JP2010207930A - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP2010207930A
JP2010207930A JP2009054406A JP2009054406A JP2010207930A JP 2010207930 A JP2010207930 A JP 2010207930A JP 2009054406 A JP2009054406 A JP 2009054406A JP 2009054406 A JP2009054406 A JP 2009054406A JP 2010207930 A JP2010207930 A JP 2010207930A
Authority
JP
Japan
Prior art keywords
layer
average
crystal structure
titanium
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009054406A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kono
和弘 河野
Yoko Watanabe
陽子 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009054406A priority Critical patent/JP2010207930A/en
Publication of JP2010207930A publication Critical patent/JP2010207930A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coating layer exerting excellent resistance to abrasion during a high speed and high feed cutting process. <P>SOLUTION: The surface-coated cutting tool has the hard coating layer formed with an entire average layer thickness of 15-30 μm on the surface of a tool body, wherein the coating layer is configured by (a) to (d) including: (a) as an underlying layer, a titanium nitride layer and a titanium carbide layer having a longitudinally growing crystalline structure; (b) as an adhesion layer, a titanium carbide layer having a fine longitudinally growing crystalline structure; (c) as an intermediate layer, a titanium carbonitride layer formed adjacent to the adhesion layer and having a longitudinally growing crystalline structure and a Ti compound layer sandwiched by the titanium carbonitride layers and including at least one or a plurality of the titanium carbide layers having a fine longitudinally growing crystalline structure; and (d) as an upper layer, an aluminum oxide layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、高熱発生を伴うとともに切刃に対して高負荷が作用する、例えば、鋼や鋳鉄の高速高送り切削加工において、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed high-feed cutting of steel or cast iron, for example, with high heat generation and high load acting on the cutting edge (for example, Hereinafter, this is referred to as a coated tool).

従来、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体(以下、工具基体という)の表面に、
(a) いずれも0.1〜5μmの平均層厚および粒状結晶組織を有する、TiC層、TiN層、TiCN層、TiCO層、TiNO層、およびTiCNO層のうちの1種または2種以上からなるTi化合物層、
(b) 2〜15μmの平均層厚の縦長成長結晶組織を有するTiCN(以下、l−TiCNという)層、
(c) 0.5〜10μmの平均層厚を有するAl23層、
(d) 2〜10μmの平均層厚の縦長成長結晶組織を有するTiC(以下、l−TiCという)層、
で構成された硬質被覆層を5〜25μmの全体平均層厚で化学蒸着および/または物理蒸着してなる、被覆工具が知られており、この被覆工具が、l−TiC層の備えるすぐれた靭性によって、鋼の切削加工に用いられた場合に、すぐれた耐チッピング性及びすぐれた耐摩耗性を発揮することが知られている。
また、一般に、上記l−TiCN層は、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成されるものであることも知られている。
Conventionally, on the surface of a tool base (hereinafter referred to as a tool base) composed of a tungsten carbide base cemented carbide or a titanium carbonitride base cermet,
(A) Any one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, a TiNO layer, and a TiCNO layer each having an average layer thickness and a granular crystal structure of 0.1 to 5 μm Ti compound layer,
(B) a TiCN (hereinafter referred to as 1-TiCN) layer having a vertically grown crystal structure with an average layer thickness of 2 to 15 μm,
(C) an Al 2 O 3 layer having an average layer thickness of 0.5 to 10 μm,
(D) a TiC (hereinafter referred to as l-TiC) layer having a vertically grown crystal structure with an average layer thickness of 2 to 10 μm,
A coated tool is known, which is obtained by chemical vapor deposition and / or physical vapor deposition of a hard coating layer composed of 5 to 25 μm in total average layer thickness, and this coated tool has excellent toughness provided by the 1-TiC layer. Thus, it is known to exhibit excellent chipping resistance and excellent wear resistance when used in steel cutting.
In general, the l-TiCN layer is formed by chemical vapor deposition in a medium temperature range of 700 to 950 ° C. using a mixed gas containing organic carbonitride as a reaction gas in a normal chemical vapor deposition apparatus. It is also known that

特開2000−158207号公報JP 2000-158207 A 特開平6−8010号公報Japanese Patent Laid-Open No. 6-8010 特開平7−328808号公報JP 7-328808 A

一方、近年の切削加工に対する省力化および省エネ化の要求は強く、これに伴い、切削加工の高速化が求められると同時に、工具の長寿命化も求められており、上記従来被覆工具を通常条件下での切削加工に用いた場合には特段の問題は生じないが、これを、高熱発生を伴うとともに切刃に対して高負荷が作用する鋼や鋳鉄の高速高送り条件での切削加工に用いた場合には、切削加工時の高熱および切刃に作用する高負荷により硬質被覆層の摩耗進行が著しく促進されるばかりか、チッピング、欠損等の異常損傷も発生しやすくなり、比較的短時間で使用寿命に至るのが現状である。   On the other hand, there is a strong demand for energy saving and energy saving for cutting in recent years. Along with this, there is a demand for higher cutting speed and a longer tool life. When used for lower cutting, there is no particular problem, but this is suitable for cutting steel and cast iron with high heat generation and high load on the cutting edge under high speed and high feed conditions. When used, not only the progress of wear of the hard coating layer is significantly accelerated by the high heat and high load acting on the cutting blade, but also abnormal damage such as chipping and chipping is likely to occur, which is relatively short. The current situation is that the service life is reached in time.

そこで、本発明者等は、上述のような観点から、被覆工具の長寿命化を図るべく硬質被覆層の厚膜化を図った場合にも、長期の使用に亘ってすぐれた耐摩耗性を発揮する硬質被覆層について鋭意研究を行った結果、以下の知見を得た。   Therefore, from the above viewpoint, the present inventors have excellent wear resistance over a long period of use even when the hard coating layer is made thicker in order to extend the life of the coated tool. As a result of earnest research on the hard coating layer to be exhibited, the following knowledge was obtained.

(a)上記従来被覆工具における硬質被覆層の一つの構成層であるl−TiC層は、例えば、通常の化学蒸着装置において、
反応ガス組成:容量%で、TiCl4 :0.5〜2%、CH4 :1〜3%、H2 :残り、
反応雰囲気温度:1000〜1100℃、
反応雰囲気圧力:200〜400Torr(26〜53kPa)、
の条件で形成することができる。
そして、このl−TiC層は、その破面組織及び光学顕微鏡組織がl−TiCN層と実質的に同じ縦長成長結晶組織を有し、従来の粒状結晶組織のTiC層に比して一段とすぐれた靭性を備える。
しかし、上記l−TiC層は、その結晶粒が粗粒(平均結晶粒径が約1μm以上)であるため、例えば、この上にTi化合物(縦長成長結晶組織のl−TiCN及び粒状結晶組織のTiN、TiC、TiCN、TiCO、TiCNOのうちの1種または2種以上からなるTi化合物)層を蒸着形成すると、形成されたTi化合物層の結晶粒も粗粒化されるために、充分な高温強度を備えるとはいえない。
(A) The l-TiC layer which is one constituent layer of the hard coating layer in the conventional coated tool is, for example, in a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, TiCl 4: 0.5~2%, CH 4: 1~3%, H 2: remainder,
Reaction atmosphere temperature: 1000-1100 ° C.
Reaction atmosphere pressure: 200 to 400 Torr (26 to 53 kPa),
It can be formed under the following conditions.
This l-TiC layer has a vertically grown crystal structure in which the fracture surface structure and the optical microscope structure are substantially the same as those of the l-TiCN layer, which is superior to a TiC layer having a conventional granular crystal structure. Provide toughness.
However, since the l-TiC layer has coarse grains (average grain size of about 1 μm or more), for example, a Ti compound (l-TiCN having a vertically grown crystal structure and a granular crystal structure) is formed thereon. When the Ti compound layer of TiN, TiC, TiCN, TiCO, or TiCNO is formed by vapor deposition, the crystal grains of the formed Ti compound layer are also coarsened. It cannot be said that it has strength.

そこで、本発明者等は、工具基体表面に、下部層としてTiN層及び縦長成長結晶組織を備えるl−TiC層を蒸着形成した後、例えば、下部層表面にウエットブラストを施すことにより下部層表面を平滑化し、ついで、微粒縦長成長結晶組織を有するl−TiC(以下、微粒l−TiCという)層を密着性層として形成し、さらに、該密着性層に隣接して少なくとも炭窒化チタン層を形成し、あるいは、該炭窒化チタン層の上にさらにTi化合物(縦長成長結晶組織のl−TiCN及び粒状結晶組織のTiN、TiC、TiCN、TiCO、TiCNOのうちの1種または2種以上からなるTi化合物)層を形成して中間層を構成したところ、該中間層の少なくとも炭窒化チタン層は、平均結晶粒径が0.05〜0.5μmでかつ縦長成長結晶組織を有し、中間層は全体として微粒化された結晶組織を有するようになるため、より一段とすぐれた高温強度を備えるようになり、さらに、密着性層との密着強度も一段と向上することを見出し、これを特願2008−240277号として出願した。   Therefore, the present inventors formed a 1-TiC layer having a TiN layer and a vertically grown crystal structure as a lower layer on the tool base surface by vapor deposition, and then applied wet blasting to the lower layer surface, for example, to form the lower layer surface. Next, an 1-TiC (hereinafter referred to as fine-grained l-TiC) layer having a fine grain growth crystal structure is formed as an adhesive layer, and at least a titanium carbonitride layer is adjacent to the adhesive layer. Formed or further formed on the titanium carbonitride layer is a Ti compound (one or more of 1-TiCN having a vertically grown crystal structure and TiN, TiC, TiCN, TiCO, TiCNO having a granular crystal structure) When the intermediate layer is formed by forming a (Ti compound) layer, at least the titanium carbonitride layer of the intermediate layer has an average crystal grain size of 0.05 to 0.5 μm and is elongated vertically. Since it has a crystal structure and the intermediate layer has a finely grained crystal structure as a whole, it has a higher temperature strength, and the adhesion strength with the adhesive layer is further improved. Was filed as Japanese Patent Application No. 2008-240277.

つまり、工具基体表面に、窒化チタン層及び縦長成長結晶組織を有する炭化チタン層からなる下部層、少なくとも縦長成長結晶組織を有する炭窒化チタン層を含むTi化合物層からなる中間層、酸化アルミニウム層からなる上部層を化学蒸着で形成した硬質被覆層を備えた被覆工具において、上記下部層と上記中間層との間に、微粒縦長成長結晶組織を有する炭化チタン層からなる密着性層を介在形成すると、密着性層の上に隣接して形成された縦長成長結晶組織を有する炭窒化チタン層は、平均結晶粒径0.05〜0.5μmの微粒組織として形成され、その結果、中間層は全体として微粒結晶組織として形成され、また、中間層と密着性層との密着強度も向上するため、このような被覆工具(特願2008−240277号。以下、先願工具という。)を、高熱発生を伴うFe基合金、Ni基合金、Co基合金等の耐熱合金の高速切削に用いた場合、チッピング、欠損、剥離等の異常損傷を生じることなく、長期の使用にわたって、すぐれた耐摩耗性を発揮するものである。   That is, on the surface of the tool base, a lower layer made of a titanium nitride layer and a titanium carbide layer having a vertically grown crystal structure, an intermediate layer made of a Ti compound layer including at least a titanium carbonitride layer having a vertically grown crystal structure, and an aluminum oxide layer In a coated tool provided with a hard coating layer formed by chemical vapor deposition of the upper layer, an adhesive layer made of a titanium carbide layer having a fine grain growth crystal structure is interposed between the lower layer and the intermediate layer. The titanium carbonitride layer having a vertically grown crystal structure formed adjacently on the adhesive layer is formed as a fine grain structure having an average crystal grain size of 0.05 to 0.5 μm, and as a result, the intermediate layer is entirely formed. In this case, such a coated tool (Japanese Patent Application No. 2008-240277, hereinafter referred to as a prior application) is formed as a fine-grained crystal structure and also improves the adhesion strength between the intermediate layer and the adhesive layer. Is used for high-speed cutting of heat-resistant alloys such as Fe-based alloys, Ni-based alloys, and Co-based alloys with high heat generation, and long-term use without causing abnormal damage such as chipping, chipping, and peeling. It exhibits excellent wear resistance.

ただ、上記先願工具において、工具寿命の改善を図るべく硬質被覆層の厚膜化(即ち、Ti化合物層からなる中間層の厚膜化及び/又は酸化アルミニウム層からなる上部層の厚膜化)を図ったところ、高熱発生を伴い、かつ、切刃に高負荷が作用する鋼や鋳鉄の高速高送り切削においては、チッピング、欠損、剥離等の発生によって十分に満足できる工具寿命を得ることができなかった。
そして、この原因を調査したところ、Ti化合物層あるいは酸化アルミニウム層の厚膜化を行った際に、各層における結晶粒の成長とその粗大化によって、各層の強度、靭性の低下が生じ、これが主たる要因となって上記チッピング、欠損、剥離等が発生することが判明した。
そこで、本発明者等は、Ti化合物層、酸化アルミニウム層の結晶粒の粗大化防止について更に研究を進めたところ、上記先願工具において密着性層として設けた微粒縦長成長結晶組織を有する炭化チタン層を、中間層を構成する一つの構成層(以下、粗大化防止層という)として一層又は複数層介在形成することによって、中間層の結晶粒粗大化を防止できること、また、さらにその結果として、中間層の表面に形成される上部層の結晶粒粗大化をも抑制できることを見出した。
したがって、下部層、密着性層、中間層及び上部層からなる硬質被覆層を蒸着形成した被覆工具において、中間層を構成する一つの層として、粗大化防止層を一層又は複数層介在形成することによって、硬質被覆全体としてより一段とすぐれた高温強度を備えるようになるため硬質被覆層の厚膜化が可能となり、その結果として、このような被覆工具を、高熱発生を伴うとともに切刃に高負荷が作用する鋼や鋳鉄の高速高送り切削に用いた場合にも、長期の使用に亘ってすぐれた耐摩耗性を発揮することができると同時に、被覆工具の長寿命化を図ることができる。
However, in the above-mentioned prior application tool, to increase the tool life, the hard coating layer is made thicker (that is, the intermediate layer made of a Ti compound layer and / or the upper layer made of an aluminum oxide layer is made thicker). ) As a result, in high-speed high-feed cutting of steel or cast iron that involves high heat generation and high loads on the cutting edge, a sufficiently satisfactory tool life can be obtained by the occurrence of chipping, chipping, peeling, etc. I could not.
And when this cause was investigated, when the thickness of the Ti compound layer or the aluminum oxide layer was increased, the growth and coarsening of the crystal grains in each layer resulted in a decrease in the strength and toughness of each layer. It was found that the above chipping, chipping, peeling, etc. occurred as a factor.
Accordingly, the present inventors further researched on the prevention of the coarsening of the crystal grains of the Ti compound layer and the aluminum oxide layer. As a result, titanium carbide having a fine grain vertically grown crystal structure provided as an adhesive layer in the prior application tool. By forming one layer or a plurality of layers as one constituent layer (hereinafter referred to as a coarsening prevention layer) constituting the intermediate layer, it is possible to prevent the crystal grain coarsening of the intermediate layer, and as a result, It has been found that crystal grain coarsening of the upper layer formed on the surface of the intermediate layer can also be suppressed.
Therefore, in a coated tool in which a hard coating layer composed of a lower layer, an adhesion layer, an intermediate layer and an upper layer is formed by vapor deposition, one or more layers of an anti-roughening layer are formed as one layer constituting the intermediate layer. This makes it possible to increase the thickness of the hard coating layer because it has a higher temperature strength than the entire hard coating, and as a result, such a coated tool is accompanied by high heat generation and a high load on the cutting edge. Even when used for high-speed, high-feed cutting of steel or cast iron on which is applied, excellent wear resistance can be exhibited over a long period of use, and at the same time, the life of the coated tool can be extended.

この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a) 下部層として、0.2〜1μmの平均層厚を有する窒化チタン層及び1〜3μmの平均層厚および縦長成長結晶組織を有する炭化チタン層、
(b)密着性層として、0.2〜1μmの平均層厚および微粒縦長成長結晶組織を有する炭化チタン層、
(c)中間層として、上記密着性層に隣接して形成された縦長成長結晶組織を有する平均結晶粒径が0.05〜0.5μmの炭窒化チタン層を含み、さらに、炭窒化チタン層に挟まれた状態で存在し、かつ、0.2〜1μmの平均層厚および微粒縦長成長結晶組織を有する少なくとも一層の炭化チタン層を含む、9〜15μmの平均層厚を有するTi化合物層、
(d)上部層として、0.5〜15μmの平均層厚を有する酸化アルミニウム層、
上記(a)〜(d)で構成された硬質被覆層が15〜30μmの全体平均層厚で形成されてなることを特徴とする表面被覆切削工具。
(2) 前記(1)に記載の表面被覆切削工具において、
上記(c)の中間層は、縦長成長結晶組織を有する平均結晶粒径が0.05〜0.5μmの炭窒化チタン層に挟まれた状態で存在し、かつ、0.2〜1μmの平均層厚および微粒縦長成長結晶組織を有する炭化チタン層を、複数層含むことを特徴とする前記(1)に記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) As a lower layer, a titanium nitride layer having an average layer thickness of 0.2 to 1 μm and a titanium carbide layer having an average layer thickness of 1 to 3 μm and a vertically elongated crystal structure,
(B) as an adhesive layer, a titanium carbide layer having an average layer thickness of 0.2 to 1 μm and a fine grain vertically grown crystal structure,
(C) As an intermediate layer, a titanium carbonitride layer having an average crystal grain size of 0.05 to 0.5 μm and having a vertically grown crystal structure formed adjacent to the adhesive layer is further included. A Ti compound layer having an average layer thickness of 9 to 15 μm, including at least one titanium carbide layer having an average layer thickness of 0.2 to 1 μm and a fine grain vertically grown crystal structure,
(D) As an upper layer, an aluminum oxide layer having an average layer thickness of 0.5 to 15 μm,
A surface-coated cutting tool, wherein the hard coating layer constituted by the above (a) to (d) is formed with an overall average layer thickness of 15 to 30 μm.
(2) In the surface-coated cutting tool according to (1),
The intermediate layer (c) is present in a state sandwiched between titanium carbonitride layers having an average crystal grain size of 0.05 to 0.5 μm having a vertically grown crystal structure, and an average of 0.2 to 1 μm. The surface-coated cutting tool according to (1), wherein the surface-coated cutting tool includes a plurality of titanium carbide layers having a layer thickness and a fine grain vertically grown crystal structure. "
It has the characteristics.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

下部層:
下部層を構成するTiN層及びl−TiC(縦長成長結晶組織を有する炭化チタン)層のうち、TiN層は、通常の化学蒸着条件で形成することができる。
また、l−TiC層は、例えば、粒状結晶組織のTiC層の形成条件(例えば、反応ガス組成:容量%で、TiCl4 :1〜6%、CH4 :2〜10%、H2:残り、反応雰囲気温度:950〜1000℃、反応雰囲気圧力:50〜150Torr(6.7〜20kPa))に比して、反応ガスにおけるTiC形成成分の濃度は相対的に低く、反応雰囲気温度および反応雰囲気圧力を高くした条件、即ち、例えば、
反応ガス組成:容量%で、TiCl4 :0.5〜2%、CH4 :1〜3%、H2 :残り、
反応雰囲気温度:1000〜1100℃、
反応雰囲気圧力:200〜400Torr(26〜53kPa)、
の条件で化学蒸着することにより形成することができる。
下部層のTiN層は、基体とl−TiC層との密着強度を高めるが、その平均層厚が0.2μm未満では、密着強度向上効果が期待できず、一方、その平均層厚が1μm以下であれば、十分な密着強度を確保できることから、下部層のTiN層の平均層厚は0.2〜1μmと定めた。
また、下部層のl−TiC層は、l−TiCN層同様、縦長成長結晶組織を有し、さらに高硬度、高靭性を備え、切削加工時の耐摩耗性、耐チッピング性向上に寄与する。
ただ、その平均層厚が1μm未満では、前記作用に所望の向上効果が得られず、一方その平均層厚が3μmを越えると、切刃に欠けやチッピングが発生し易くなることから、その平均層厚を1〜3μmと定めた。
Lower layer:
Of the TiN layer and l-TiC (titanium carbide having a vertically grown crystal structure) layer constituting the lower layer, the TiN layer can be formed under normal chemical vapor deposition conditions.
Further, the l-TiC layer is formed, for example, under the conditions of forming a TiC layer having a granular crystal structure (for example, reaction gas composition: volume%, TiCl 4 : 1 to 6%, CH 4 : 2 to 10%, H 2 : remaining , Reaction atmosphere temperature: 950 to 1000 ° C., reaction atmosphere pressure: 50 to 150 Torr (6.7 to 20 kPa)), the concentration of the TiC forming component in the reaction gas is relatively low. Conditions with increased pressure, ie, for example,
Reaction gas composition: by volume%, TiCl 4: 0.5~2%, CH 4: 1~3%, H 2: remainder,
Reaction atmosphere temperature: 1000-1100 ° C.
Reaction atmosphere pressure: 200 to 400 Torr (26 to 53 kPa),
It can be formed by chemical vapor deposition under the following conditions.
The lower TiN layer increases the adhesion strength between the substrate and the 1-TiC layer, but if the average layer thickness is less than 0.2 μm, the effect of improving the adhesion strength cannot be expected, while the average layer thickness is 1 μm or less. Then, since sufficient adhesive strength can be ensured, the average layer thickness of the lower TiN layer was determined to be 0.2 to 1 μm.
Further, the l-TiC layer as the lower layer, like the l-TiCN layer, has a vertically elongated crystal structure, further has high hardness and high toughness, and contributes to improvement in wear resistance and chipping resistance during cutting.
However, if the average layer thickness is less than 1 μm, the desired improvement effect cannot be obtained in the above-mentioned action. On the other hand, if the average layer thickness exceeds 3 μm, the cutting edge tends to be chipped or chipped. The layer thickness was set to 1 to 3 μm.

密着性層:
l−TiC層からなる下部層は、上記のとおり、すぐれた硬さと靭性を有するが、その結晶粒は粗大(平均結晶粒径が約1μm以上)であり、この上に中間層を蒸着形成すると、中間層の結晶粒も粗大になり、縦長成長結晶組織を有するl−TiCN層を形成したとしても、高温硬さ、靭性というすぐれた特性を十分に発揮することができない。
そこで、結晶組織の微粒化によるより一層の高温硬さ向上、靭性向上を図るため、l−TiC層からなる下部層の表面に、例えば噴射研磨材として、水との合量に占める割合で25〜35質量%のAl23微粒を配合した研磨液を、0.1〜0.15MPaの噴射圧力で噴射してウエットブラストを施すことにより下部層表面を平滑化し、ついで、
反応ガス組成:容量%で、TiCl4 :1〜3%、CH4 :0.5〜1.5%、H2 :残り、
反応雰囲気温度:900〜950℃、
反応雰囲気圧力:200〜300Torr(26〜40kPa)、
の蒸着条件で、l−TiC層を蒸着し、平均結晶粒径0.01〜0.3μmの微粒組織を有しかつ縦長成長結晶組織を有する微粒l−TiC層を形成した。
Adhesive layer:
As described above, the lower layer composed of the 1-TiC layer has excellent hardness and toughness, but its crystal grains are coarse (average crystal grain size is about 1 μm or more), and when an intermediate layer is deposited thereon, Even if the crystal grains of the intermediate layer become coarse and an 1-TiCN layer having a vertically grown crystal structure is formed, the excellent properties such as high temperature hardness and toughness cannot be fully exhibited.
Therefore, in order to further improve the high-temperature hardness and toughness by atomizing the crystal structure, the surface of the lower layer made of the l-TiC layer, for example, as a spray abrasive, accounts for 25% of the total amount of water. a polishing liquid containing a combination of Al 2 O 3 fine of 35 wt%, the lower layer surface was smoothed by applying a wet blasting by jetting in injection pressure of 0.1 to 0.15 MPa, and then,
Reaction gas composition: by volume%, TiCl 4: 1~3%, CH 4: 0.5~1.5%, H 2: remainder,
Reaction atmosphere temperature: 900-950 ° C.
Reaction atmosphere pressure: 200 to 300 Torr (26 to 40 kPa),
The l-TiC layer was vapor-deposited under the vapor deposition conditions to form a fine-grained l-TiC layer having a fine grain structure with an average crystal grain size of 0.01 to 0.3 μm and a vertically grown crystal structure.

上記微粒l−TiC層は、下部層と中間層との密着性を高めるとともに、その上に隣接して形成され、中間層として少なくとも必須の層である縦長成長結晶組織のl−TiCN層の平均結晶粒径を0.05〜0.5μmに微粒化し、その結果、中間層の硬さ、靭性をより一段と向上させ、硬質被覆層の耐摩耗性向上、耐チッピング性向上に寄与する。
ただ、微粒l−TiC層の平均層厚が0.2μm未満では、隣接するl−TiCN層との密着強度向上を期待できず、一方、その平均層厚が1μmを超えると、隣接するl−TiCN層が粗粒化し、耐摩耗性が低下する傾向がみられることから、微粒l−TiC層からなる密着性層の平均層厚は0.2〜1μmと定めた。
The fine-grained l-TiC layer enhances the adhesion between the lower layer and the intermediate layer, and is formed adjacently thereon, and is an average of the l-TiCN layer having a vertically grown crystal structure that is at least an essential layer as the intermediate layer. The crystal grain size is atomized to 0.05 to 0.5 μm. As a result, the hardness and toughness of the intermediate layer are further improved, contributing to the improvement of wear resistance and chipping resistance of the hard coating layer.
However, if the average layer thickness of the fine l-TiC layer is less than 0.2 μm, it cannot be expected to improve the adhesion strength with the adjacent l-TiCN layer, while if the average layer thickness exceeds 1 μm, the adjacent l− Since the TiCN layer is coarsened and the wear resistance tends to decrease, the average layer thickness of the adhesive layer composed of the fine l-TiC layer is determined to be 0.2 to 1 μm.

中間層:
中間層は、
(a)上記密着性層に隣接して形成され、縦長成長結晶組織を有し、平均結晶粒径が0.05〜0.5μmのl−TiCN層と、
(b)前記密着層(微粒l−TiC層)と同種の層で形成され、平均結晶粒径が0.05〜0.5μmの縦長成長結晶組織を有するl−TiCN層に挟まれた状態で存在する一層又は複数層からなる粗大化防止層と、
(c)粒状結晶組織のTiN、TiC、TiCN、TiCO、TiCNO、縦長成長結晶組織のl−TiCN層のうちの1種または2種以上からなるTi化合物層、
から形成される。
中間層の合計平均層厚が9μm未満では、十分な耐摩耗性を長期の使用に亘って発揮できないばかりか、厚膜化による長寿命化の効果を発揮することができず、一方、その平均層厚が15μmを越えると、耐チッピング性、耐欠損性に低下傾向がみられるようになることから、中間層の合計平均層厚は9〜15μmと定めた。
Middle layer:
The middle layer
(A) an l-TiCN layer formed adjacent to the adhesive layer, having a vertically grown crystal structure, and having an average crystal grain size of 0.05 to 0.5 μm;
(B) formed in the same kind of layer as the adhesion layer (fine-grained l-TiC layer) and sandwiched between l-TiCN layers having a vertically grown crystal structure having an average crystal grain size of 0.05 to 0.5 μm A coarsening-preventing layer comprising one or more layers,
(C) Ti compound layer composed of one or more of TiN, TiC, TiCN, TiCO, TiCNO having a granular crystal structure, and 1-TiCN layer having a vertically long crystal structure,
Formed from.
When the total average layer thickness of the intermediate layer is less than 9 μm, not only the sufficient wear resistance cannot be exhibited over a long period of use, but also the effect of extending the life due to the thick film cannot be exhibited. When the layer thickness exceeds 15 μm, the chipping resistance and chipping resistance tend to decrease, so the total average layer thickness of the intermediate layer was determined to be 9 to 15 μm.

(a)l−TiCN層
上記中間層の構成層の一つであるl−TiCN層は、微粒l−TiC層からなる密着層の直上に、また、粗大化防止層を挟んだ状態で蒸着形成されるため、平均結晶粒径0.05〜0.5μmの微粒組織を有し、かつ、縦長成長結晶組織を有する微粒l−TiCN層として形成され、その結果、中間層の硬さ、靭性が一段と向上するばかりか層間密着性にもすぐれるため、チッピング、欠損、剥離等の異常損傷を発生することなく、長期に亘っての耐摩耗性向上が図られる。
(A) l-TiCN layer The l-TiCN layer, which is one of the constituent layers of the intermediate layer, is formed by vapor deposition with the coarsening prevention layer sandwiched immediately above the adhesion layer composed of the fine l-TiC layer. Therefore, it is formed as a fine-grained l-TiCN layer having a fine grain structure with an average crystal grain size of 0.05 to 0.5 μm and having a vertically long crystal grain structure. As a result, the hardness and toughness of the intermediate layer are reduced. In addition to further improving the interlayer adhesion, it is possible to improve the wear resistance over a long period of time without causing abnormal damage such as chipping, chipping and peeling.

(b)粗大化防止層
この発明では、中間層の層厚が9〜15μmになるまで厚膜化することによって、被覆工具の長寿命化を図っているが、厚膜化を行った場合に結晶粒の粗大化が生じるので、これを防止するために、中間層に一層又は複数層の粗大化防止層を介在形成する。
粗大化防止層は、前記密着層を構成する微粒l−TiC層と同種の層、即ち、平均結晶粒径0.01〜0.3μmの微粒組織を有しかつ縦長成長結晶組織を有する平均層厚0.2〜1μmの微粒l−TiC層、で構成する。
そして、粗大化防止層は、微粒l−TiCN層に挟まれた状態で形成されていること(即ち、少なくとも一層の粗大化防止層を挟んだ状態で微粒l−TiCN層が形成されていること)によって、中間層が厚膜として形成された場合にも、中間層の結晶粒の粗大化を防止し、その結果、中間層は微粒組織が維持され、強度、靭性の低下は生じない。
また、粗大化防止層は、その平均層厚が0.2μm未満では、密着性層の場合と同様、隣接して存在する微粒l−TiCN層との密着強度向上を期待できず、一方、その平均層厚が1μmを超えると、隣接して存在するl−TiCN層が粗粒化し、耐摩耗性が低下する傾向がみられることから、微粒l−TiC層からなる粗大化防止層の平均層厚は0.2〜1μmと定めた。
また、粗大化防止層を介在形成したことによって、中間層を厚膜化した場合でも中間層に微粒組織が維持されることから、中間層の上に形成される上部層(Al23 層)も微粒組織となり、その結果、上部層(Al23 層)についても強度の低下を招くことなく厚膜化が可能であり、硬質被覆層全体としての厚膜化、即ち、工具の長寿命化、が可能となる。
粗大化防止層の形成は、微粒l−TiCN層表面上に、
反応ガス組成:容量%で、TiCl4 :1〜3%、CH4 :0.5〜1.5%、H2 :残り、
反応雰囲気温度:900〜950℃、
反応雰囲気圧力:200〜300Torr(26〜40kPa)、
の条件で蒸着することにより、平均結晶粒径0.01〜0.3μmの微粒組織を有しかつ縦長成長結晶組織を有する微粒l−TiC層からなる粗大化防止層を(一層又は複数層)形成することができる。
なお、微粒l−TiCN層表面に、密着性層形成の場合と同様、噴射研磨材として、水との合量に占める割合で25〜35質量%のAl23微粒を配合した研磨液を、0.1〜0.15MPaの噴射圧力で噴射してウエットブラストを施すことにより微粒l−TiCN層表面を平滑化し、ついで、
反応ガス組成:容量%で、TiCl4 :1〜3%、CH4 :0.5〜1.5%、H2 :残り、
反応雰囲気温度:900〜950℃、
反応雰囲気圧力:200〜300Torr(26〜40kPa)、
の条件で蒸着することによっても、平均結晶粒径0.01〜0.3μmの微粒組織を有しかつ縦長成長結晶組織を有する微粒l−TiC層からなる粗大化防止層を(一層又は複数層)形成することができる。
(B) Roughening prevention layer In this invention, the life of the coated tool is increased by increasing the film thickness until the layer thickness of the intermediate layer becomes 9 to 15 μm. Since coarsening of crystal grains occurs, in order to prevent this, one or a plurality of coarsening prevention layers are formed in the intermediate layer.
The coarsening prevention layer is a layer of the same type as the fine l-TiC layer constituting the adhesion layer, that is, an average layer having a fine grain structure having an average crystal grain size of 0.01 to 0.3 μm and having a vertically long crystal structure. It is composed of a fine l-TiC layer having a thickness of 0.2 to 1 μm.
The coarsening prevention layer is formed in a state sandwiched between the fine l-TiCN layers (that is, the fine l-TiCN layer is formed in a state in which at least one coarsening prevention layer is sandwiched). ), Even when the intermediate layer is formed as a thick film, coarsening of the crystal grains of the intermediate layer is prevented. As a result, the intermediate layer maintains a fine grain structure, and strength and toughness do not decrease.
Further, when the average layer thickness is less than 0.2 μm, the coarsening prevention layer cannot be expected to improve the adhesion strength with the adjacent fine l-TiCN layer, as in the case of the adhesion layer, If the average layer thickness exceeds 1 μm, the adjacent l-TiCN layer tends to become coarse and wear resistance tends to decrease, so the average layer of the coarsening prevention layer comprising a fine l-TiC layer The thickness was determined to be 0.2-1 μm.
Further, since the coarsening prevention layer is interposed, a fine grain structure is maintained in the intermediate layer even when the intermediate layer is thickened. Therefore, the upper layer (Al 2 O 3 layer formed on the intermediate layer) ) Also becomes a fine-grained structure, and as a result, the upper layer (Al 2 O 3 layer) can be thickened without causing a decrease in strength. Life expectancy is possible.
The formation of the coarsening prevention layer is performed on the surface of the fine l-TiCN layer.
Reaction gas composition: by volume%, TiCl 4: 1~3%, CH 4: 0.5~1.5%, H 2: remainder,
Reaction atmosphere temperature: 900-950 ° C.
Reaction atmosphere pressure: 200 to 300 Torr (26 to 40 kPa),
By depositing under the above conditions, a coarsening-preventing layer comprising a fine grained 1-TiC layer having a fine grain structure with an average crystal grain size of 0.01 to 0.3 μm and having a vertically elongated crystal structure (one layer or plural layers) Can be formed.
As in the case of the adhesive layer formation, a polishing liquid in which 25 to 35% by mass of Al 2 O 3 fine particles as a proportion of the total amount with water is blended on the surface of the fine l-TiCN layer is used. , Smooth the fine l-TiCN layer surface by spraying at a spray pressure of 0.1 to 0.15 MPa and applying wet blasting,
Reaction gas composition: by volume%, TiCl 4: 1~3%, CH 4: 0.5~1.5%, H 2: remainder,
Reaction atmosphere temperature: 900-950 ° C.
Reaction atmosphere pressure: 200 to 300 Torr (26 to 40 kPa),
The coarsening-preventing layer comprising a fine grained l-TiC layer having a fine grain structure with an average crystal grain size of 0.01 to 0.3 μm and a vertically long crystal structure (single layer or plural layers) ) Can be formed.

上部層:
Al23 層からなる上部層には、硬質被覆層の耐摩耗性を維持する作用があるが、その平均層厚が0.5μm未満では、長期の使用に亘っての耐摩耗性を確保することができず、一方、その平均層厚が15μmを越えると切刃にチッピング、欠損等の異常損傷が発生し易くなることから、その平均層厚を0.5〜15μmと定めた。
Upper layer:
The upper layer composed of the Al 2 O 3 layer has the effect of maintaining the wear resistance of the hard coating layer, but if the average layer thickness is less than 0.5 μm, the wear resistance is ensured over a long period of use. On the other hand, if the average layer thickness exceeds 15 μm, abnormal damage such as chipping and chipping is likely to occur on the cutting edge. Therefore, the average layer thickness is set to 0.5 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じ上部層表面に蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよい。これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   A TiN layer having a golden color tone may be vapor-deposited on the surface of the upper layer as necessary for the purpose of identifying the cutting tool before and after use, but the average layer thickness in this case is 0.1 to 1 μm. It's okay. This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

硬質被覆層の全体平均層厚を15〜30μmとしたのは、その平均層厚が15μm未満では、長期の使用に亘って所望の耐摩耗性を確保することができないばかりか、厚膜化による工具の長寿命化を期待することはできず、一方、その平均層厚が30μmを越えると、切刃に欠けやチッピングが発生し易くなるという理由から、硬質被覆層の全体平均層厚を15〜30μmと定めた。   The reason why the total average layer thickness of the hard coating layer is set to 15 to 30 μm is that when the average layer thickness is less than 15 μm, the desired wear resistance cannot be ensured over a long period of use, and the film thickness is increased. Long tool life cannot be expected. On the other hand, if the average layer thickness exceeds 30 μm, chipping and chipping are likely to occur in the cutting edge. It was defined as ˜30 μm.

この発明の被覆工具は、工具基体表面に、窒化チタン層及び縦長成長結晶組織を有する炭化チタン層(下部層)、少なくとも縦長成長結晶組織を有する炭窒化チタン層を含むTi化合物層(中間層)、酸化アルミニウム層(上部層)を化学蒸着で形成した硬質被覆層を備えた被覆工具において、上記下部層と上記中間層との間に、平均結晶粒径0.01〜0.3μmの微粒縦長成長結晶組織を有する炭化チタン層からなる密着性層を介在形成すると、密着性層の上に隣接して形成された縦長成長結晶組織を有する炭窒化チタン層は、平均結晶粒径0.05〜0.5μmの微粒組織として形成され、その結果、中間層は全体として微粒結晶組織として形成され、また、中間層と密着性層との密着強度も向上し、さらに、中間層の構成層である縦長成長結晶組織を有する微粒炭窒化チタン層を、一層又は複数層の粗大化防止層を挟んで形成し結晶粒の粗大化を抑制したことによって、硬質被覆層の厚膜化が可能となるため、高熱発生を伴い切刃に高負荷が作用する鋼や鋳鉄の高速高送り切削に用いた場合、チッピング、欠損、剥離等の異常損傷を生じることなく、長期の使用にわたって、すぐれた耐摩耗性を発揮し、被覆工具の長寿命化が達成されるものである。   In the coated tool of the present invention, a titanium compound layer (intermediate layer) including a titanium nitride layer and a titanium carbide layer having a vertically grown crystal structure (lower layer) and at least a titanium carbonitride layer having a vertically grown crystal structure on the tool base surface. In a coated tool provided with a hard coating layer in which an aluminum oxide layer (upper layer) is formed by chemical vapor deposition, a fine vertical grain having an average crystal grain size of 0.01 to 0.3 μm is provided between the lower layer and the intermediate layer. When an adhesive layer composed of a titanium carbide layer having a grown crystal structure is formed, the titanium carbonitride layer having a vertically grown crystal structure formed adjacently on the adhesive layer has an average crystal grain size of 0.05 to As a result, the intermediate layer is formed as a fine crystal structure as a whole, the adhesion strength between the intermediate layer and the adhesive layer is improved, and further, it is a constituent layer of the intermediate layer Portrait By forming a fine titanium carbonitride layer having a growth crystal structure, sandwiching one or more coarsening prevention layers and suppressing coarsening of crystal grains, it is possible to increase the thickness of the hard coating layer, When used for high-speed, high-feed cutting of steel or cast iron that generates a high load on the cutting edge with high heat generation, it has excellent wear resistance over a long period of use without causing abnormal damage such as chipping, chipping or peeling. This is achieved and the life of the coated tool is extended.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of WC-based cemented carbide having an insert shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having an insert shape of standard / CNMG120408 were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、
(a)硬質被覆層の下部層として、表3に示される条件かつ表5に示される目標層厚でTiN層及びl−TiC層を蒸着形成し、
(b)次いで、上記TiN層及びl−TiC層からなる下部層表面に、噴射研磨材として、水との合量に占める割合で25〜35質量%のAl23微粒を配合した研磨液を、0.1〜0.15MPaの噴射圧力という範囲内の条件で、ウエットブラストを施し、下部層表面を平滑化し、
(c)次いで、表4に示される条件かつ表5に示される目標層厚で微粒l−TiC層からなる密着性層を蒸着形成し、
(d)次いで、表3に示される条件かつ表6に示される組み合わせ、目標層厚でl−TiCN層を蒸着形成し、
(e)次いで、上記(d)で形成したl−TiCN層表面に、噴射研磨材として、水との合量に占める割合で25〜35質量%のAl23微粒を配合した研磨液を、0.1〜0.15MPaの噴射圧力という範囲内の条件で、ウエットブラストを施し、l−TiCN層表面を平滑化し、
(f)次いで、表4に示される条件かつ表6に示される目標層厚で粗大化防止層を蒸着形成し、
(g)次いで、表3に示される条件かつ表6に示される組み合わせ、目標層厚でl−TiCN層を蒸着形成し、
(h)次いで、表3に示される条件かつ表6に示される組み合わせ、目標層厚でTi化合物層を蒸着して中間層を形成し、
(i)次いで、表3に示される条件かつ表6に示される組み合わせ、目標層厚で上部層を蒸着形成することにより、本発明被覆工具1〜13を製造した。
なお、上記(e)のl−TiCN層表面平滑化工程は省略することができ、また、上記(f),(g)の粗大化防止層とl−TiCN層の交互積層工程は、目標とする粗大化防止層の形成層数、あるいは、目標とする中間層の層厚に応じて、適宜繰り返し行うことができる。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of these tool bases A to F and tool bases a to f,
(A) As a lower layer of the hard coating layer, a TiN layer and a 1-TiC layer are formed by vapor deposition under the conditions shown in Table 3 and the target layer thickness shown in Table 5.
(B) Then, the lower layer surface consisting of the TiN layer and l-TiC layer, injection as an abrasive, a polishing liquid containing a combination of Al 2 O 3 fine 25-35 wt% as a percentage of the total amount of water Is subjected to wet blasting under the condition of a spray pressure of 0.1 to 0.15 MPa, and the surface of the lower layer is smoothed.
(C) Next, an adhesion layer composed of a fine l-TiC layer was formed by vapor deposition under the conditions shown in Table 4 and the target layer thickness shown in Table 5.
(D) Next, the l-TiCN layer was formed by vapor deposition under the conditions shown in Table 3 and the combinations shown in Table 6 and the target layer thickness.
(E) Next, a polishing liquid in which 25 to 35% by mass of Al 2 O 3 fine particles as a spray abrasive is mixed with the surface of the l-TiCN layer formed in (d) above as a proportion of the total amount with water. , Applying wet blasting under the condition of the injection pressure of 0.1 to 0.15 MPa, smoothing the l-TiCN layer surface,
(F) Next, a coarsening prevention layer is formed by vapor deposition under the conditions shown in Table 4 and the target layer thickness shown in Table 6.
(G) Next, an l-TiCN layer was formed by vapor deposition under the conditions shown in Table 3 and the combinations shown in Table 6 and the target layer thickness.
(H) Next, a Ti compound layer is vapor-deposited with the conditions shown in Table 3 and the combinations shown in Table 6 and the target layer thickness to form an intermediate layer,
(I) Next, the coated tools 1 to 13 of the present invention were manufactured by vapor-depositing the upper layer under the conditions shown in Table 3 and the combinations shown in Table 6 and the target layer thickness.
The (e) l-TiCN layer surface smoothing step can be omitted, and the (f) and (g) coarsening-preventing layers and the l-TiCN layer alternately laminating step are targeted. Depending on the number of formation layers of the coarsening prevention layer to be formed or the target layer thickness of the intermediate layer, it can be repeated as appropriate.

また、比較の目的で、工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層、中間層及び上部層として、それぞれ、表3に示される条件かつ表5に示される組み合わせ、目標層厚でTiN層およびl−TiC層からなる下部層を蒸着形成し、次いで、表3に示される条件かつ表7に示される組み合わせ、目標層厚でTi化合物層からなる中間層及びAl23層からなる上部層を蒸着形成することにより、比較被覆工具1〜13を製造した。
(比較被覆工具1〜13は、本発明被覆工具1〜13と異なり、密着性層及び粗大化防止層の形成を行っていない。)
Further, for comparison purposes, normal chemical vapor deposition apparatuses are used on the surfaces of the tool bases A to F and the tool bases a to f, and the lower layer, the intermediate layer, and the upper layer of the hard coating layer are shown in Table 3, respectively. The lower layer composed of the TiN layer and the 1-TiC layer is formed by vapor deposition under the conditions shown in Table 5 and the target layer thickness, and then the conditions shown in Table 3 and the combinations shown in Table 7 with the target layer thickness. Comparative coated tools 1 to 13 were manufactured by vapor-depositing an intermediate layer composed of a Ti compound layer and an upper layer composed of an Al 2 O 3 layer.
(Compared coated tools 1 to 13 are different from the coated tools 1 to 13 of the present invention in that the adhesion layer and the coarsening prevention layer are not formed.)

上記本発明被覆工具1〜13及び比較被覆工具1〜13の各構成層の層厚を、走査型電子顕微鏡を用いて測定したところ、いずれも表5〜7に示される目標層厚と実質的に同じ平均層厚を示した。
また、本発明被覆工具1〜13のl−TiC層(下部層)、微粒l−TiC層(密着性層)、l−TiCN層(中間層)、微粒l−TiC層(粗大化防止層)及び比較被覆工具1〜13のl−TiC層(下部層)、l−TiCN層(中間層)について、透過型電子顕微鏡(TEM)を用いて、工具基体表面に平行な面内での結晶粒の平均結晶粒径を測定した。その値を表5〜7に示す。
なお、この発明における平均結晶粒径の測定は、各層の層厚方向の中央部分に工具基体表面と平行な線を引き、該平行な線の長さを、その線と交差した結晶粒界の交点数で割った値を結晶粒径の値とし、さらに、少なくとも5箇所の位置で結晶粒径の値を求め、それらの平均値を算出して平均結晶粒径の値とした。
When the layer thicknesses of the constituent layers of the present invention coated tools 1 to 13 and comparative coated tools 1 to 13 were measured using a scanning electron microscope, all of them substantially correspond to the target layer thicknesses shown in Tables 5 to 7. The same average layer thickness was shown.
In addition, the l-TiC layer (lower layer), fine l-TiC layer (adhesive layer), l-TiCN layer (intermediate layer), fine l-TiC layer (coarse-prevention layer) of the coated tools 1 to 13 of the present invention. In addition, with respect to the l-TiC layer (lower layer) and the l-TiCN layer (intermediate layer) of the comparative coated tools 1 to 13, crystal grains in a plane parallel to the surface of the tool substrate using a transmission electron microscope (TEM) The average crystal grain size of was measured. The values are shown in Tables 5-7.
The average grain size in this invention is measured by drawing a line parallel to the surface of the tool base at the center in the layer thickness direction of each layer, and calculating the length of the parallel line from the grain boundary intersecting the line. The value obtained by dividing the number of intersection points was used as the crystal grain size value. Further, the crystal grain size values were determined at at least five positions, and the average value was calculated to obtain the average crystal grain size value.

つぎに、上記本発明被覆工具1〜13及び比較被覆工具1〜13について、以下の切削条件A〜Cで切削加工試験を実施した。
《切削条件A》
被削材:JIS・SNCM439の丸棒、
切削速度: 400 m/min.、
切り込み: 1.5 mm、
送り: 0.45 mm/rev.、
切削時間: 5 分、
の条件での合金鋼乾式高速連続切削試験(通常の切削速度および送りは、それぞれ、250m/min.,0.25 mm/rev.)、
《切削条件B》
被削材:JIS・S45Cの丸棒、
切削速度: 550 m/min.、
切り込み: 2.0 mm、
送り: 0.45 mm/rev.、
切削時間: 5 分、
の条件での炭素鋼の湿式高速連続切削試験(通常の切削速度および送りは、それぞれ、350m/min.,0.3mm/rev.)、
《切削条件C》
被削材:JIS・FCD450の丸棒、
切削速度: 500 m/min.、
切り込み: 2.0 mm、
送り: 0.45 mm/rev.、
切削時間: 5 分、
の条件でのダクタイル鋳鉄湿式高速連続切削試験(通常の切削速度および送りは、それぞれ、300m/min.,0.3mm/rev.)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, a cutting test was carried out on the above-described inventive coated tools 1 to 13 and comparative coated tools 1 to 13 under the following cutting conditions A to C.
<Cutting condition A>
Work material: JIS / SNCM439 round bar,
Cutting speed: 400 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.45 mm / rev. ,
Cutting time: 5 minutes,
Alloy steel dry high-speed continuous cutting test under the following conditions (normal cutting speed and feed are 250 m / min. And 0.25 mm / rev., Respectively),
<Cutting condition B>
Work material: JIS / S45C round bar,
Cutting speed: 550 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.45 mm / rev. ,
Cutting time: 5 minutes,
Wet high-speed continuous cutting test of carbon steel under the following conditions (normal cutting speed and feed are 350 m / min. And 0.3 mm / rev., Respectively)
<< Cutting conditions C >>
Work material: JIS / FCD450 round bar,
Cutting speed: 500 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.45 mm / rev. ,
Cutting time: 5 minutes,
Ductile iron wet high-speed continuous cutting test under the following conditions (normal cutting speed and feed are 300 m / min. And 0.3 mm / rev., Respectively),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 8.

Figure 2010207930
Figure 2010207930

Figure 2010207930
Figure 2010207930

Figure 2010207930
Figure 2010207930

Figure 2010207930
Figure 2010207930

Figure 2010207930
Figure 2010207930

Figure 2010207930
Figure 2010207930

Figure 2010207930
Figure 2010207930

Figure 2010207930
Figure 2010207930

表5〜8に示される結果から、硬質被覆層として、TiN層及びl−TiC層からなる下部層表面にウエットブラストを施し、下部層表面を平滑化した後、微粒l−TiC層(密着性層)を形成し、その上に、密着性層に隣接して形成された縦長成長結晶組織を有する微粒l−TiCN層及び該微粒l−TiCN層に挟まれた状態で存在する少なくとも一層の微粒l−TiC層(粗大化防止層)を含む中間層を形成し、さらに、中間層の上に上部層を形成した本発明被覆工具は、密着性層と中間層との密着強度が向上するとともに、粗大化防止層によって、結晶粒の微粒化が図られ、これによって硬質被覆層の厚膜化が可能となることにより、より一段と高温硬さ、高温強度が向上するために、高熱発生を伴い切刃に対して高負荷が作用する鋼や鋳鉄の高速高送り切削加工において、チッピング、欠損、剥離等の異常損傷を生じることなく、すぐれた耐摩耗性を発揮し、また、工具寿命の延命化が図られ、長期の使用に亘ってすぐれた切削特性を発揮するのに対して、中間層が粗粒である比較被覆工具においては、チッピング等の異常損傷発生によって工具寿命が短く、また、耐摩耗性にも劣るものであった。   From the results shown in Tables 5 to 8, as the hard coating layer, the lower layer surface composed of the TiN layer and the l-TiC layer was wet blasted to smooth the lower layer surface, and then the fine l-TiC layer (adhesiveness) A fine grained l-TiCN layer having a vertically grown crystal structure formed adjacent to the adhesive layer and at least one fine grain sandwiched between the fine grained l-TiCN layers. In the coated tool of the present invention in which an intermediate layer including an l-TiC layer (anti-coarse layer) is formed and an upper layer is formed on the intermediate layer, the adhesive strength between the adhesive layer and the intermediate layer is improved. The coarsening-preventing layer enables the crystal grains to be atomized, thereby enabling the hard coating layer to be thicker, which further increases the high-temperature hardness and high-temperature strength. High load is applied to the cutting edge In high-speed high-feed cutting of cast iron and cast iron, it exhibits excellent wear resistance without causing abnormal damage such as chipping, chipping, and peeling, and the tool life is extended, extending over a long period of use. In contrast to the excellent cutting characteristics, the comparative coated tool having a coarse intermediate layer has a short tool life due to the occurrence of abnormal damage such as chipping, and is inferior in wear resistance.

上述のように、この発明の被覆工具は、例えば鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高熱発生を伴い切刃に対して高負荷が作用する高速高送り切削加工において、すぐれた耐チッピング性、耐摩耗性等を発揮し、使用寿命の延命化を可能とするものであるから、切削加工の省力化および省エネ化に十分満足に対応できるものである。   As described above, the coated tool according to the present invention is not only continuous cutting and interrupted cutting under normal conditions such as steel and cast iron, but particularly high speed and high load with high heat acting on the cutting blade. In feed cutting, it has excellent chipping resistance, wear resistance, etc., and it can extend the service life, so it can fully satisfy the labor saving and energy saving of cutting work. .

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a) 下部層として、0.2〜1μmの平均層厚を有する窒化チタン層及び1〜3μmの平均層厚および縦長成長結晶組織を有する炭化チタン層、
(b)密着性層として、0.2〜1μmの平均層厚および微粒縦長成長結晶組織を有する炭化チタン層、
(c)中間層として、上記密着性層に隣接して形成された縦長成長結晶組織を有する平均結晶粒径が0.05〜0.5μmの炭窒化チタン層を含み、さらに、炭窒化チタン層に挟まれた状態で存在し、かつ、0.2〜1μmの平均層厚および微粒縦長成長結晶組織を有する少なくとも一層の炭化チタン層を含む、9〜15μmの平均層厚を有するTi化合物層、
(d)上部層として、0.5〜15μmの平均層厚を有する酸化アルミニウム層、
上記(a)〜(d)で構成された硬質被覆層が15〜30μmの全体平均層厚で形成されてなることを特徴とする表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, a titanium nitride layer having an average layer thickness of 0.2 to 1 μm and a titanium carbide layer having an average layer thickness of 1 to 3 μm and a vertically elongated crystal structure,
(B) as an adhesive layer, a titanium carbide layer having an average layer thickness of 0.2 to 1 μm and a fine grain vertically grown crystal structure,
(C) As an intermediate layer, a titanium carbonitride layer having an average crystal grain size of 0.05 to 0.5 μm and having a vertically grown crystal structure formed adjacent to the adhesive layer is further included. A Ti compound layer having an average layer thickness of 9 to 15 μm, including at least one titanium carbide layer having an average layer thickness of 0.2 to 1 μm and a fine grain vertically grown crystal structure,
(D) As an upper layer, an aluminum oxide layer having an average layer thickness of 0.5 to 15 μm,
A surface-coated cutting tool, wherein the hard coating layer constituted by the above (a) to (d) is formed with an overall average layer thickness of 15 to 30 μm.
請求項1に記載の表面被覆切削工具において、
上記(c)の中間層は、縦長成長結晶組織を有する平均結晶粒径が0.05〜0.5μmの炭窒化チタン層に挟まれた状態で存在し、かつ、0.2〜1μmの平均層厚および微粒縦長成長結晶組織を有する炭化チタン層を、複数層含むことを特徴とする請求項1に記載の表面被覆切削工具。
The surface-coated cutting tool according to claim 1,
The intermediate layer (c) is present in a state sandwiched between titanium carbonitride layers having an average crystal grain size of 0.05 to 0.5 μm having a vertically grown crystal structure, and an average of 0.2 to 1 μm. 2. The surface-coated cutting tool according to claim 1, comprising a plurality of titanium carbide layers having a layer thickness and a fine grain vertically grown crystal structure.
JP2009054406A 2009-03-09 2009-03-09 Surface coated cutting tool Withdrawn JP2010207930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009054406A JP2010207930A (en) 2009-03-09 2009-03-09 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009054406A JP2010207930A (en) 2009-03-09 2009-03-09 Surface coated cutting tool

Publications (1)

Publication Number Publication Date
JP2010207930A true JP2010207930A (en) 2010-09-24

Family

ID=42968683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009054406A Withdrawn JP2010207930A (en) 2009-03-09 2009-03-09 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP2010207930A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103182537A (en) * 2011-12-28 2013-07-03 三菱综合材料株式会社 Surface-coated cutting tool with a hard coating layer exhibiting excellent cutter breakage resistance
CN112512453A (en) * 2018-08-03 2021-03-16 日本帕卡濑精株式会社 Surgical electrode having surface treatment coating film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103182537A (en) * 2011-12-28 2013-07-03 三菱综合材料株式会社 Surface-coated cutting tool with a hard coating layer exhibiting excellent cutter breakage resistance
JP2013136114A (en) * 2011-12-28 2013-07-11 Mitsubishi Materials Corp Surface-coated cutting tool exhibiting excellent chipping resistance in hard coating layer
CN103182537B (en) * 2011-12-28 2016-06-08 三菱综合材料株式会社 Hard coating layer plays the excellent resistance to surface-coated cutting tool collapsing cutter
CN112512453A (en) * 2018-08-03 2021-03-16 日本帕卡濑精株式会社 Surgical electrode having surface treatment coating film

Similar Documents

Publication Publication Date Title
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6384341B2 (en) Surface coated cutting tool with excellent abnormal damage resistance and wear resistance
US10456844B2 (en) Surface-coated cutting tool
WO2014034730A1 (en) Surface-coated cutting tool
JP5402516B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP5246518B2 (en) Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2008296292A (en) Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2019084671A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2010207930A (en) Surface coated cutting tool
JP2009006427A (en) Surface coated cutting tool
JP2009056561A (en) Surface-coated cutting tool
JP5625867B2 (en) Surface coated cutting tool
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5110376B2 (en) Surface coated cutting tool
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5077758B2 (en) Surface coated cutting tool
JP5088481B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in heavy cutting
JP5170830B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed interrupted cutting
JP5077759B2 (en) Surface coated cutting tool
JP5187573B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP2009101463A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605