JP5569740B2 - Surface coated cutting tool with excellent chipping resistance - Google Patents

Surface coated cutting tool with excellent chipping resistance Download PDF

Info

Publication number
JP5569740B2
JP5569740B2 JP2010243771A JP2010243771A JP5569740B2 JP 5569740 B2 JP5569740 B2 JP 5569740B2 JP 2010243771 A JP2010243771 A JP 2010243771A JP 2010243771 A JP2010243771 A JP 2010243771A JP 5569740 B2 JP5569740 B2 JP 5569740B2
Authority
JP
Japan
Prior art keywords
layer
compound
interface
crystal grains
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010243771A
Other languages
Japanese (ja)
Other versions
JP2012096303A5 (en
JP2012096303A (en
Inventor
誠 五十嵐
興平 冨田
晃 長田
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010243771A priority Critical patent/JP5569740B2/en
Publication of JP2012096303A publication Critical patent/JP2012096303A/en
Publication of JP2012096303A5 publication Critical patent/JP2012096303A5/ja
Application granted granted Critical
Publication of JP5569740B2 publication Critical patent/JP5569740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、例えば鋼や鋳鉄などの被削材を、高熱発生かつ切刃に断続的に高負荷を伴い、作用する高速断続切削条件下で切削加工した場合でも、硬質被覆層がすぐれた層間密着強度を有するため、切刃にチッピング(微小欠け)の発生なく、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides an excellent hard coating layer even when a work material such as steel or cast iron is machined under high-speed intermittent cutting that works with high heat generation and intermittently high load on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over a long period of use without causing chipping (microchips) on the cutting edge because it has adhesion strength.

従来、炭化タングステン基超硬合金製基体(以下、超硬基体という)あるいはTiCN基サーメット基体(以下、サーメット基体という。また、超硬基体とサーメット基体とを総称して、工具基体という)の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有し、化学蒸着形成された状態でα型の結晶構造を有する酸化アルミニウム(以下、Alで示す)層、
上記(a)、(b)からなる硬質被覆層を蒸着形成した被覆工具が広く知られており(例えば、特許文献1)、この被覆工具は、鋼や鋳鉄などの切削加工において、すぐれた耐摩耗性を発揮することが知られている。
また、被覆工具の耐欠損性、耐衝撃性、耐摩耗性等を向上させるため、硬質被覆層の下部層を構成するTiCN層の粒子幅を0.01〜0.5μmとした被覆工具も知られている(例えば、特許文献2)。
Conventionally, the surface of a tungsten carbide-based cemented carbide substrate (hereinafter referred to as a cemented carbide substrate) or a TiCN-based cermet substrate (hereinafter referred to as a cermet substrate. The cemented carbide substrate and the cermet substrate are collectively referred to as a tool substrate). In addition,
(A) a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer having a total average layer thickness of 3 to 20 μm,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state where the upper layer is formed by chemical vapor deposition;
A coated tool in which a hard coating layer composed of the above (a) and (b) is formed by vapor deposition is widely known (for example, Patent Document 1), and this coated tool has excellent resistance to cutting in steel or cast iron. It is known to exhibit wear.
Also known is a coated tool in which the particle width of the TiCN layer constituting the lower layer of the hard coating layer is 0.01 to 0.5 μm in order to improve the fracture resistance, impact resistance, wear resistance, etc. of the coated tool. (For example, Patent Document 2).

特公昭50−14237号公報Japanese Patent Publication No. 50-14237 特開2007−260851号公報JP 2007-260851 A

近年の切削加工の省力化および省エネ化に対する要求は強く、これに伴い、切削加工はますます高速化、高効率化の傾向にあり、その反面、工具寿命の延命化を図るという点から硬質被覆層の厚膜化も求められているが、下部層としてTi化合物層、上部層としてAl層からなる硬質被覆層を形成した従来被覆工具を用いて鋼、鋳鉄の高速断続切削加工を行うと、硬質被覆層に微小チッピング、層間剥離等を生じ、これを原因として、比較的短時間で使用寿命に至るのが現状である。 In recent years, there has been a strong demand for labor saving and energy saving of cutting work, and along with this, cutting work is becoming increasingly faster and more efficient. On the other hand, hard coating is required in order to extend the tool life. Although a thicker layer is also required, high-speed intermittent cutting of steel and cast iron is performed using a conventional coated tool in which a hard coating layer composed of a Ti compound layer as a lower layer and an Al 2 O 3 layer as an upper layer is formed. If it does, micro chipping, delamination, etc. will occur in the hard coating layer, and the present situation is that the service life is reached in a relatively short time due to this.

そこで、本発明者らは、被覆工具の耐チッピング性、耐剥離性を改善すべく、硬質被覆層の層構造について鋭意研究を行った結果、次のような知見を得た。   Therefore, as a result of intensive studies on the layer structure of the hard coating layer in order to improve the chipping resistance and peel resistance of the coated tool, the present inventors have obtained the following knowledge.

被覆工具の硬質被覆層のうち、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上から形成されるTi化合物層からなる下部層は、それ自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与し、また、Al層からなる上部層は、耐酸化性と熱的安定性にすぐれ、さらに高硬度を有するが、高熱発生を伴い、切刃に高負荷が断続的に作用する高速断続切削では、下部層−上部層間の密着強度が十分でないため、これが微小チッピング、層間剥離発生の要因となる。
そこで、下部層−上部層の界面密着強度を高めるため、両層の密着界面領域の改質について、数多くの実験を重ねた結果、工具領域を切れ刃部、逃げ面部およびすくい面部からなる3領域に分けた際に、その領域ごとに下部層と上部層とが隣接する界面の結晶粒構造を改善することにより、下部層と上部層の界面密着強度が高められることを見出したのである。
具体的には、切れ刃部においては、Al層直下の下部層を構成するTi化合物層の平均粒子径を0.1μm以下にすると共に、下部層と上部層とが隣接する界面に存在する下部層側の結晶粒(Ti化合物)の数a1と上部層側の結晶粒(Al)の数b1との比率b1/a1が、0.8≦b1/a1≦1.2を満足するように下部層および上部層を蒸着形成するとともに、逃げ面部およびすくい面部においては、Al層直下の下部層を構成するTi化合物層の平均粒子径を0.1〜0.5μmにすると共に、下部層と上部層とが隣接する界面に存在する下部層側の結晶粒(Ti化合物)の数a2と上部層側の結晶粒(Al)の数b2との比率b2/a2が、4≦b2/a2≦20を満足するように下部層および上部層を蒸着形成することによって、工具領域全体にわたって下部層と上部層との界面に発生する歪みが緩和されることにより、下部層−上部層界面の層間密着性が高められる。
そして、その結果として、高熱発生を伴い、切刃に高負荷が断続的に作用する高速断続切削加工においても、チッピング、剥離の発生なく、長期の使用に亘って優れた耐摩耗性を発揮することができることを見出したのである。
Of the hard coating layer of the coated tool, the lower layer made of a Ti compound layer formed of one or more of the TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer is itself provided. Excellent high-temperature strength contributes to improving the high-temperature strength of the hard coating layer, and the upper layer composed of the Al 2 O 3 layer has excellent oxidation resistance and thermal stability and has high hardness, but generates high heat. Accordingly, in high-speed intermittent cutting in which a high load acts intermittently on the cutting edge, the adhesion strength between the lower layer and the upper layer is not sufficient, and this causes microchipping and delamination.
Therefore, in order to increase the adhesion strength between the lower layer and the upper layer, a number of experiments were conducted on the modification of the adhesion interface region between the two layers. It was found that the interface adhesion strength between the lower layer and the upper layer can be increased by improving the crystal grain structure of the interface where the lower layer and the upper layer are adjacent to each other.
Specifically, in the cutting edge portion, the average particle diameter of the Ti compound layer constituting the lower layer immediately below the Al 2 O 3 layer is 0.1 μm or less, and the lower layer and the upper layer are adjacent to the interface. The ratio b1 / a1 between the number a1 of the lower layer side crystal grains (Ti compound) and the number b1 of the upper layer side crystal grains (Al 2 O 3 ) is 0.8 ≦ b1 / a1 ≦ 1.2. The lower layer and the upper layer are formed by vapor deposition so as to satisfy the above conditions, and the average particle diameter of the Ti compound layer constituting the lower layer immediately below the Al 2 O 3 layer is 0.1 to 0. The ratio of the number a2 of the lower layer side crystal grains (Ti compound) and the number b2 of the upper layer side crystal grains (Al 2 O 3 ) existing at the interface where the lower layer and the upper layer are adjacent to each other to 5 μm b2 / a2 is lower layers Contact to satisfy 4 ≦ b2 / a2 ≦ 20 By depositing formed fine upper layer, by the distortion generated at the interface between the lower layer and the upper layer over the tool region is relaxed, the lower layer - interlayer adhesion of the upper layer interface is enhanced.
As a result, even in high-speed intermittent cutting with high heat generation and high load intermittently acting on the cutting edge, it exhibits excellent wear resistance over a long period of use without occurrence of chipping and peeling. I found out that I could do it.

本発明は、前記知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と上部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、工具領域を切れ刃部、逃げ面部およびすくい面部からなる3領域に分けた際に、
(a)切れ刃部においては、
下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの全体平均層厚を有するTi化合物層からなり、
上部層は、化学蒸着した状態で1〜15μmの平均層厚を有するα型の結晶構造を有するAl層からなり、
上記下部層と上記上部層とが隣接する界面に存在する上記Ti化合物層側の結晶粒の数a1と上記Al層側の結晶粒の数b1との比率b1/a1が0.8≦b1/a1≦1.2を満足し、さらに、上記Al層直下のTi化合物層の結晶粒の平均粒子径が0.1μm以下であることを満足し、
(b)逃げ面部およびすくい面部においては、
下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの全体平均層厚を有するTi化合物層からなり、
上部層は、化学蒸着した状態で1〜15μmの平均層厚を有するα型の結晶構造を有するAl層からなり、
上記下部層と上記上部層とが隣接する界面に存在する上記Ti化合物層側の結晶粒の数a2と上記Al層側の結晶粒の数b2との比率b2/a2が4≦b2/a2≦20を満足し、さらに、上記Al層直下のTi化合物層の結晶粒の平均粒子径が0.1〜0.5μmであることを満足する、
以上(a)および(b)から構成された硬質被覆層を蒸着形成してなることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
`` In a surface-coated cutting tool in which a hard coating layer consisting of a lower layer and an upper layer is vapor-deposited on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, When divided into three areas consisting of flank and rake face,
(A) In the cutting edge part,
The lower layer is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and has an overall average layer thickness of 3 to 20 μm. A Ti compound layer having
The upper layer is composed of an Al 2 O 3 layer having an α-type crystal structure having an average layer thickness of 1 to 15 μm in the state of chemical vapor deposition,
Ratio b1 / a1 between the number b1 of the Ti compound layer side of the number a1 and the the Al 2 O 3 layer side of the crystal grains the crystal grains at the interface of the the lower layer and the upper layer is adjacent 0.8 ≦ b1 / a1 ≦ 1.2 is satisfied, and further, the average particle diameter of the crystal grains of the Ti compound layer immediately below the Al 2 O 3 layer is 0.1 μm or less,
(B) In the flank face and the rake face part,
The lower layer is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and has an overall average layer thickness of 3 to 20 μm. A Ti compound layer having
The upper layer is composed of an Al 2 O 3 layer having an α-type crystal structure having an average layer thickness of 1 to 15 μm in the state of chemical vapor deposition,
The number of the Ti compound layer side of the crystal grains at the interface of the the lower layer and the upper layer is adjacent a2 and the the Al 2 O 3 layer side of the ratio b2 / a2 is 4 ≦ the number b2 of grain b2 Satisfying / a2 ≦ 20 , and further satisfying that the average particle diameter of the crystal grains of the Ti compound layer immediately below the Al 2 O 3 layer is 0.1 to 0.5 μm.
A surface-coated cutting tool obtained by vapor-depositing a hard coating layer composed of (a) and (b) above. "
It has the characteristics.

以下に、本発明の被覆工具の硬質被覆層について、詳細に説明する。
(a)下部層(Ti化合物層)
Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層のうちの1層または2層以上からなるTi化合物層は、硬質被覆層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴い、切刃に高負荷が断続的に作用する高速断続切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
また、切れ刃部においては、Al層直下のTi化合物層の平均粒子径が0.1μmを超えると、上部層(Al層)と下部層Al層直下のTi化合物層と層間密着性が低下し、耐チッピング性が劣化するため、Al層直下のTi化合物層の平均粒子径は0.1μm以下と定めた。一方、逃げ面部およびすくい面部においては、Al層直下のTi化合物層の平均粒子径が0.5μmを超えると、上部層(Al層)と上部層Al層直下のTi化合物層と層間密着性が低下し、耐チッピング性が劣化し、また、結晶粒が粗大となって高温強度が低下し、耐摩耗性も劣化するために、Al層直下のTi化合物層の平均粒子径が0.1μmより小さいと耐欠損性、耐衝撃性、耐摩耗性が低下するため、Al層直下のTi化合物層の平均粒子径は0.1〜0.5μmと定めた。
ここで、切れ刃部および逃げ面部、すくい面部を上記範囲内とするために、工具基体に、切れ刃部以外を硬質ウレタンゴムなどでカバーし切れ刃部のみをウエットブラスト処理を施し、工具基体における切れ刃部の表面荒さをRa:0.2μm以下とした。ウエットブラスト処理の加工条件は、噴射研磨剤として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射する。
なお、平均粒子径とは、透過型電子顕微鏡の断面観察により超硬基体表面と平行な方向に50μmに渡って線を引き、Al層直下のTi化合物層の結晶粒の結晶粒界との交点を数え、それら線分長さの平均から求めた粒子径である。
Below, the hard coating layer of the coating tool of this invention is demonstrated in detail.
(A) Lower layer (Ti compound layer)
Ti composed of one or more of Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, carbonate (TiCO) layer and carbonitride oxide (TiCNO) layer The compound layer exists as a lower layer of the hard coating layer and contributes to the improvement of the high temperature strength of the hard coating layer by its excellent high temperature strength. However, when the total average layer thickness is less than 3 μm, the above-described effect is sufficiently obtained. On the other hand, if the total average layer thickness exceeds 20 μm, high-temperature intermittent cutting, particularly with high heat generation and high load intermittently acting on the cutting blade, tends to cause thermoplastic deformation. Since it causes wear, the average layer thickness is determined to be 3 to 20 μm.
Moreover, in the cutting edge part, when the average particle diameter of the Ti compound layer immediately below the Al 2 O 3 layer exceeds 0.1 μm, the Ti layer immediately below the upper layer (Al 2 O 3 layer) and the lower layer Al 2 O 3 layer. Since the adhesion between the compound layer and the interlayer is lowered and chipping resistance is deteriorated, the average particle size of the Ti compound layer immediately below the Al 2 O 3 layer is determined to be 0.1 μm or less. On the other hand, in the flank face and the rake face part, when the average particle diameter of the Ti compound layer immediately below the Al 2 O 3 layer exceeds 0.5 μm, the upper layer (Al 2 O 3 layer) and the upper layer Al 2 O 3 layer immediately below and of Ti decreases compound layer and the interlayer adhesion, chipping resistance deteriorates, and high-temperature strength decreases becomes crystal grains coarse, wear resistance to deterioration, just below the Al 2 O 3 layer When the average particle size of the Ti compound layer is smaller than 0.1 μm, the chipping resistance, impact resistance, and wear resistance are reduced. Therefore, the average particle size of the Ti compound layer immediately below the Al 2 O 3 layer is 0.1 to 0. .5 μm.
Here, in order to make the cutting edge part, the flank face part, and the rake face part within the above range, the tool base is covered with hard urethane rubber other than the cutting edge part, and only the cutting edge part is subjected to wet blasting, and the tool base is provided. The surface roughness of the cutting edge portion was set to Ra: 0.2 μm or less. The processing conditions of the wet blast treatment are as follows. A polishing liquid in which 15 to 60% by mass of aluminum oxide fine particles are mixed as a spraying abrasive in a ratio to the total amount with water is sprayed.
The average particle diameter is a grain boundary of the crystal grain of the Ti compound layer directly under the Al 2 O 3 layer by drawing a line over 50 μm in a direction parallel to the surface of the carbide substrate by cross-sectional observation with a transmission electron microscope. Is the particle diameter obtained from the average of the lengths of the line segments.

(b)上部層(Al層)
上部層を構成するAl層は、高温硬さおよび耐熱性にすぐれ、高熱発生を伴い、切刃に高負荷が断続的に作用する高速切削加工において、基本的な役割として耐摩耗性を維持する。
Ti化合物層からなる下部層表面に、例えば、以下の手順でAl2蒸着前処理を行い、ついで、通常条件でAl2層を成膜することにより、本発明で規定する条件を満足するAl2層を形成することができる。
Al2蒸着前処理は、以下の4段階からなり、
まず、
《第1段階》
反応ガス(容量%): AlCl 0.5〜2%, 残部Ar、
雰囲気圧力: 30〜100Torr、
処理温度: 750〜1000℃、
処理時間: 1〜3min.、
の条件で下部層の表面改質を行った後、
《第2段階》
雰囲気圧力: 30〜100Torr、
雰囲気温度: 750〜1000℃、
に維持した状態で、1〜3分間、Arガスで炉内ガスをパージし、
《第3段階》
反応ガス(容量%): CO 1〜10%, 残部Ar、
雰囲気圧力: 30〜100Torr、
処理温度: 750〜1000℃、
処理時間: 5〜20min、
の条件(但し、時間の経過とともに、反応ガス中のCOの含有割合を徐々に減少させる)で酸化処理を行い、
《第4段階》
雰囲気圧力: 30〜100Torr、
雰囲気温度: 750〜1000℃、
に維持した状態で、1〜3分間、Arガスで炉内ガスをパージする。
(B) Upper layer (Al 2 O 3 layer)
The Al 2 O 3 layer that constitutes the upper layer is excellent in high-temperature hardness and heat resistance, is accompanied by high heat generation, and wear resistance as a fundamental role in high-speed cutting processing in which a high load acts intermittently on the cutting edge To maintain.
For example, the Al 2 O 3 deposition pretreatment is performed on the surface of the lower layer made of the Ti compound layer by the following procedure, and then the Al 2 O 3 layer is formed under normal conditions, thereby satisfying the conditions defined in the present invention. A satisfactory Al 2 O 3 layer can be formed.
Al 2 O 3 deposition pretreatment consists of the following four stages:
First,
<< First stage >>
Reaction gas (volume%): AlCl 3 0.5-2%, balance Ar,
Atmospheric pressure: 30-100 Torr,
Processing temperature: 750 to 1000 ° C.
Processing time: 1-3 min. ,
After surface modification of the lower layer under the conditions of
<< Second stage >>
Atmospheric pressure: 30-100 Torr,
Atmospheric temperature: 750-1000 ° C.
In this state, the gas in the furnace is purged with Ar gas for 1 to 3 minutes.
《Third stage》
Reaction gas (volume%): CO 2 1-10%, balance Ar,
Atmospheric pressure: 30-100 Torr,
Processing temperature: 750 to 1000 ° C.
Processing time: 5-20 min,
The oxidation treatment is performed under the conditions (however, the content ratio of CO 2 in the reaction gas is gradually reduced as time passes)
<< Fourth Stage >>
Atmospheric pressure: 30-100 Torr,
Atmospheric temperature: 750-1000 ° C.
In this state, the furnace gas is purged with Ar gas for 1 to 3 minutes.

上記4段階のAl蒸着前処理を行った後、通常の成膜法でAl層を成膜することにより、本発明で規定する条件を満足するAl層を形成することができる。即ち、切れ刃部において、工具基体表面に垂直方向な断面における下部層(Ti化合物層)と上部層(Al層)とが隣接する界面に存在する下部層側のTi化合物結晶粒の数a1と上部層側のAl結晶粒の数b1との比率b1/a1を求めた場合に、b1/a1が0.8以上で1.2以下となる界面形態を備えた上部層を蒸着形成することができる。
上記a1,b1の比の値b1/a1について、b1/a1が0.8未満である場合には、切れ刃部の下部層−上部層界面におけるミスフィットを十分に緩和することができなくなり、一方、b1/a1が1.2を超えると、Al内の粒子間歪みが増大し、すぐれた層間密着性を発揮し得なくなるため、b1/a1は、0.8≦b1/a1≦1.2と定めた。
また、逃げ面部およびすくい面部において、工具基体表面に垂直方向な断面における下部層(Ti化合物層)と上部層(Al層)とが隣接する界面に存在する下部層側のTi化合物結晶粒の数a2と上部層側のAl結晶粒の数b2との比率b2/a2を求めた場合に、b2/a2が4以上で20以下となる界面形態を備えた上部層を蒸着形成することができる。
上記a2,b2の比の値b2/a2について、b2/a2が4未満である場合には、逃げ面部およびすくい面部の下部層−上部層界面におけるミスフィットを十分に緩和することができなくなり、一方、b2/a2が20を超えると、Al内の粒子間歪みが増大し、すぐれた層間密着性を発揮し得なくなるため、b2/a2は、4≦b2/a2≦20と定めた。
ここで、下部層(Ti化合物層)と上部層(Al層)とが隣接する界面に存在する下部層側のTi化合物結晶粒の数a1、a2と上部層側のAl結晶粒の数b1、b2の測定は、下部層−上部層との界面10箇所について、透過型電子顕微鏡を用い、50000倍の暗視野観察による断面測定を行い、超硬基体表面に平行な直線距離を測定幅25μmとし、その範囲に存在するAl粒子と界面を有しているTi化合物粒子の数およびTi化合物粒子と界面を有しているAl粒子の数のそれぞれをカウントすることにより、求めることができる。
この様な界面形態を備えた上部層と下部層からなる本発明の硬質被覆層は、界面歪みが緩和されることによって、すぐれた層間密着性を有するようになり、高速断続切削加工における微小チッピングの発生、剥離の発生を抑制するようになる。
上部層の平均層厚が1μm未満では、長期の使用に亘って耐摩耗性を十分に発揮することができず、工具寿命の短命化を招き、一方、上部層の平均層厚が15μmを超えるようになると、切れ刃部にチッピング、欠損、剥離等が発生し易くなることから、上部層の平均層厚は、1〜15μmと定めた。
After performing the four-stage Al 2 O 3 deposition pretreatment, an Al 2 O 3 layer that satisfies the conditions defined in the present invention is formed by forming an Al 2 O 3 layer by a normal film formation method. can do. That is, in the cutting edge portion, the lower layer side Ti compound crystal grains existing at the interface adjacent to the lower layer (Ti compound layer) and the upper layer (Al 2 O 3 layer) in the cross section perpendicular to the tool base surface. An upper layer having an interface configuration in which b1 / a1 is 0.8 or more and 1.2 or less when the ratio b1 / a1 between the number a1 and the number b1 of Al 2 O 3 crystal grains on the upper layer side is obtained Can be formed by vapor deposition.
When b1 / a1 is less than 0.8 for the ratio b1 / a1 of the a1, b1, the misfit at the lower layer-upper layer interface of the cutting edge cannot be sufficiently relaxed, On the other hand, if b1 / a1 exceeds 1.2, the inter-particle strain in Al 2 O 3 increases and it becomes impossible to exhibit excellent interlayer adhesion, so b1 / a1 is 0.8 ≦ b1 / a1 ≤1.2 .
Further, in the flank face and the rake face part, the lower layer side Ti compound crystal exists at the interface where the lower layer (Ti compound layer) and the upper layer (Al 2 O 3 layer) are adjacent to each other in the cross section perpendicular to the tool base surface. If the calculated ratio b2 / a2 between the number a2 the number of the upper layer side of the Al 2 O 3 crystal grains b2 grain, depositing a top layer having a surface form composed of 20 or less in b2 / a2 is 4 or more Can be formed.
When b2 / a2 is less than 4 for the ratio b2 / a2 of the above a2 and b2, it becomes impossible to sufficiently relieve misfit at the lower layer-upper layer interface of the flank face and the rake face part, On the other hand, if b2 / a2 exceeds 20, the strain between particles in Al 2 O 3 increases and it becomes impossible to exhibit excellent interlayer adhesion. Therefore, b2 / a2 is determined as 4 ≦ b2 / a2 ≦ 20. It was.
Here, the numbers a1 and a2 of the Ti compound crystal grains on the lower layer side existing at the interface where the lower layer (Ti compound layer) and the upper layer (Al 2 O 3 layer) are adjacent to each other and Al 2 O 3 on the upper layer side The number of crystal grains b1 and b2 is measured by measuring a cross section by dark field observation at 50000 times using a transmission electron microscope at 10 points of the interface between the lower layer and the upper layer, and a straight line parallel to the surface of the carbide substrate. The distance is a measurement width of 25 μm, and the number of Ti compound particles having an interface with Al 2 O 3 particles existing in the range and the number of Al 2 O 3 particles having an interface with Ti compound particles are respectively determined. It can be obtained by counting.
The hard coating layer of the present invention consisting of an upper layer and a lower layer having such an interface form has excellent interlaminar adhesion due to the relaxation of the interface strain, and microchipping in high-speed intermittent cutting processing. Generation and exfoliation are suppressed.
If the average layer thickness of the upper layer is less than 1 μm, the wear resistance cannot be sufficiently exhibited over a long period of use, leading to a shortened tool life, while the average layer thickness of the upper layer exceeds 15 μm. As a result, chipping, chipping, peeling, and the like are likely to occur at the cutting edge, so the average layer thickness of the upper layer was determined to be 1 to 15 μm.

この発明の被覆工具は、硬質被覆層として、Ti化合物層からなる下部層とAl層からなる上部層を蒸着形成したものにおいて、切れ刃部においては、下部層と上部層との隣接界面に存在する下部層側のTi化合物結晶粒の数a1と上部層側のAl結晶粒の数b1との比率b1/a1が0.8≦b1/a1≦1.2を満足する界面構造を構成し、さらに、Al層直下のTi化合物層の結晶粒の平均粒子径を0.1μm以下とし、逃げ面部およびすくい面部においては、下部層と上部層との隣接界面に存在する下部層側のTi化合物結晶粒の数a2と上部層側のAl結晶粒の数b2との比率b2/a2が4≦b2/a2≦20を満足する界面構造を構成し、さらに、Al層直下のTi化合物層の結晶粒の平均粒子径を0.1〜0.5μmとしていることから、特に、下部層と上部層間の層間密着性が高められ、その結果、例えば鋼、鋳鉄などの、高熱発生を伴い、切れ刃部に高負荷が断続的に作用する高速断続切削加工に用いた場合でも、硬質被覆層がすぐれた層間密着強度を有するため、切れ刃部に微小チッピング、剥離等の発生なく、長期の使用に亘ってすぐれた耐摩耗性を発揮することができる。 In the coated tool of the present invention, as a hard coating layer, a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer are formed by vapor deposition. In the cutting edge portion, the lower layer and the upper layer are adjacent to each other. A ratio b1 / a1 between the number a1 of Ti compound crystal grains on the lower layer side present at the interface and the number b1 of Al 2 O 3 crystal grains on the upper layer side satisfies 0.8 ≦ b1 / a1 ≦ 1.2 . The interface structure is configured, and the average particle diameter of the crystal grains of the Ti compound layer immediately below the Al 2 O 3 layer is 0.1 μm or less, and the flank face and the rake face part are adjacent to the interface between the lower layer and the upper layer. configure interface structure the ratio b2 / a2 between the Al 2 O 3 number of grains b2 of Ti compound crystal grains number a2 and the upper layer side of the lower layer side satisfies 4 ≦ b2 / a2 ≦ 20 present, Furthermore, crystals of the Ti compound layer immediately below the Al 2 O 3 layer Since the average particle diameter of 0.1 to 0.5 μm is particularly improved, the interlaminar adhesion between the lower layer and the upper layer is enhanced, and as a result, for example, steel, cast iron, etc., with high heat generation, the cutting edge portion Even when used for high-speed intermittent cutting where high loads act intermittently, the hard coating layer has excellent interlaminar adhesion strength, so there is no microchipping or peeling at the cutting edge and it can be used for a long time. Excellent wear resistance can be demonstrated.

本発明被覆工具1の切れ刃部における下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図を示す。The interface structure schematic diagram created from the transmission electron micrograph of the interface of the lower layer and upper layer in the cutting edge part of this invention coated tool 1 is shown. 本発明被覆工具1の逃げ面部における下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図を示す。The interface structure schematic diagram created from the transmission electron micrograph of the interface of the lower layer and upper layer in the flank part of this invention coated tool 1 is shown. 従来被覆工具1の切れ刃部における下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図を示す。The interface structure schematic diagram created from the transmission electron micrograph of the interface of the lower layer and upper layer in the cutting-blade part of the conventional coated tool 1 is shown. 従来被覆工具1の逃げ面部における下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図を示す。The interface structure schematic diagram created from the transmission electron micrograph of the interface of the lower layer and upper layer in the flank part of the conventional coated tool 1 is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切れ刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. Then, this green compact was vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge portion was honed with R: 0.07 mm. By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切れ刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、切れ刃部以外を硬質ウレタンゴム等でカバーし、切れ刃部のみに水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射してウエットブラスト処理を施し、
ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成する。
ついで、表4に示される条件にて、下部層の表面にAl2蒸着前処理を施し、
ついで、表3に示される条件にて、表5に示される組み合わせおよび目標層厚で、Al23 層を上部層として蒸着形成する、
ことにより本発明被覆工具1〜13をそれぞれ製造した。
Next, the part other than the cutting edge part is covered with hard urethane rubber or the like, and wet blasting is performed by spraying a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in the ratio of the total amount with water only on the cutting edge part. And
Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 5 under the conditions shown in Table 5 are the conditions for forming the TiCN layer having the vertically grown crystal structure described, and the other conditions for forming the normal granular crystal structure. And the Ti compound layer is vapor-deposited as the lower layer of the hard coating layer with the target layer thickness.
Next, under the conditions shown in Table 4, the surface of the lower layer was subjected to pretreatment for deposition of Al 2 O 3 ,
Next, under the conditions shown in Table 3, the Al 2 O 3 layer is deposited as an upper layer with the combinations and target layer thicknesses shown in Table 5,
By this, this invention coated tool 1-13 was manufactured, respectively.

また、比較の目的で、工具基体の表面にウエットブラスト処理およびAl2蒸着前処理を施さない以外は、本発明被覆工具1〜13と全く同様にして、下部層(Ti化合物層)および上部層(Al23 層)を蒸着形成することにより、表6に示される従来被覆工具1〜13をそれぞれ製造した。 For the purpose of comparison, the lower layer (Ti compound layer) and the surface of the tool base are the same as in the present coated tools 1 to 13 except that the surface of the tool base is not subjected to wet blasting and pretreatment for deposition of Al 2 O 3. Conventional coating tools 1 to 13 shown in Table 6 were produced by vapor-depositing the upper layer (Al 2 O 3 layer), respectively.

次に、上記の本発明被覆工具1〜13と従来被覆工具1〜13の硬質被覆層の切れ刃部と逃げ面部において下部層と上部層との界面近傍10箇所について、透過型電子顕微鏡(50000倍)による暗視野観察による断面測定を行い、超硬基体表面に平行な直線距離を測定幅25μmとし、その範囲に存在するAl2粒子と界面を有しているTi化合物粒子の数aおよびTi化合物粒子と界面を有しているAl2粒子の数bをカウントし、b/aの値を求めた。
表5および表6に、上記で求めたa,b,b/aの値を示す。なお、いずれの被覆工具も逃げ面部とすくい面部のa,b,b/aの値は、ほぼ同じ値であることが確認できたので、逃げ面部の値のみを示し、すくい面部の値については、表示を割愛した。
Next, a transmission electron microscope (50000) was formed at 10 points in the vicinity of the interface between the lower layer and the upper layer in the cutting edge portion and flank portion of the hard coating layer of the present invention coated tools 1-13 and the conventional coated tools 1-13. The number of Ti compound particles having an interface with Al 2 O 3 particles existing in the range of a linear distance parallel to the surface of the carbide substrate with a measurement width of 25 μm. The number b of Al 2 O 3 particles having an interface with the Ti compound particles was counted, and the value of b / a was determined.
Tables 5 and 6 show the values of a, b, and b / a determined above. In addition, since it was confirmed that the values of a, b, and b / a of the flank face and the rake face part were almost the same value in any of the coated tools, only the value of the flank face part is shown. I omitted the display.

図1には、本発明被覆工具1の切れ刃部における下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図を示す。
図2には、本発明被覆工具1の逃げ面部における下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図を示す。
図3には、従来被覆工具1の切れ刃部における下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図を示す。
図4には、従来被覆工具1の逃げ面部における下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図を示す。
In FIG. 1, the interface structure schematic diagram created from the transmission electron micrograph of the interface of the lower layer and upper layer in the cutting-blade part of this invention coated tool 1 is shown.
In FIG. 2, the interface structure schematic diagram created from the transmission electron micrograph of the interface of the lower layer and upper layer in the flank part of this invention coated tool 1 is shown.
In FIG. 3, the interface structure schematic diagram produced from the transmission electron micrograph of the interface of the lower layer and upper layer in the cutting-blade part of the conventional coated tool 1 is shown.
In FIG. 4, the interface structure schematic diagram created from the transmission electron micrograph of the interface of the lower layer and upper layer in the flank part of the conventional coated tool 1 is shown.

また、本発明被覆工具1〜13および従来被覆工具1〜13の硬質被覆層の下部層のTi化合物について、透過型電子顕微鏡の断面観察により超硬基体表面と平行な方向に50μmに渡って線を引き、Al層直下のTi化合物層の結晶粒の結晶粒界との交点を数え、それら線分長さの平均から平均粒子径を求めた。
表5に、測定した平均粒子径を示す。
Moreover, about the Ti compound of the lower layer of the hard coating layer of this invention coated tool 1-13 and the conventional coated tool 1-13, it is a line over 50 micrometers in the direction parallel to the surface of a carbide substrate by cross-sectional observation of a transmission electron microscope. And the intersection of the crystal grains of the Ti compound layer immediately below the Al 2 O 3 layer with the crystal grain boundary was counted, and the average particle diameter was determined from the average of the line segment lengths.
Table 5 shows the measured average particle diameter.

さらに、本発明被覆工具1〜13および従来被覆工具1〜13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Furthermore, when the thicknesses of the constituent layers of the hard coating layers of the present coated tools 1 to 13 and the conventional coated tools 1 to 13 were measured using a scanning electron microscope (longitudinal cross section measurement), all of the target layer thicknesses were measured. The average layer thickness (average value of 5-point measurement) was substantially the same.

つぎに、上記の本発明被覆工具1〜13および従来被覆工具1〜13について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
[切削条件A]
被削材:JIS・SNCM420の長さ方向等間隔4本縦溝入の丸棒、
切削速度: 360m/min.、
切り込み: 0.95mm、
送り: 0.40mm/rev.、
切削時間: 15分、
の条件でのニッケルクロムモリブデン鋼の乾式高速断続切削試験(通常の切削速度は200m/min.)、
[切削条件B]
被削材:JIS・FCD500の長さ方向等間隔4本縦溝入の丸棒、
切削速度: 340m/min.、
切り込み: 0.95mm、
送り: 0.50mm/rev.、
切削時間: 15分、
の条件でのダクタイル鋳鉄の乾式高速断続切削試験(通常の切削速度は180m/min.)、
[切削条件C]
被削材:JIS・S30Cの長さ方向等間隔4本縦溝入の丸棒、
切削速度: 385m/min.、
切り込み: 0.90mm、
送り: 0.8mm/rev.、
切削時間: 15分、
の条件での炭素鋼の乾式高速断続切削試験(通常の切削速度は250m/min.)
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表7に示した。
Next, for the present invention coated tools 1-13 and the conventional coated tools 1-13, both are screwed with a fixing jig to the tip of the tool steel tool,
[Cutting conditions A]
Work material: JIS / SNCM420 lengthwise equal 4 round grooves with vertical grooves,
Cutting speed: 360 m / min. ,
Cutting depth: 0.95mm,
Feed: 0.40 mm / rev. ,
Cutting time: 15 minutes,
Dry high-speed intermittent cutting test of nickel chrome molybdenum steel under the conditions (normal cutting speed is 200 m / min.),
[Cutting conditions B]
Work material: JIS / FCD500 lengthwise equal length 4 round bar with groove,
Cutting speed: 340 m / min. ,
Cutting depth: 0.95mm,
Feed: 0.50 mm / rev. ,
Cutting time: 15 minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 180 m / min.) Of ductile cast iron under the conditions of
[Cutting conditions C]
Work material: JIS / S30C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 385 m / min. ,
Cutting depth: 0.90mm,
Feed: 0.8 mm / rev. ,
Cutting time: 15 minutes,
Carbon steel dry high-speed intermittent cutting test under normal conditions (normal cutting speed is 250 m / min.)
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 7.

Figure 0005569740
Figure 0005569740

Figure 0005569740
Figure 0005569740

Figure 0005569740
Figure 0005569740

Figure 0005569740
Figure 0005569740

Figure 0005569740
Figure 0005569740

Figure 0005569740
Figure 0005569740

Figure 0005569740
Figure 0005569740

表5〜7に示される結果から、本発明被覆工具1〜13は、切れ刃部において、下部層と上部層との隣接界面に存在する下部層側のTi化合物結晶粒の数a1と上部層側のAl結晶粒の数b1との比率b1/a1が0.8≦b1/a1≦1.2を満足する界面構造を構成し、さらに、Al層直下のTi化合物層の結晶粒の平均粒子径を0.1μm以下としているとともに、逃げ面部およびすくい面部において、下部層と上部層との隣接界面に存在する下部層側のTi化合物結晶粒の数a2と上部層側のAl結晶粒の数b2との比率b2/a2が4≦b2/a2≦20を満足する界面構造を構成し、さらに、Al層直下のTi化合物層の結晶粒の平均粒子径を0.1〜0.5μmとしていることから、特に、下部層と上部層間の層間密着性が高められ、その結果、鋼および鋳鉄の高熱発生を伴い、切刃に高負荷が断続的に作用する高速断続切削加工に用いた場合でも、硬質被覆層がすぐれた層間密着強度を有するため、切刃に微小チッピング、剥離等の発生なく、長期の使用に亘ってすぐれた耐摩耗性を発揮することができる。
しかるに、硬質被覆層の下部層と上部層との間に本発明のような界面構造が形成されていない従来被覆工具1〜13においては、高速断続切削条件下では、硬質被覆層の層間密着強度が不十分であるために、硬質被覆層に微小チッピング、欠損、剥離等が発生し、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 5 to 7, according to the present invention coated tools 1 to 13, the number of Ti compound crystal grains on the lower layer side existing at the adjacent interface between the lower layer and the upper layer and the upper layer in the cutting edge portion A Ti compound layer immediately below the Al 2 O 3 layer, in which the ratio b1 / a1 to the number b1 of Al 2 O 3 crystal grains on the side satisfies 0.8 ≦ b1 / a1 ≦ 1.2 ; The average particle diameter of the crystal grains is 0.1 μm or less, and the number a2 of Ti compound crystal grains on the lower layer side existing on the adjacent interface between the lower layer and the upper layer and the upper layer side in the flank face and the rake face part The ratio b2 / a2 with the number b2 of Al 2 O 3 crystal grains of the above satisfies the relationship 4 ≦ b2 / a2 ≦ 20, and the average grain size of the Ti compound layer immediately below the Al 2 O 3 layer Since the particle diameter is 0.1 to 0.5 μm, Interlayer adhesion between the upper layer and the upper layer is improved, and as a result, even when used for high-speed intermittent cutting with high load acting on the cutting edge with high heat generation of steel and cast iron, the hard coating layer Since it has an excellent interlayer adhesion strength, it can exhibit excellent wear resistance over a long period of use without the occurrence of minute chipping, peeling, etc. on the cutting edge.
However, in the conventional coated tools 1 to 13 in which the interface structure as in the present invention is not formed between the lower layer and the upper layer of the hard coating layer, the interlayer adhesion strength of the hard coating layer under high-speed intermittent cutting conditions. Is insufficient, it is clear that micro-chipping, chipping, peeling, etc. occur in the hard coating layer and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、鋼および鋳鉄の特に高い発熱を伴い切刃に対して高負荷が断続的に作用する高速断続切削加工においてすぐれた耐チッピング性、耐摩耗性を示し、長期の使用に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化が十分期待できるものである。   As described above, the coated tool of the present invention exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting with high load intermittently acting on the cutting blade with particularly high heat generation of steel and cast iron. Since it exhibits excellent cutting performance over a long period of use, high performance of the cutting device, labor saving and energy saving of the cutting work, and further cost reduction can be sufficiently expected.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と上部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、工具領域を切れ刃部、逃げ面部およびすくい面部からなる3領域に分けた際に、
(a)切れ刃部においては、
下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの全体平均層厚を有するTi化合物層からなり、
上部層は、化学蒸着した状態で1〜15μmの平均層厚を有するα型の結晶構造を有するAl層からなり、
上記下部層と上記上部層とが隣接する界面に存在する上記Ti化合物層側の結晶粒の数a1と上記Al層側の結晶粒の数b1との比率b1/a1が0.8≦b1/a1≦1.2を満足し、さらに、上記Al層直下のTi化合物層の結晶粒の平均粒子径が0.1μm以下であることを満足し、
(b)逃げ面部およびすくい面部においては、
下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの全体平均層厚を有するTi化合物層からなり、
上部層は、化学蒸着した状態で1〜15μmの平均層厚を有するα型の結晶構造を有するAl層からなり、
上記下部層と上記上部層とが隣接する界面に存在する上記Ti化合物層側の結晶粒の数a2と上記Al層側の結晶粒の数b2との比率b2/a2が4≦b2/a2≦20を満足し、さらに、上記Al層直下のTi化合物層の結晶粒の平均粒子径が0.1〜0.5μmであることを満足する、
以上(a)および(b)から構成された硬質被覆層を蒸着形成してなることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of a lower layer and an upper layer is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet, When divided into three areas consisting of flank and rake face,
(A) In the cutting edge part,
The lower layer is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and has an overall average layer thickness of 3 to 20 μm. A Ti compound layer having
The upper layer is composed of an Al 2 O 3 layer having an α-type crystal structure having an average layer thickness of 1 to 15 μm in the state of chemical vapor deposition,
Ratio b1 / a1 between the number b1 of the Ti compound layer side of the number a1 and the the Al 2 O 3 layer side of the crystal grains the crystal grains at the interface of the the lower layer and the upper layer is adjacent 0.8 ≦ b1 / a1 ≦ 1.2 is satisfied, and further, the average particle diameter of the crystal grains of the Ti compound layer immediately below the Al 2 O 3 layer is 0.1 μm or less,
(B) In the flank face and the rake face part,
The lower layer is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and has an overall average layer thickness of 3 to 20 μm. A Ti compound layer having
The upper layer is composed of an Al 2 O 3 layer having an α-type crystal structure having an average layer thickness of 1 to 15 μm in the state of chemical vapor deposition,
The number of the Ti compound layer side of the crystal grains at the interface of the the lower layer and the upper layer is adjacent a2 and the the Al 2 O 3 layer side of the ratio b2 / a2 is 4 ≦ the number b2 of grain b2 Satisfying / a2 ≦ 20 , and further satisfying that the average particle diameter of the crystal grains of the Ti compound layer immediately below the Al 2 O 3 layer is 0.1 to 0.5 μm.
A surface-coated cutting tool obtained by vapor-depositing a hard coating layer composed of (a) and (b) above.
JP2010243771A 2010-03-23 2010-10-29 Surface coated cutting tool with excellent chipping resistance Active JP5569740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243771A JP5569740B2 (en) 2010-03-23 2010-10-29 Surface coated cutting tool with excellent chipping resistance

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010065527 2010-03-23
JP2010065527 2010-03-23
JP2010226354 2010-10-06
JP2010226354 2010-10-06
JP2010243771A JP5569740B2 (en) 2010-03-23 2010-10-29 Surface coated cutting tool with excellent chipping resistance

Publications (3)

Publication Number Publication Date
JP2012096303A JP2012096303A (en) 2012-05-24
JP2012096303A5 JP2012096303A5 (en) 2013-08-22
JP5569740B2 true JP5569740B2 (en) 2014-08-13

Family

ID=46388834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243771A Active JP5569740B2 (en) 2010-03-23 2010-10-29 Surface coated cutting tool with excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP5569740B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10994339B2 (en) * 2016-12-09 2021-05-04 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP7298091B1 (en) 2022-02-07 2023-06-27 住友電工ハードメタル株式会社 Cutting tools

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569204A (en) * 1991-09-04 1993-03-23 Mitsubishi Materials Corp Hard layer coated tungsten carbide group cemented carbide made cutting tool
BR9611817A (en) * 1995-10-27 1999-12-28 Teledyne Ind Oxide coatings anchored on hard metal cutting tools.
JP4805819B2 (en) * 2004-03-29 2011-11-02 京セラ株式会社 Surface covering member and cutting tool
JP4854359B2 (en) * 2006-03-29 2012-01-18 京セラ株式会社 Surface coated cutting tool
JP5170828B2 (en) * 2008-01-18 2013-03-27 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Also Published As

Publication number Publication date
JP2012096303A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
KR102033188B1 (en) Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5866650B2 (en) Surface coated cutting tool
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
WO2011052767A1 (en) Surface coated cutting tool with excellent chip resistance
WO2018042740A1 (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and peeling resistance
JP2016165789A (en) Surface-coated cutting tool allowing hard coated layer to exhibit superior chipping resistance and wear resistance
JP5263514B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2020006487A (en) Surface cutting tool of which hard coating layer exhibits excellent chipping resistance
JP2018024038A (en) Surface coated cutting tool excellent in deposition chipping resistance and peeling resistance
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JP5569740B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5163879B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP2009006427A (en) Surface coated cutting tool
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP4748361B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007118155A (en) Surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP2020151794A (en) Surface-coated cutting tool
JP2018149668A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP2010207930A (en) Surface coated cutting tool
JP2007196355A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material
JP2006334757A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5569740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250