占める含有割合Yの平均YBavg(但し、XBavg、YBavgはいずれも原子比)が、0.70≦XBavg≦0.90、0.05≦XAavg−XBavg≦0.25、0.0000≦YBavg≦0.0150を満足し、
(d)前記切断面において、前記結晶粒A群の占める面積割合が20〜80%である、
ことを特徴とする表面被覆切削工具。
A surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate.
(A) The hard coating layer contains at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm.
(B) The Ti and Al composite nitride layer or composite carbonitride layer contains at least crystal grains having a NaCl-type face-centered cubic structure.
(C) When the cut surface parallel to the tool substrate is analyzed from the direction perpendicular to the surface of the tool substrate, a plurality of crystal grains having the NaCl-type face-centered cubic structure having different Ti and Al compositions are present. When each is divided into crystal grain A group and crystal grain B group,
When the crystal grain A group is represented by the composition formula: (Ti 1-XA Al XA ) (C YA N 1-YA ), the average X Aavg of the content ratio X A of Al in the total amount of Ti and Al, and The average Y Aavg of the content ratio Y A in the total amount of C and N of C (however, X Aavg and Y Aavg are both atomic ratios) are 0.75 ≤ X Aavg ≤ 0.95 and 0.0000 , respectively. Satisfying ≤Y Aavg ≤ 0.0150,
When the crystal grain B group is represented by the composition formula: (Ti 1-XB Al XB ) ( CYB N 1-YB ), the average X Bavg of the content ratio X B of Al in the total amount of Ti and Al, and The average Y Bavg of C and Y B in the total amount of C and N (however, X Bavg and Y Bavg are both atomic ratios) is 0.70 ≤ X Bavg ≤ 0.90, 0.05 ≤ X. Satisfying Aavg- X Bavg ≤ 0.25, 0.0000 ≤ Y Bavg ≤ 0.0150,
(D) The area ratio of the crystal grain A group on the cut surface is 20 to 80%.
A surface coating cutting tool characterized by that.
前記結晶粒A群の結晶粒内に、TiとAlの周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、周期的に変化するXの極大値の平均値と極小値の平均値との差ΔXが0.03〜0.25であることを特徴とする請求項1に記載の表面被覆切削工具。 In the crystal grains of the crystal grain A group, a periodic composition change of Ti and Al exists along one of the equivalent crystal orientations represented by <001> of the crystal grains, and is periodic. the surface-coated cutting tool according to claim 1, the difference [Delta] X a between the average value of the average value and the minimum value of the maximum value of the varying X a is characterized by a 0.03 to 0.25 in. 前記結晶粒B群の結晶粒内に、TiとAlの周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、周期的に変化するXの極大値の平均値と極小値の平均値との差ΔXが0.03〜0.25であることを特徴とする請求項1または2に記載の表面被覆切削工具。 In the crystal grains of the crystal grain B group, a periodic composition change of Ti and Al exists along one of the equivalent crystal orientations represented by <001> of the crystal grains, and is periodic. the surface-coated cutting tool according to claim 1 or 2 difference [Delta] X B between the average value of the average value and the minimum value of the maximum value of the varying X B is characterized by a 0.03 to 0.25 in. 前記工具基体と前記TiとAlの複合窒化物または複合炭窒化物層との間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする請求項1乃至3のいずれかに記載の表面被覆切削工具。 One of Ti carbide layer, nitride layer, carbonitride layer, coal oxide layer and carbonitride oxide layer between the tool substrate and the composite nitride or composite carbonitride layer of Ti and Al. The surface coating cutting tool according to any one of claims 1 to 3, further comprising two or more layers and having a lower layer having a total average layer thickness of 0.1 to 20 μm. 前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1〜25μmの合計平均層厚で存在することを特徴とする請求項1乃至4のいずれかに記載の表面被覆切削工具。 The invention according to any one of claims 1 to 4, wherein an upper layer including at least an aluminum oxide layer is present above the composite nitride or composite carbonitride layer with a total average layer thickness of 1 to 25 μm. Surface coating cutting tool.
JP2019051271A 2019-03-19 2019-03-19 surface coated cutting tools Active JP7190111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019051271A JP7190111B2 (en) 2019-03-19 2019-03-19 surface coated cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019051271A JP7190111B2 (en) 2019-03-19 2019-03-19 surface coated cutting tools

Publications (2)

Publication Number Publication Date
JP2020151794A true JP2020151794A (en) 2020-09-24
JP7190111B2 JP7190111B2 (en) 2022-12-15

Family

ID=72557094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019051271A Active JP7190111B2 (en) 2019-03-19 2019-03-19 surface coated cutting tools

Country Status (1)

Country Link
JP (1) JP7190111B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157609A1 (en) * 2020-02-03 2021-08-12 三菱マテリアル株式会社 Surface-coated cutting tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121747A (en) * 2012-12-20 2014-07-03 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2016064485A (en) * 2014-09-25 2016-04-28 三菱マテリアル株式会社 Surface coat cutting tool having hard coat layer exhibiting superior chipping resistance
WO2017010374A1 (en) * 2015-07-15 2017-01-19 住友電気工業株式会社 Coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121747A (en) * 2012-12-20 2014-07-03 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2016064485A (en) * 2014-09-25 2016-04-28 三菱マテリアル株式会社 Surface coat cutting tool having hard coat layer exhibiting superior chipping resistance
WO2017010374A1 (en) * 2015-07-15 2017-01-19 住友電気工業株式会社 Coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157609A1 (en) * 2020-02-03 2021-08-12 三菱マテリアル株式会社 Surface-coated cutting tool
JP7329180B2 (en) 2020-02-03 2023-08-18 三菱マテリアル株式会社 surface coated cutting tools

Also Published As

Publication number Publication date
JP7190111B2 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6044336B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6699056B2 (en) Surface coated cutting tool
EP3440232A1 (en) Coated cutting tool
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
WO2011052767A1 (en) Surface coated cutting tool with excellent chip resistance
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP2021126738A (en) Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting
JP7190111B2 (en) surface coated cutting tools
JP6761597B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
WO2020166683A1 (en) Surface-coated cutting tool
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
WO2020166466A1 (en) Hard coating cutting tool
JP7137149B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
US20210402486A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP5569740B2 (en) Surface coated cutting tool with excellent chipping resistance
JP2020131424A (en) Surface-coated cutting tool
JP2019166584A (en) Surface-coated cutting tool allowing hard coating layer to exhibit excellent wear resistance
WO2019065683A1 (en) Surface-coated cutting tool in which hard coating layer exhibits exceptional adhesion resistance and anomalous damage resistance
JP2019177424A (en) Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance
JP7125013B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP7401850B2 (en) surface coated cutting tools
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221117

R150 Certificate of patent or registration of utility model

Ref document number: 7190111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150