JP5569739B2 - Surface coated cutting tool with excellent chipping resistance - Google Patents

Surface coated cutting tool with excellent chipping resistance Download PDF

Info

Publication number
JP5569739B2
JP5569739B2 JP2010243770A JP2010243770A JP5569739B2 JP 5569739 B2 JP5569739 B2 JP 5569739B2 JP 2010243770 A JP2010243770 A JP 2010243770A JP 2010243770 A JP2010243770 A JP 2010243770A JP 5569739 B2 JP5569739 B2 JP 5569739B2
Authority
JP
Japan
Prior art keywords
layer
compound
upper layer
cutting
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010243770A
Other languages
Japanese (ja)
Other versions
JP2012096302A (en
JP2012096302A5 (en
Inventor
誠 五十嵐
興平 冨田
惠滋 中村
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010243770A priority Critical patent/JP5569739B2/en
Publication of JP2012096302A publication Critical patent/JP2012096302A/en
Publication of JP2012096302A5 publication Critical patent/JP2012096302A5/ja
Application granted granted Critical
Publication of JP5569739B2 publication Critical patent/JP5569739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、例えば、鋼や鋳鉄などの被削材を、高熱発生を伴う高速断続切削条件下で切削加工した場合でも、硬質被覆層がすぐれた層間密着強度を有するため、切刃にチッピング(微小欠け)の発生なく、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, for example, even when a work material such as steel or cast iron is machined under high-speed intermittent cutting conditions with high heat generation, the hard coating layer has excellent interlayer adhesion strength, so that the chipping ( The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over a long period of time without occurrence of microchips.

従来、炭化タングステン基超硬合金製基体(以下、超硬基体という)あるいはTiCN基サーメット基体(以下、サーメット基体という。また、超硬基体とサーメット基体とを総称して、工具基体という)の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有し、化学蒸着形成された状態でα型の結晶構造を有する酸化アルミニウム(以下、Alで示す)層、
上記(a)、(b)からなる硬質被覆層を蒸着形成した被覆工具が広く知られており(例えば、特許文献1)、この被覆工具は、鋼や鋳鉄などの切削加工において、すぐれた耐摩耗性を発揮することが知られている。
また、被覆工具の耐欠損性、耐衝撃性、耐摩耗性等を向上させるため、硬質被覆層の下部層を構成するTiCN層の粒子幅を0.01〜0.5μmとした被覆工具も知られている(例えば、特許文献2)。
Conventionally, the surface of a tungsten carbide-based cemented carbide substrate (hereinafter referred to as a cemented carbide substrate) or a TiCN-based cermet substrate (hereinafter referred to as a cermet substrate. The cemented carbide substrate and the cermet substrate are collectively referred to as a tool substrate). In addition,
(A) a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer having a total average layer thickness of 3 to 20 μm,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state where the upper layer is formed by chemical vapor deposition;
A coated tool in which a hard coating layer composed of the above (a) and (b) is formed by vapor deposition is widely known (for example, Patent Document 1), and this coated tool has excellent resistance to cutting in steel or cast iron. It is known to exhibit wear.
Also known is a coated tool in which the particle width of the TiCN layer constituting the lower layer of the hard coating layer is 0.01 to 0.5 μm in order to improve the fracture resistance, impact resistance, wear resistance, etc. of the coated tool. (For example, Patent Document 2).

特公昭50−14237号公報Japanese Patent Publication No. 50-14237 特開2007−260851号公報JP 2007-260851 A

近年の切削加工の省力化および省エネ化に対する要求は強く、これに伴い、切削加工はますます高速化、高効率化の傾向にあり、その反面、工具寿命の延命化を図るという点から硬質被覆層の厚膜化も求められているが、下部層としてTi化合物層、上部層としてAl層からなる硬質被覆層を形成した従来被覆工具を用いて鋼や鋳鉄の高速断続切削加工を行うと、硬質被覆層に微小チッピング、層間剥離等を生じ、これを原因として、比較的短時間で使用寿命に至るのが現状である。 In recent years, there has been a strong demand for labor saving and energy saving of cutting work, and along with this, cutting work is becoming increasingly faster and more efficient. On the other hand, hard coating is required in order to extend the tool life. Although a thicker layer is also required, high-speed intermittent cutting of steel or cast iron is performed using a conventional coated tool in which a hard coating layer consisting of a Ti compound layer as a lower layer and an Al 2 O 3 layer as an upper layer is formed. If it does, micro chipping, delamination, etc. will occur in the hard coating layer, and the present situation is that the service life is reached in a relatively short time due to this.

そこで、本発明者らは、被覆工具の耐チッピング性、耐剥離性を改善すべく、硬質被覆層の層構造について鋭意研究を行った結果、次のような知見を得た。   Therefore, as a result of intensive studies on the layer structure of the hard coating layer in order to improve the chipping resistance and peel resistance of the coated tool, the present inventors have obtained the following knowledge.

被覆工具の硬質被覆層のうち、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上から形成されるTi化合物層からなる下部層は、それ自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与し、また、Al層からなる上部層は、耐酸化性と熱的安定性にすぐれ、さらに高硬度を有するが、高熱発生を伴い、切刃に高負荷が作用する高速断続切削では、下部層−上部層間の密着強度が十分でないため、これが微小チッピング、層間剥離発生の要因となる。
そこで、下部層−上部層の界面密着強度を高めるため、両層の密着界面領域の改質について、数多くの実験を重ねた結果、下部層と上部層とが隣接する界面の結晶粒構造を改善することにより、下部層と上部層の界面密着強度が高められることを見出したのである。
具体的には、Al層直下のTi化合物層の結晶粒の平均粒子径を0.5μm以下にすると共に、下部層と上部層とが隣接する界面に存在する下部層側の結晶粒(Ti化合物)の数aと上部層側の結晶粒(Al)の数bとの比率b/aが、4≦b/a≦20を満足するように下部層および上部層を蒸着形成すると、下部層と上部層との界面に発生する歪みが緩和されることにより、下部層−上部層界面の層間密着性が高められる。
そして、その結果として、高熱発生を伴い、切刃に高負荷が作用する高速断続切削加工においても、チッピング、剥離の発生なく、長期の使用に亘って優れた耐摩耗性を発揮することができることを見出したのである。
Of the hard coating layer of the coated tool, the lower layer made of a Ti compound layer formed of one or more of the TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer is itself provided. Excellent high-temperature strength contributes to improving the high-temperature strength of the hard coating layer, and the upper layer composed of the Al 2 O 3 layer has excellent oxidation resistance and thermal stability and has high hardness, but generates high heat. Accordingly, in high-speed intermittent cutting in which a high load acts on the cutting edge, the adhesion strength between the lower layer and the upper layer is not sufficient, which causes micro chipping and delamination.
Therefore, in order to increase the adhesion strength between the lower layer and the upper layer, many experiments were conducted to improve the adhesion interface region of both layers. As a result, the crystal grain structure at the interface between the lower layer and the upper layer was improved. By doing so, it has been found that the interface adhesion strength between the lower layer and the upper layer can be increased.
Specifically, the average particle diameter of the crystal grains of the Ti compound layer immediately below the Al 2 O 3 layer is 0.5 μm or less, and the crystal grains on the lower layer side existing at the interface where the lower layer and the upper layer are adjacent to each other The lower layer and the upper layer are deposited so that the ratio b / a of the number a of (Ti compound) and the number b of crystal grains (Al 2 O 3 ) on the upper layer side satisfies 4 ≦ b / a ≦ 20. When formed, the strain generated at the interface between the lower layer and the upper layer is alleviated, so that the interlayer adhesion at the lower layer-upper layer interface is enhanced.
As a result, even in high-speed intermittent cutting with high heat generation and high load acting on the cutting edge, it is possible to exhibit excellent wear resistance over a long period of use without occurrence of chipping and peeling. Was found.

本発明は、上記知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、3〜20μmの合計平均層厚を有する下部層と1〜15μmの平均層厚を有する上部層からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、また、上部層は、酸化アルミニウム層からなり、上記下部層と上記上部層とが隣接する界面に存在する上記Ti化合物層側の結晶粒の数aと上記酸化アルミニウム層側の結晶粒の数bとの比率b/aが4≦b/a≦20を満足し、さらに、上記酸化アルミニウム層直下のTi化合物層の結晶粒の平均粒子径が0.5μm以下であることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“A hard surface composed of a lower layer having a total average layer thickness of 3 to 20 μm and an upper layer having an average layer thickness of 1 to 15 μm on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet In the surface-coated cutting tool in which the coating layer is formed by vapor deposition,
The lower layer is composed of one or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, and the upper layer is oxidized A ratio b / a between the number a of crystal grains on the Ti compound layer side and the number b of crystal grains on the aluminum oxide layer side, which is made of an aluminum layer and exists at an interface where the lower layer and the upper layer are adjacent to each other, 4. A surface-coated cutting tool characterized by satisfying 4 ≦ b / a ≦ 20 and further having an average particle size of crystal grains of the Ti compound layer immediately below the aluminum oxide layer of 0.5 μm or less. "
It has the characteristics.

以下に、本発明の被覆工具の硬質被覆層について、詳細に説明する。
(a)下部層(Ti化合物層)
Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層のうちの1層または2層以上からなるTi化合物層は、硬質被覆層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方、その合計平均層厚が20μmを越えると、特に高熱発生を伴う高速断続切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
また、上部層(Al層)直下のTi化合物層の結晶粒の平均粒子径が0.5μmを超えると、上部層(Al層)と上部層Al層直下のTi化合物層と層間密着性が低下し、耐チッピング性が劣化するため、上部層(Al層)直下のTi化合物層の結晶粒の平均粒子径は0.5μm以下と定めた。
ここで、平均粒子径とは、透過型電子顕微鏡の断面観察により超硬基体表面と平行な方向に50μmに渡って線を引き、Al層直下のTi化合物層の結晶粒の結晶粒界との交点を数え、それら線分長さの平均から粒径を求めた。
Below, the hard coating layer of the coating tool of this invention is demonstrated in detail.
(A) Lower layer (Ti compound layer)
Ti composed of one or more of Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, carbonate (TiCO) layer and carbonitride oxide (TiCNO) layer The compound layer exists as a lower layer of the hard coating layer and contributes to the improvement of the high temperature strength of the hard coating layer by its excellent high temperature strength. However, when the total average layer thickness is less than 3 μm, the above-described effect is sufficiently obtained. On the other hand, if the total average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation especially in high-speed intermittent cutting with high heat generation, which causes uneven wear. The thickness was determined to be 3 to 20 μm.
Moreover, when the average particle diameter of the crystal grains of the Ti compound layer immediately below the upper layer (Al 2 O 3 layer) exceeds 0.5 μm, the upper layer (Al 2 O 3 layer) and the upper layer Al 2 O 3 layer immediately below Since the adhesion between the Ti compound layer and the chipping resistance deteriorates, the average particle size of the crystal grains of the Ti compound layer immediately below the upper layer (Al 2 O 3 layer) was determined to be 0.5 μm or less.
Here, the average particle diameter refers to a crystal grain of a crystal grain of the Ti compound layer immediately below the Al 2 O 3 layer by drawing a line over 50 μm in a direction parallel to the surface of the carbide substrate by cross-sectional observation with a transmission electron microscope. The number of intersections with the field was counted, and the particle size was determined from the average of the lengths of the line segments.

(b)上部層(Al層)
上部層を構成するAl層は、高温硬さおよび耐熱性にすぐれ、高熱発生を伴う高速断続切削加工において、基本的な役割として耐摩耗性を維持する。
Ti化合物層からなる下部層表面に、例えば、以下の手順でAl2蒸着前処理を行い、ついで、通常条件でAl2層を成膜することにより、本発明で規定する条件を満足するAl2層を形成することができる。
Al2蒸着前処理は以下の4段階からなり、
まず、
《第1段階》
反応ガス(容量%): AlCl 0.5〜2%, 残部Ar、
雰囲気圧力: 30〜100Torr、
処理温度: 750〜1000℃、
処理時間: 1〜3min.、
の条件で下部層の表面改質を行った後、
《第2段階》
雰囲気圧力: 30〜100Torr、
雰囲気温度: 750〜1000℃、
に維持した状態で、1〜3分間、Arガスで炉内ガスをパージし、
《第3段階》
反応ガス(容量%): CO 1〜10%, 残部Ar、
雰囲気圧力: 30〜100Torr、
処理温度: 750〜1000℃、
処理時間: 5〜20min.、
の条件(但し、時間の経過とともに、反応ガス中のCOの含有割合を徐々に減少させる)で酸化処理を行い、
《第4段階》
雰囲気圧力: 30〜100Torr、
雰囲気温度: 750〜1000℃、
に維持した状態で、1〜3分間、Arガスで炉内ガスをパージする。
(B) Upper layer (Al 2 O 3 layer)
The Al 2 O 3 layer constituting the upper layer is excellent in high-temperature hardness and heat resistance, and maintains wear resistance as a basic role in high-speed intermittent cutting with high heat generation.
For example, the Al 2 O 3 deposition pretreatment is performed on the surface of the lower layer made of the Ti compound layer by the following procedure, and then the Al 2 O 3 layer is formed under normal conditions, thereby satisfying the conditions defined in the present invention. A satisfactory Al 2 O 3 layer can be formed.
The Al 2 O 3 pre-deposition treatment consists of the following four stages:
First,
<< First stage >>
Reaction gas (volume%): AlCl 3 0.5-2%, balance Ar,
Atmospheric pressure: 30-100 Torr,
Processing temperature: 750 to 1000 ° C.
Processing time: 1-3 min. ,
After surface modification of the lower layer under the conditions of
<< Second stage >>
Atmospheric pressure: 30-100 Torr,
Atmospheric temperature: 750-1000 ° C.
In this state, the gas in the furnace is purged with Ar gas for 1 to 3 minutes.
《Third stage》
Reaction gas (volume%): CO 2 1-10%, balance Ar,
Atmospheric pressure: 30-100 Torr,
Processing temperature: 750 to 1000 ° C.
Processing time: 5-20 min. ,
The oxidation treatment is performed under the conditions (however, the content ratio of CO 2 in the reaction gas is gradually reduced as time passes)
<< Fourth Stage >>
Atmospheric pressure: 30-100 Torr,
Atmospheric temperature: 750-1000 ° C.
In this state, the furnace gas is purged with Ar gas for 1 to 3 minutes.

上記4段階のAl蒸着前処理を行った後、通常の成膜法でAl層を成膜することにより、本発明で規定する条件を満足するAl層、即ち、工具基体表面に垂直方向な断面における下部層(Ti化合物層)と上部層(Al層)とが隣接する界面に存在する下部層側のTi化合物結晶粒の数aと上部層側のAl結晶粒の数bとの比率b/aを求めた場合に、b/aが4以上で20以下となる界面形態を備えた上部層を蒸着形成することができる。
ここで、下部層(Ti化合物層)と上部層(Al層)とが隣接する界面に存在する下部層側のTi化合物結晶粒の数aと上部層側のAl結晶粒の数bの測定は、下部層−上部層との界面10箇所について、透過型電子顕微鏡を用い、50000倍の暗視野観察による断面測定を行い、超硬基体表面に平行な直線距離を測定幅25μmとし、その範囲に存在するAl粒子と界面を有しているTi化合物粒子の数およびTi化合物粒子と界面を有しているAl粒子の数のそれぞれをカウントすることにより、求めることができる。
上記a,bの比の値b/aについて、b/aが4未満である場合には、下部層−上部層界面におけるミスフィットを十分に緩和することができなくなり、一方、b/aが20を超えると、Al内の粒子間歪みが増大し、すぐれた層間密着性を発揮し得なくなるため、b/aは、4≦b/a≦20と定めた。
この様な界面形態を備えた上部層と下部層からなる本発明の硬質被覆層は、界面歪みが緩和されることによって、すぐれた層間密着性を有するようになり、高速断続切削加工における微小チッピングの発生、剥離の発生を抑制するようになる。
上部層の平均層厚が1μm未満では、長期の使用に亘って耐摩耗性を十分に発揮することができず、工具寿命の短命化を招き、一方、上部層の平均層厚が15μmを超えるようになると、切刃部にチッピング、欠損、剥離等が発生し易くなることから、上部層の平均層厚は、1〜15μmと定めた。
After Al 2 O 3 deposition pretreatment of the four steps, by depositing the Al 2 O 3 layer in a conventional film forming method, the Al 2 O 3 layer which satisfies the conditions defined by the present invention, i.e. The number a of Ti compound crystal grains on the lower layer side and the upper layer side existing at the interface between the lower layer (Ti compound layer) and the upper layer (Al 2 O 3 layer) in a cross section perpendicular to the tool base surface When the ratio b / a to the number b of Al 2 O 3 crystal grains is determined, an upper layer having an interface configuration in which b / a is 4 or more and 20 or less can be formed by vapor deposition.
Here, the number a of Ti compound crystal grains on the lower layer side existing at the interface between the lower layer (Ti compound layer) and the upper layer (Al 2 O 3 layer) and the Al 2 O 3 crystal grain on the upper layer side The measurement of the number b is performed by measuring a cross-section by dark field observation at 50000 times using a transmission electron microscope at 10 points of the interface between the lower layer and the upper layer, and measuring a linear distance parallel to the surface of the carbide substrate. By counting each of the number of Ti compound particles having an interface with Al 2 O 3 particles existing in the range of 25 μm and the number of Al 2 O 3 particles having an interface with Ti compound particles Can be sought.
When b / a is less than 4 for the ratio b / a of the above a and b, misfit at the lower layer-upper layer interface cannot be sufficiently relaxed, whereas b / a is If it exceeds 20, the strain between particles in Al 2 O 3 increases and it becomes impossible to exhibit excellent interlayer adhesion. Therefore, b / a is determined to be 4 ≦ b / a ≦ 20 .
The hard coating layer of the present invention consisting of an upper layer and a lower layer having such an interface form has excellent interlaminar adhesion due to the relaxation of the interface strain, and microchipping in high-speed intermittent cutting processing. Generation and exfoliation are suppressed.
If the average layer thickness of the upper layer is less than 1 μm, the wear resistance cannot be sufficiently exhibited over a long period of use, leading to a shortened tool life, while the average layer thickness of the upper layer exceeds 15 μm. As a result, chipping, chipping, peeling, and the like are likely to occur at the cutting edge, so the average layer thickness of the upper layer was determined to be 1 to 15 μm.

本発明の被覆工具は、硬質被覆層として、Ti化合物層からなる下部層とAl層からなる上部層を蒸着形成したものにおいて、下部層と上部層との隣接界面に存在する下部層側のTi化合物結晶粒の数aと上部層側のAl結晶粒の数bとの比率b/aが4≦b/a≦20を満足する界面構造を構成し、さらに、上部層(Al層)直下のTi化合物層の結晶粒の平均粒子径を0.5μm以下としていることから、特に、下部層と上部層間の層間密着性が高められ、その結果、例えば鋼や鋳鉄などの、高熱発生を伴い、切刃に高負荷が作用する高速断続切削加工に用いた場合でも、硬質被覆層がすぐれた層間密着強度を有するため、切刃に微小チッピング、剥離等の発生なく、長期の使用に亘ってすぐれた耐摩耗性を発揮することができる。 The coated tool of the present invention is a hard coating layer in which a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer are vapor-deposited, and the lower layer present at the adjacent interface between the lower layer and the upper layer An interface structure in which the ratio b / a of the number a of the Ti compound crystal grains on the side and the number b of the Al 2 O 3 crystal grains on the upper layer side satisfies 4 ≦ b / a ≦ 20 ; (Al 2 O 3 layer) Since the average particle diameter of the crystal grains of the Ti compound layer immediately below is 0.5 μm or less, interlaminar adhesion between the lower layer and the upper layer is particularly improved. As a result, for example, steel or Even when used for high-speed interrupted cutting with high heat, such as cast iron, where the load is applied to the cutting edge, the hard coating layer has excellent interlayer adhesion strength. Excellent wear resistance over long-term use It can be.

本発明被覆工具6の下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図とa,b,b/aの値を示す。The interface structure schematic diagram created from the transmission electron micrograph of the interface of the lower layer of this invention coated tool 6 and an upper layer, and the value of a, b, b / a are shown. 従来被覆工具8の下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図とa,b,b/aの値を示す。The interface structure schematic diagram produced from the transmission electron micrograph of the interface of the lower layer of the conventional coating tool 8 and an upper layer, and the value of a, b, b / a are shown.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、
ついで、表4に示される条件にて、下部層の表面にAl2蒸着前処理を施し、
ついで、表3に示される条件にて、表5に示される組み合わせおよび目標層厚で、Al23 層を上部層として蒸着形成する、
ことにより本発明被覆工具1〜13をそれぞれ製造した。
Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 6 under the conditions shown in Table 6 are the conditions for forming the TiCN layer having the vertically elongated crystal structure described, and other conditions for forming the normal granular crystal structure. And forming a Ti compound layer as a lower layer of the hard coating layer with a target layer thickness,
Next, under the conditions shown in Table 4, the surface of the lower layer was subjected to pretreatment for deposition of Al 2 O 3 ,
Next, under the conditions shown in Table 3, the Al 2 O 3 layer is deposited as an upper layer with the combinations and target layer thicknesses shown in Table 5,
By this, this invention coated tool 1-13 was manufactured, respectively.

また、比較の目的で、下部層の表面にAl2蒸着前処理を施さない以外は、本発明被覆工具1〜13と全く同様にして、下部層(Ti化合物層)および上部層(Al23 層)を蒸着形成することにより、表6に示される従来被覆工具1〜13をそれぞれ製造した。 For the purpose of comparison, the lower layer (Ti compound layer) and the upper layer (Al) are the same as the coated tools 1 to 13 of the present invention except that the surface of the lower layer is not pre-deposited with Al 2 O 3. by depositing form 2 O 3 layer) was prepared conventionally coated tool 1-13 as shown in Table 6, respectively.

次に、上記の本発明被覆工具1〜13と従来被覆工具1〜13の硬質被覆層の下部層と上部層との界面近傍10箇所について、透過型電子顕微鏡(50000倍)による暗視野観察による断面測定を行い、超硬基体表面に平行な直線距離を測定幅25μmとし、その範囲に存在するAl2粒子と界面を有しているTi化合物粒子の数aおよびTi化合物粒子と界面を有しているAl2粒子の数bをカウントし、b/aの値を求めた。
表5に、上記で求めたa,b,b/aの値を示す。
Next, by the dark field observation by a transmission electron microscope (50000 times) about 10 places near the interface between the lower layer and the upper layer of the hard coating layer of the present invention coated tools 1-13 and the conventional coated tools 1-13. Cross-sectional measurement is performed, the linear distance parallel to the surface of the carbide substrate is set to a measurement width of 25 μm, the number of Ti compound particles having an interface with Al 2 O 3 particles existing in the range, and the Ti compound particles and the interface The number b of Al 2 O 3 particles possessed was counted, and the value of b / a was determined.
Table 5 shows the values of a, b, b / a obtained above.

図1には、本発明被覆工具6の下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図とa,b,b/aの値を示す。
図2には、従来被覆工具8の下部層と上部層との界面の透過型電子顕微鏡写真より作成した界面構造模式図とa,b,b/aの値を示す。
FIG. 1 shows a schematic diagram of an interface structure created from a transmission electron micrograph of the interface between the lower layer and the upper layer of the coated tool 6 of the present invention, and values of a, b, and b / a.
FIG. 2 shows a schematic diagram of the interface structure created from a transmission electron micrograph of the interface between the lower layer and the upper layer of the conventional coated tool 8 and the values of a, b, and b / a.

また、本発明被覆工具1〜13および従来被覆工具1〜13の硬質被覆層の下部層のTi化合物について、透過型電子顕微鏡の断面観察により超硬基体表面と平行な方向に50μmにわたって線を引き、上部層(Al23 層)直下のTi化合物層の結晶粒の結晶粒界との交点を数え、それら線分長さの平均から平均粒子径を求めた。
表5に、測定した平均粒子径を示す。
In addition, with respect to the Ti compound of the lower layer of the hard coating layer of the present coated tools 1 to 13 and the conventional coated tools 1 to 13, a line is drawn over 50 μm in a direction parallel to the surface of the carbide substrate by cross-sectional observation with a transmission electron microscope. The intersection of the crystal grains of the Ti compound layer immediately below the upper layer (Al 2 O 3 layer) with the crystal grain boundary was counted, and the average particle diameter was determined from the average of the line segment lengths.
Table 5 shows the measured average particle diameter.

さらに、本発明被覆工具1〜13および従来被覆工具1〜13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Furthermore, when the thicknesses of the constituent layers of the hard coating layers of the present coated tools 1 to 13 and the conventional coated tools 1 to 13 were measured using a scanning electron microscope (longitudinal cross section measurement), all of the target layer thicknesses were measured. The average layer thickness (average value of 5-point measurement) was substantially the same.

つぎに、上記の本発明被覆工具1〜13および従来被覆工具1〜13について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
[切削条件A]
被削材:JIS・SNCM420の長さ方向等間隔4本縦溝入の丸棒、
切削速度: 375m/min.、
切り込み: 2.4mm、
送り: 0.22mm/rev.、
切削時間: 5分、
の条件でのニッケルクロムモリブデン鋼の乾式高速断続切削試験(通常の切削速度は200m/min.)、
[切削条件B]
被削材:JIS・FCD500の長さ方向等間隔4本縦溝入の丸棒、
切削速度: 365m/min.、
切り込み: 2.45mm、
送り: 0.31mm/rev.、
切削時間: 5分、
の条件での鋳鉄の乾式高速断続切削試験(通常の切削速度は180m/min.)、
[切削条件C]
被削材:JIS・S30Cの長さ方向等間隔4本縦溝入の丸棒、
切削速度: 370m/min.、
切り込み: 1.55mm、
送り: 0.47mm/rev.、
切削時間: 5分、
の条件での炭素鋼の乾式高速断続切削試験(通常の切削速度は250m/min.)
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表7に示した。
Next, for the present invention coated tools 1-13 and the conventional coated tools 1-13, both are screwed with a fixing jig to the tip of the tool steel tool,
[Cutting conditions A]
Work material: JIS / SNCM420 lengthwise equal 4 round grooves with vertical grooves,
Cutting speed: 375 m / min. ,
Cutting depth: 2.4 mm,
Feed: 0.22 mm / rev. ,
Cutting time: 5 minutes
Dry high-speed intermittent cutting test of nickel chrome molybdenum steel under the conditions (normal cutting speed is 200 m / min.),
[Cutting conditions B]
Work material: JIS / FCD500 lengthwise equal length 4 round bar with groove,
Cutting speed: 365 m / min. ,
Incision: 2.45mm,
Feed: 0.31 mm / rev. ,
Cutting time: 5 minutes
Cast iron dry high-speed intermittent cutting test under the conditions (normal cutting speed is 180 m / min.),
[Cutting conditions C]
Work material: JIS / S30C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 370 m / min. ,
Cutting depth: 1.55mm,
Feed: 0.47 mm / rev. ,
Cutting time: 5 minutes
Carbon steel dry high-speed intermittent cutting test under normal conditions (normal cutting speed is 250 m / min.)
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 7.

Figure 0005569739
Figure 0005569739

Figure 0005569739
Figure 0005569739

Figure 0005569739
Figure 0005569739

Figure 0005569739
Figure 0005569739

Figure 0005569739
Figure 0005569739

Figure 0005569739
Figure 0005569739

Figure 0005569739
Figure 0005569739

表5〜7に示される結果から、本発明被覆工具1〜13は、下部層と上部層との隣接界面に存在する下部層側のTi化合物結晶粒の数aと上部層側のAl結晶粒の数bとの比率b/aが4≦b/a≦20を満足する界面構造を構成し、さらに、上部層(Al層)直下のTi化合物層の結晶粒の平均粒子径を0.5μm以下としていることから、特に、下部層と上部層間の層間密着性が高められ、その結果、高熱発生を伴い、切刃に高負荷が作用する高速断続切削加工に用いた場合でも、硬質被覆層がすぐれた層間密着強度を有するため、切刃に微小チッピング、剥離等の発生なく、長期の使用に亘ってすぐれた耐摩耗性を発揮することができる。
しかるに、硬質被覆層の下部層と上部層との間に本発明のような界面構造が形成されていない従来被覆工具1〜13においては、高速断続切削条件下では、硬質被覆層の層間密着強度が不十分であるために、硬質被覆層に微小チッピング、欠損、剥離等が発生し、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 5 to 7, the coated tools 1 to 13 of the present invention have the number a of the Ti compound crystal grains on the lower layer side existing at the adjacent interface between the lower layer and the upper layer and the Al 2 O on the upper layer side. The ratio b / a to the number b of three crystal grains constitutes an interface structure satisfying 4 ≦ b / a ≦ 20, and the average grain size of the Ti compound layer immediately below the upper layer (Al 2 O 3 layer) Since the particle diameter is 0.5 μm or less, interlaminar adhesion between the lower layer and the upper layer is particularly improved, and as a result, it is used for high-speed intermittent cutting with high heat generation and high load acting on the cutting edge. Even in this case, since the hard coating layer has excellent interlayer adhesion strength, it is possible to exhibit excellent wear resistance over a long period of use without the occurrence of minute chipping or peeling on the cutting edge.
However, in the conventional coated tools 1 to 13 in which the interface structure as in the present invention is not formed between the lower layer and the upper layer of the hard coating layer, the interlayer adhesion strength of the hard coating layer under high-speed intermittent cutting conditions. Is insufficient, it is clear that micro-chipping, chipping, peeling, etc. occur in the hard coating layer and the service life is reached in a relatively short time.

上述のように、本発明の被覆工具は、特に高い発熱を伴い切刃に対して高負荷が作用する高速断続切削加工においてすぐれた耐チッピング性、耐摩耗性を示し、長期の使用に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化が十分期待できるものである。   As described above, the coated tool of the present invention exhibits excellent chipping resistance and wear resistance in high-speed interrupted cutting in which a high load acts on the cutting blade with particularly high heat generation, and is used over a long period of use. Since it exhibits excellent cutting performance, high performance of the cutting device, labor saving and energy saving of cutting work, and further cost reduction can be sufficiently expected.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、3〜20μmの合計平均層厚を有する下部層と1〜15μmの平均層厚を有する上部層からなる硬質被覆層が蒸着形成された表面被覆切削工具において、
下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、また、上部層は、酸化アルミニウム層からなり、上記下部層と上記上部層とが隣接する界面に存在する上記Ti化合物層側の結晶粒の数aと上記酸化アルミニウム層側の結晶粒の数bとの比率b/aが4≦b/a≦20を満足し、さらに、上記酸化アルミニウム層直下のTi化合物層の結晶粒の平均粒子径が0.5μm以下であることを特徴とする表面被覆切削工具。
Hard coating comprising a lower layer having a total average layer thickness of 3 to 20 μm and an upper layer having an average layer thickness of 1 to 15 μm on the surface of a tool base composed of a tungsten carbide base cemented carbide or a titanium carbonitride base cermet In a surface-coated cutting tool in which a layer is formed by vapor deposition,
The lower layer is composed of one or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, and the upper layer is oxidized A ratio b / a between the number a of crystal grains on the Ti compound layer side and the number b of crystal grains on the aluminum oxide layer side, which is made of an aluminum layer and exists at an interface where the lower layer and the upper layer are adjacent to each other, 4. A surface-coated cutting tool characterized by satisfying 4 ≦ b / a ≦ 20 and further having an average particle size of crystal grains of the Ti compound layer immediately below the aluminum oxide layer of 0.5 μm or less.
JP2010243770A 2009-10-30 2010-10-29 Surface coated cutting tool with excellent chipping resistance Active JP5569739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010243770A JP5569739B2 (en) 2009-10-30 2010-10-29 Surface coated cutting tool with excellent chipping resistance

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2009250199 2009-10-30
JP2009250199 2009-10-30
JP2010226353 2010-10-06
JP2010226353 2010-10-06
JP2010243770A JP5569739B2 (en) 2009-10-30 2010-10-29 Surface coated cutting tool with excellent chipping resistance

Publications (3)

Publication Number Publication Date
JP2012096302A JP2012096302A (en) 2012-05-24
JP2012096302A5 JP2012096302A5 (en) 2013-08-22
JP5569739B2 true JP5569739B2 (en) 2014-08-13

Family

ID=46388833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010243770A Active JP5569739B2 (en) 2009-10-30 2010-10-29 Surface coated cutting tool with excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP5569739B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999362B2 (en) * 2013-03-12 2016-09-28 三菱マテリアル株式会社 Surface coated cutting tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569204A (en) * 1991-09-04 1993-03-23 Mitsubishi Materials Corp Hard layer coated tungsten carbide group cemented carbide made cutting tool
WO1997015411A1 (en) * 1995-10-27 1997-05-01 Teledyne Industries, Inc. Anchored oxide coatings on hard metal cutting tools
JP4805819B2 (en) * 2004-03-29 2011-11-02 京セラ株式会社 Surface covering member and cutting tool
JP4854359B2 (en) * 2006-03-29 2012-01-18 京セラ株式会社 Surface coated cutting tool
JP5170828B2 (en) * 2008-01-18 2013-03-27 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Also Published As

Publication number Publication date
JP2012096302A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
JP5321094B2 (en) Surface coated cutting tool
CN109641286B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and peeling resistance
WO2011052767A1 (en) Surface coated cutting tool with excellent chip resistance
EP1548154A2 (en) Surface-coated cermet cutting tool with hard coating layer having excellend chipping resistance
JP2014166657A (en) Surface-coated cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2014198362A (en) Surface coated cutting tool
JP5402516B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP2014208394A (en) Surface coated cutting tool
JP5003308B2 (en) Surface coated cutting tool
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP5569740B2 (en) Surface coated cutting tool with excellent chipping resistance
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP5569739B2 (en) Surface coated cutting tool with excellent chipping resistance
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP4863071B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
EP3112064B1 (en) Cutting tool made of surface-coated titanium carbonitride-based cermet having exceptional chipping resistance
JP2011104690A (en) Surface coated cutting tool exhibiting excellent chipping resistance in hard coating layer
JP5305013B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP2010274330A (en) Surface coated cutting tool
JP7373110B2 (en) Surface-coated cutting tools with hard coating layer that exhibits excellent wear resistance
JP5187573B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5019258B2 (en) Surface coated cutting tool
JP4193053B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5569739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250