JP5003308B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP5003308B2
JP5003308B2 JP2007168864A JP2007168864A JP5003308B2 JP 5003308 B2 JP5003308 B2 JP 5003308B2 JP 2007168864 A JP2007168864 A JP 2007168864A JP 2007168864 A JP2007168864 A JP 2007168864A JP 5003308 B2 JP5003308 B2 JP 5003308B2
Authority
JP
Japan
Prior art keywords
layer
inclination angle
degrees
range
distribution graph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007168864A
Other languages
Japanese (ja)
Other versions
JP2009006427A (en
Inventor
惠滋 中村
晃 長田
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007168864A priority Critical patent/JP5003308B2/en
Publication of JP2009006427A publication Critical patent/JP2009006427A/en
Application granted granted Critical
Publication of JP5003308B2 publication Critical patent/JP5003308B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

この発明は、大きな発熱を伴うとともに、切刃部に大きな衝撃的・機械的負荷がかかる鋼や鋳鉄などの高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention exhibits excellent chipping resistance and wear resistance with a high hard coating layer in high-speed intermittent cutting of steel or cast iron that is accompanied by large heat generation and has a large impact and mechanical load on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool).

炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)化学蒸着で形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層からなる下部層、
(b)化学蒸着で形成された1〜15μmの平均層厚を有する酸化アルミニウム(Al23)層からなる上部層、
以上(a)、(b)で構成された硬質被覆層を備える被覆工具において、
上記(a)のTi化合物層のうちの1層を、2.5〜15μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す縦長成長結晶組織を有するTiCN(以下、従来TiCNで示す)層、
で構成した被覆工具(以下、従来被覆工具という)が知られており、そしてこの従来被覆工具が、鋼や鋳鉄の高速断続切削加工ですぐれた耐チッピング性を示すことが知られている。
On the surface of a substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet (hereinafter collectively referred to as a tool substrate),
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbon oxide (hereinafter referred to as TiC) layer formed by chemical vapor deposition , A lower layer consisting of a Ti compound layer having a total average layer thickness of 3 to 20 μm, and two or more of a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) an upper layer made of an aluminum oxide (Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm formed by chemical vapor deposition;
In a coated tool provided with the hard coating layer comprised by the above (a) and (b),
One of the Ti compound layers of (a) above is a cubic having an average layer thickness of 2.5 to 15 μm and existing within the measurement range of the surface polished surface using a field emission scanning electron microscope. Irradiating each crystal grain having a crystal lattice with an electron beam, and measuring an inclination angle formed by a normal of a {112} plane that is a crystal plane of the crystal grain with respect to a normal of the surface-polished surface; In the inclination angle number distribution graph formed by dividing the measurement inclination angles within the range of 0 to 45 degrees among the measurement inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section. In addition, the highest peak exists in the inclination angle section in the range of 0 to 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph. It has a vertically-grown crystal structure showing an inclination angle distribution graph That TiCN (hereinafter, shown in the conventional TiCN) layer,
It is known that this coated tool exhibits excellent chipping resistance in high-speed intermittent cutting of steel or cast iron.

また、工具基体の表面に、
(a)化学蒸着で形成された、粒状結晶組織を有するTiC層、TiN層、TiCN層、TiCO層、TiCNO層のうちの1層以上と、縦長成長結晶組織を有するTiCN(以下、l−TiCNで示す)層からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層からなる下部層、
(b)化学蒸着で形成された1〜15μmの平均層厚を有するAl23層からなる上部層、
以上(a)、(b)で構成された硬質被覆層を備える被覆工具において、
上記l−TiCN層に隣接して、l−TiCN層のTiの一部を10原子%以下のCrで置換した層(以下、従来(Ti,Cr)CN層で示す)を1〜10μmの平均層厚で介在させることによって、鋼や鋳鉄の高速切削加工ですぐれた耐摩耗性を示すことが知られている。
特開2006−15426号公報 特開平10−244405号公報
In addition, on the surface of the tool base,
(A) One or more of a TiC layer having a granular crystal structure, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer formed by chemical vapor deposition, and a TiCN having a vertically grown crystal structure (hereinafter referred to as l-TiCN). And a lower layer comprising a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) an upper layer composed of an Al 2 O 3 layer having an average layer thickness of 1 to 15 μm formed by chemical vapor deposition;
In a coated tool provided with the hard coating layer comprised by the above (a) and (b),
An average of 1 to 10 μm adjacent to the l-TiCN layer, in which a part of Ti in the l-TiCN layer is replaced with 10 atomic% or less of Cr (hereinafter referred to as a conventional (Ti, Cr) CN layer). It is known that by interposing with a layer thickness, excellent wear resistance is exhibited in high-speed cutting of steel or cast iron.
JP 2006-15426 A JP-A-10-244405

近年の切削装置の高性能化はめざましく、一方で切削加工における省力化および省エネ化、さらに、高効率化、低コスト化の要請は強く、耐チッピング性と耐摩耗性の両特性を備えた被覆工具が望まれているところ、上記の従来被覆工具においては、下部層として所定の高温強度を有する従来TiCN層が、また、上部層としてすぐれた高温硬さを有するAl23層が設けられていることから、これを鋼や鋳鉄などの高速断続切削に用いた場合に、チッピングの発生については特に問題は生じなかったが、従来TiCN層の耐熱性が十分でないため、熱塑性変形、偏摩耗を発生しやすく、耐摩耗性については満足できる特性を備えているとはいえなかった。
そこで、上記従来被覆工具の耐摩耗性を改善するために、硬質被覆層の構成層として、耐摩耗性にすぐれた前記従来(Ti,Cr)CN層をさらに設けることが考えられるが、従来(Ti,Cr)CN層は、切刃部に大きな衝撃的・機械的負荷がかかり、さらに、高熱発生を伴う高速断続切削加工では、耐熱性が依然として不十分であるため、熱塑性変形による偏摩耗発生を防止することはできず、その結果、従来TiCN層と従来(Ti,Cr)CN層を設けた被覆工具では、耐チッピング性と耐摩耗性の両特性を向上させることは非常に困難であった。
In recent years, the performance of cutting machines has been remarkable. On the other hand, there are strong demands for labor saving and energy saving in cutting, as well as high efficiency and low cost, and coating with both chipping resistance and wear resistance characteristics. Where a tool is desired, the above-mentioned conventional coated tool is provided with a conventional TiCN layer having a predetermined high-temperature strength as a lower layer and an Al 2 O 3 layer having excellent high-temperature hardness as an upper layer. Therefore, when this was used for high-speed intermittent cutting of steel or cast iron, there was no particular problem with the occurrence of chipping, but because the heat resistance of the conventional TiCN layer was not sufficient, thermoplastic deformation, uneven wear It was easy to generate | occur | produce, and it could not be said that it had the characteristic which was satisfactory about abrasion resistance.
Therefore, in order to improve the wear resistance of the conventional coated tool, it is conceivable to further provide the conventional (Ti, Cr) CN layer having excellent wear resistance as a constituent layer of the hard coating layer. The Ti, Cr) CN layer is subject to a large impact and mechanical load on the cutting edge, and furthermore, heat resistance is still insufficient in high-speed intermittent cutting with high heat generation, so uneven wear due to thermoplastic deformation occurs. As a result, it is very difficult to improve both the chipping resistance and the wear resistance of the coated tool provided with the conventional TiCN layer and the conventional (Ti, Cr) CN layer. It was.

本発明者等は、上述のような観点から、上記の従来被覆工具の硬質被覆層の耐チッピング性とともに耐摩耗性の向上を図るべく、硬質被覆層の構成層について研究を行った結果、以下の知見を得た。   From the above viewpoints, the present inventors conducted research on the constituent layers of the hard coating layer in order to improve the wear resistance as well as the chipping resistance of the hard coating layer of the conventional coated tool described above. I got the knowledge.

(a)従来被覆工具の硬質被覆層の下部層を構成するTi化合物層のうちの前記従来TiCN層は、例えば、通常の化学蒸着装置にて、
反応ガス組成(容量%):TiCl:2〜10%、CHCN:0.5〜3%、N:10〜30%、H:残り、
反応雰囲気温度:800〜920℃、
反応雰囲気圧力:6〜20kPa、
の条件で蒸着を行うとともに、上記の反応ガスを構成するCHCNの成膜開始時点と成膜終了時点の含有割合を上記の含有範囲内で、層厚に応じて調整し、さらに、相対的に含有割合を低くした前記成膜開始時点から相対的に含有割合を高くした前記成膜終了時点に向けて、CHCNの含有割合を連続的または断続的に漸増させた条件でTiCN層を蒸着することによって形成できること。
(A) The conventional TiCN layer of the Ti compound layer constituting the lower layer of the hard coating layer of the conventional coated tool is, for example, a normal chemical vapor deposition apparatus.
Reaction gas composition (volume%): TiCl 4: 2~10% , CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800-920 ° C.
Reaction atmosphere pressure: 6-20 kPa,
And the content ratio of the film formation start point and film formation end point of the CH 3 CN constituting the reaction gas is adjusted in accordance with the layer thickness within the above content range, TiCN layer under the condition that the content ratio of CH 3 CN is gradually or intermittently increased from the film formation start time when the content ratio is lowered to the film formation end time when the content ratio is relatively increased It can be formed by evaporating.

(b)そして、前記従来TiCN層は、図1(a),(b)に概略説明図で示されるように、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すこと(図3参照)。 (B) And, the conventional TiCN layer is a cubic that exists within the measurement range of the surface polished surface by using a field emission scanning electron microscope, as schematically shown in FIGS. 1 (a) and 1 (b). Irradiating each crystal grain having a crystal lattice with an electron beam, and measuring an inclination angle formed by a normal of a {112} plane that is a crystal plane of the crystal grain with respect to a normal of the surface-polished surface; In the inclination angle number distribution graph formed by dividing the measurement inclination angles within the range of 0 to 45 degrees among the measurement inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section. In addition, the highest peak exists in the inclination angle section in the range of 0 to 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph. The inclination angle number distribution graph which occupies (see Fig. 3)

(c)さらに、上記従来TiCN層の形成に際して、上記反応ガスにおけるCHCNの含有量を0.5〜3%とし、かつ、前記含有範囲内で、層厚に対応させて成膜開始時点と成膜終了時点のCHCNの含有量を調整すると共に、前記成膜開始時点から成膜終了時点に向けてCHCNの含有量を漸次増加する(即ち、層厚の薄いほど成膜開始時点と成膜終了時点のCHCNの含有量を前記0.5〜3%の範囲内で低い側に定め、層厚が中間では成膜開始時点と成膜終了時点のCHCNの含有量を前記範囲内の中間の含有量とし、さらに層厚が厚くなるほど、前記CHCNの含有範囲の高い側に定める)と共に、その含有幅(即ち、(成膜終了時点のCHCN含有量)−(成膜開始時点のCHCN含有量)の値)を1±0.15%とするのが望ましく、この含有幅が0.85%未満では、前記0〜10度の範囲内に存在する最高ピークの度数の合計が、傾斜角度数分布グラフにおける度数全体の45%未満となってしまい、TiCN層に所望のすぐれた高温強度を確保することができず、また、前記含有幅が1.15%を越えた場合には、最高ピークが現れる傾斜角区分が0〜10度の範囲から外れてしまい、TiCN層に所望のすぐれた高温強度を確保することができないこと。 (C) Further, when forming the conventional TiCN layer, the content of CH 3 CN in the reaction gas is set to 0.5 to 3%, and the film formation start time corresponding to the layer thickness is within the content range. And adjusting the CH 3 CN content at the end of film formation, and gradually increasing the CH 3 CN content from the start of film formation to the end of film formation (that is, the thinner the layer, the more the film is formed). determine the amount of of CH 3 CN beginning and the deposition end to a lower side within the 0.5% to 3%, the layer thickness of the deposition starting point and the deposition end point in the middle of CH 3 CN The content is an intermediate content within the above range, and the further the layer thickness, the higher the content range of the CH 3 CN, the higher the content range (ie, the CH 3 CN at the end of film formation). Content)-(value of CH 3 CN content at the start of film formation)) 1 ± 0.15% is desirable, and when the content width is less than 0.85%, the sum of the frequencies of the highest peak existing within the range of 0 to 10 degrees is the entire frequency in the gradient angle distribution graph. Therefore, when the content width exceeds 1.15%, the tilt angle section where the highest peak appears is not obtained. Is not within the range of 0 to 10 degrees, and the TiCN layer cannot secure the desired excellent high-temperature strength.

(d)一方、前記の従来(Ti,Cr)CN層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:3〜10%、CrF:0.1〜0.4%、CHCN:0.5〜3%、N2:20〜40%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件(通常条件という)で蒸着形成されるが、
反応ガス組成:容量%で、TiCl:1〜5%、CrCl:0.7〜2.5%、CHCN:3〜6%、N2:20〜40%、HCl:0.5〜2%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:5〜20kPa、
の条件、すなわち上記の通常条件に比して、反応ガス成分の一つであるCrFにかえて、少量のCrClおよびHClを加え、さらに、TiClおよびCHCNの含有割合を多くした条件で蒸着形成して、
組成式:(Ti1−XCr)CN(ただし、原子比で、X:0.12〜0.20)、
を満足する(Ti,Cr)CN層を形成すると、この結果の(Ti,Cr)CN層(以下、改質(Ti,Cr)CN層という)は、上記の従来(Ti,Cr)CN層と同様の結晶構造、すなわち格子点にTi、Cr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有するが、前記従来(Ti,Cr)CN層に比して一段とすぐれた耐熱性を有すること。
(D) On the other hand, the conventional (Ti, Cr) CN layer is, for example, a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, TiCl 4: 3~10%, CrF 5: 0.1~0.4%, CH 3 CN: 0.5~3%, N 2: 20~40%, H 2: remaining,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
It is formed by vapor deposition under the conditions (called normal conditions)
Reaction gas composition: by volume%, TiCl 4: 1~5%, CrCl 3: 0.7~2.5%, CH 3 CN: 3~6%, N 2: 20~40%, HCl: 0.5 ~2%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 5 to 20 kPa,
Compared with the above conditions, that is, the above normal conditions, a small amount of CrCl 3 and HCl were added instead of CrF 5 which is one of the reaction gas components, and the content ratio of TiCl 4 and CH 3 CN was increased. Vapor deposition with conditions,
Composition formula: (Ti 1-X Cr X ) CN (wherein, in atomic ratio, X: 0.12 to 0.20),
When the (Ti, Cr) CN layer satisfying the above is formed, the resulting (Ti, Cr) CN layer (hereinafter referred to as a modified (Ti, Cr) CN layer) is the conventional (Ti, Cr) CN layer described above. The crystal structure of the NaCl type face centered cubic crystal in which the constituent atoms composed of Ti, Cr, carbon (C), and nitrogen (N) are respectively present at the lattice points. It should have heat resistance that is much better than that of the Cr) CN layer.

(e)そして、上記従来(Ti,Cr)CN層と上記改質(Ti,Cr)CN層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来(Ti,Cr)CN層は、図5に例示される通り、{111}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質(Ti,Cr)CN層は、図4に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、そしてこのような場合に、改質(Ti,Cr)CN層にはクーリングクラックが均一に分散し、これによって、Cr含有量を増加したことによる改質(Ti,Cr)CN層の高温強度の低下を抑制することができ、しかも、このシャープな最高ピークは、グラフ横軸の傾斜角区分に現れる高さおよび傾斜角区分位置が前記改質(Ti,Cr)CN層におけるCrの含有割合を調整することにより変化すること。
(E) And, for the conventional (Ti, Cr) CN layer and the modified (Ti, Cr) CN layer,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams of FIGS. 2A and 2B, the electron beam is individually applied to each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface. Is measured with respect to the normal of the surface polished surface, and the tilt angle formed by the normal of the {111} plane that is the crystal plane of the crystal grain is measured. When the measured inclination angle within the range of 0.25 degrees is divided for each pitch of 0.25 degrees and the inclination angle number distribution graph is formed by counting the frequencies existing in each division, the conventional (Ti, Cr) As illustrated in FIG. 5, the CN layer shows an unbiased inclination angle number distribution graph in the range of the measured inclination angle of the {111} plane in the range of 0 to 45 degrees, whereas the modification ( As illustrated in FIG. 4, the Ti, Cr) CN layer has a sharp peak at a specific position in the tilt angle section. A peak appears, and in such a case, cooling cracks are uniformly dispersed in the modified (Ti, Cr) CN layer, thereby modifying the (Ti, Cr) CN layer due to an increase in Cr content. In addition, the sharp maximum peak has a height that appears in the tilt angle section of the horizontal axis of the graph and the position of the tilt angle section in the modified (Ti, Cr) CN layer. It changes by adjusting the content ratio.

(f)上記の通り、上記改質(Ti,Cr)CN層の形成に際して、層中のCr含有割合を、Tiとの合量に占める割合(原子比)で0.12〜0.20とすることによって、前記改質(Ti,Cr)CN層の傾斜角度数分布グラフで、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れ、かつ、前記0〜10度の範囲内に存在する度数割合が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになるのであり、したがって、前記改質(Ti,Cr)CN層中のCr含有割合が前記の範囲から低い方に外れても、あるいは高い方に外れても、傾斜角度数分布グラフにおけるシャープな最高ピークが傾斜角区分の0〜10度の範囲から外れ、かつ、前記0〜10度の範囲内に存在する度数数割合も45%未満になってしまい、この場合は一段の耐熱性向上効果を期待できないばかりか、Cr含有割合を増加したことによる高温強度の低下をクーリングクラックの均一分散によって抑制することはできないこと。
つまり、上記改質(Ti,Cr)CN層のCr成分は、Tiとの合量に占める割合(原子比)で0.12(12原子%)以上で所望の耐熱性向上効果が現れるが、その含有割合が0.20(20原子%)を越えると、高熱発生を伴う高速断続切削加工では、改質(Ti,Cr)CN層は急激に軟化し、熱塑性変形、偏摩耗を生じやすくなることから、その含有割合は、Tiとの合量に占める割合(原子比)で0.12〜0.20とする必要がある。
(F) As described above, when the modified (Ti, Cr) CN layer is formed, the Cr content in the layer is 0.12 to 0.20 in terms of the ratio (atomic ratio) to the total amount with Ti. In the gradient angle distribution graph of the modified (Ti, Cr) CN layer, a sharp maximum peak appears in the range of 0 to 10 degrees of the tilt angle section, and the range of 0 to 10 degrees In the modified (Ti, Cr) CN layer, the frequency ratio existing in the tilt angle frequency distribution graph occupies a ratio of 45% or more of the entire frequency in the tilt angle frequency distribution graph. Even if the Cr content ratio is out of the lower range or higher range, the sharp peak in the tilt angle number distribution graph is out of the range of 0 to 10 degrees of the tilt angle section, and Within the range of 0 to 10 degrees The frequency ratio is also less than 45%. In this case, not only can the heat resistance improvement effect be further improved, but also the decrease in high-temperature strength due to the increased Cr content ratio should be suppressed by uniform distribution of cooling cracks. What you can't do.
That is, the Cr component of the modified (Ti, Cr) CN layer has a desired heat resistance improvement effect at a ratio (atomic ratio) of 0.12 (12 atomic%) or more in the total amount with Ti, When the content ratio exceeds 0.20 (20 atomic%), in high-speed intermittent cutting with high heat generation, the modified (Ti, Cr) CN layer softens rapidly, and it is easy to cause thermoplastic deformation and uneven wear. Therefore, the content ratio needs to be 0.12 to 0.20 in a ratio (atomic ratio) to the total amount with Ti.

(g)そこで、切削工具基体の表面に、硬質被覆層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層と、改質(Ti,Cr)CN層とを設け、そして、Ti化合物層のうちの少なくとも1層は前記従来TiCN層とすることによって、硬質被覆層全体としての高温強度を高めると同時に耐摩耗性を大幅に改善することができるので、上記硬質被覆層を蒸着形成した被覆工具は、高い発熱を伴うとともに、大きな機械的・衝撃的負荷がかかる高速断続切削加工に用いた場合にも、すぐれた耐チッピング性を示すとともに、長期に亘ってすぐれた耐摩耗性を発揮するようになる。 (G) Therefore, one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer as a hard coating layer on the surface of the cutting tool base. And a modified (Ti, Cr) CN layer, and at least one of the Ti compound layers is the conventional TiCN layer, thereby increasing the high temperature strength of the entire hard coating layer. Since the wear resistance can be greatly improved at the same time, the coated tool with the hard coating layer deposited thereon was used for high-speed intermittent cutting with high heat generation and high mechanical and impact load. Even in this case, excellent chipping resistance is exhibited, and excellent wear resistance is exhibited over a long period of time.

この発明は、上記の知見に基づいてなされたものであって、
「(1)WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、4〜20μmの合計平均層厚を有する硬質被覆層として、少なくとも、Ti化合物層とTiとCrの炭窒化物層とを蒸着形成した表面被覆切削工具において、
(a)Ti化合物層は、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、
(b)上記Ti化合物層のうちの少なくとも1層は、2〜10μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すTiの炭窒化物層(従来TiCN層)であり、
(c)上記TiとCrの炭窒化物層は、2〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XCr)CNで表した場合、原子比で、X:0.12〜0.2を満足するTiとCrの炭窒化物層であり、
さらに、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すTiとCrの炭窒化物層(改質(Ti,Cr)CN層)である、
ことを特徴とする表面被覆切削工具(被覆工具)。
(2)前記4〜20μmの合計平均層厚を有する硬質被覆層の表面に、さらに、1〜15μmの平均層厚のAl23層を蒸着形成したことを特徴とする、請求項1記載の表面被覆切削工具(被覆工具)。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) At least a Ti compound layer and a carbonitriding of Ti and Cr as a hard coating layer having a total average layer thickness of 4 to 20 μm on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet In a surface-coated cutting tool in which a material layer is formed by vapor deposition,
(A) The Ti compound layer is composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer,
(B) At least one of the Ti compound layers has an average layer thickness of 2 to 10 μm, and a cubic crystal existing within the measurement range of the surface polished surface using a field emission scanning electron microscope. The crystal grains having a lattice are irradiated with an electron beam, and the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface-polished surface. In the inclination angle number distribution graph formed by dividing the measured inclination angles within the range of 0 to 45 degrees out of the inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section, 0 The highest peak exists in the inclination angle section within the range of -10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph. Ti carbonitride layer showing an inclination angle distribution graph It is a conventional TiCN layer),
(C) The Ti and Cr carbonitride layer has an average layer thickness of 2 to 15 μm, and
When represented by composition formula: (Ti 1-X Cr X ) CN, it is a carbonitride layer of Ti and Cr that satisfies X: 0.12-0.2 in atomic ratio,
Further, by using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the normal line of the surface polishing surface is The inclination angle formed by the normal line of the {111} plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set every pitch of 0.25 degrees. In the inclination angle number distribution graph obtained by summing up the frequencies existing in each section, the highest peak is present in the inclination angle section in the range of 0 to 10 degrees, and within the range of 0 to 10 degrees. Ti and Cr carbonitride layer (modified (Ti, Cr) CN layer) showing a tilt angle frequency distribution graph in which the total number of frequencies present in the tilt angle frequency distribution graph accounts for 45% or more of the total frequency in the tilt angle frequency distribution graph Is,
A surface-coated cutting tool (coated tool).
(2) The Al 2 O 3 layer having an average layer thickness of 1 to 15 μm is further formed by vapor deposition on the surface of the hard coating layer having a total average layer thickness of 4 to 20 μm. Surface coated cutting tool (coated tool). "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。   Next, the reason why the constituent layers of the hard coating layer of the coated tool of the present invention are numerically limited as described above will be described below.

(a)Ti化合物層
TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなるTi化合物層(なお、このうちの従来TiCN層については、後記(b)参照)は、それ自体が所定の高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と従来TiCN層あるいは改質(Ti,Cr)CN層のいずれとも強固に密着し、硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が4μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、高速断続切削加工で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、Ti化合物層の合計平均層厚を4〜20μmと定めた。
(A) Ti compound layer Ti compound layer composed of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer (Note that the conventional TiCN layer is described later (b ))) Itself has a predetermined high temperature strength, and the presence of this provides the hard coating layer with a high temperature strength, as well as a tool base and a conventional TiCN layer or modified (Ti, Cr) CN layer. Any of the above has an effect of improving the adhesion of the hard coating layer to the tool substrate, but if the total average layer thickness is less than 4 μm, the above-mentioned effect cannot be sufficiently exhibited, When the total average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation by high-speed intermittent cutting, and this causes uneven wear. Therefore, the total average layer thickness of the Ti compound layer is set to 4 to 20 μm. I tried.

(b)従来TiCN層
Ti化合物層のうちの従来TiCN層は、既に述べたとおり、例えば、反応ガスの構成成分であるCHCNの含有割合を0.5〜3%とすると共に、成膜開始時点から成膜終了時点に向けてCHCNの含有量を漸次増加することにより、{112}面の法線がなす傾斜角の度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占め、かつ、縦長成長結晶組織を有し、すぐれた高温強度を具備する従来TiCN層を蒸着形成することができるが、その平均層厚が2μm未満では所望のすぐれた高温強度向上効果を発揮することができず、一方その平均層厚が10μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2〜10μmと定めた。
(B) Conventional TiCN layer As described above, the conventional TiCN layer of the Ti compound layer is formed, for example, with the content ratio of CH 3 CN as a component of the reaction gas being 0.5 to 3%. In an inclination angle distribution graph in which the frequency of the inclination angle formed by the normal of the {112} plane is tabulated by gradually increasing the content of CH 3 CN from the start time to the film formation end time, 0 to The highest peak is present in the inclination angle section within the range of 10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph, In addition, a conventional TiCN layer having a vertically elongated crystal structure and having excellent high-temperature strength can be formed by vapor deposition. However, if the average layer thickness is less than 2 μm, the desired excellent high-temperature strength improvement effect can be exhibited. Can't On the other hand, if the average layer thickness exceeds 10 μm, thermoplastic deformation that causes uneven wear tends to occur, and wear accelerates. Therefore, the average layer thickness was set to 2 to 10 μm.

(c)改質(Ti,Cr)CN層
組成式:(Ti1−XCr)CNで表される改質(Ti,Cr)CN層については、層中のCr含有割合(X値)をTiとの合量に占める原子比で、0.12〜0.2とすることによって、縦長成長結晶組織を有し、かつ、{111}面の法線がなす傾斜角を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める改質(Ti,Cr)CN層を形成することができるが、この改質(Ti,Cr)CN層は、すぐれた耐熱性を備え、さらに、クーリングクラックが均一に分散して存在し、Cr含有量を増加したことによる層の高温強度の低下を防止できることから、すぐれた高温強度を発揮し、耐チッピング性ばかりか耐摩耗性の大幅な向上が図られる。
したがって、その含有割合が0.12未満でも、0.2を越えても、高温強度と耐熱性の向上効果を期待することができなくなるため、高熱発生を伴い、かつ、断続的な繰り返しの衝撃的負荷がかかる高速断続切削加工においては、熱塑性変形、偏摩耗の発生等によって耐チッピング性、耐摩耗性がともに劣ったものとなる。
そして、従来TiCNの場合と同様に、その平均層厚が2μm未満ではすぐれた高温強度、耐熱性向上効果を期待することはできず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2〜15μmと定めた。
(C) Modified (Ti, Cr) CN layer Composition formula: (Ti 1-X Cr X ) For the modified (Ti, Cr) CN layer represented by CN, the Cr content ratio (X value) in the layer Is an atomic ratio occupying the total amount of Ti, and is 0.12 to 0.2, and has a vertically elongated crystal structure and totals the inclination angles formed by the normal of the {111} plane In the inclination angle distribution graph, the highest peak is present in the inclination angle section in the range of 0 to 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is the entire frequency in the inclination angle distribution graph. It is possible to form a modified (Ti, Cr) CN layer occupying a proportion of 45% or more of this, but this modified (Ti, Cr) CN layer has excellent heat resistance and further has uniform cooling cracks. Of the layer by increasing the Cr content. Because it can prevent a decrease in temperature strength, exhibit excellent high temperature strength, significant improvements in or wear resistance chipping resistance only is achieved.
Therefore, even if the content ratio is less than 0.12 or more than 0.2, the effect of improving the high temperature strength and heat resistance cannot be expected. In high-speed intermittent cutting with a heavy load, both chipping resistance and wear resistance are inferior due to the occurrence of thermoplastic deformation and uneven wear.
As in the case of conventional TiCN, if the average layer thickness is less than 2 μm, excellent high temperature strength and heat resistance improvement effect cannot be expected. On the other hand, if the average layer thickness exceeds 15 μm, it causes uneven wear. Therefore, the average layer thickness was determined to be 2 to 15 μm.

また、改質(Ti,Cr)CN層におけるTi、Cr以外の構成成分であるCとNについて言えば、C成分には層の硬さを向上させ、また、N成分には高温強度を向上させる作用があり、これら両成分を共存含有することにより高い硬さとすぐれた強度を具備する炭窒化物層となるのであり、したがって、層中のN成分の含有割合がC成分との合量に占める割合(=N/(C+N))で0.35未満(但し、原子比)では所望の強度を確保することができず、一方、その含有割合が0.55を越えると、相対的にC成分の含有割合が少なくなり過ぎて、所望の高硬度が得られなくなることから、改質(Ti,Cr)CN層におけるC成分との合量に対するN成分の含有割合(=N/(C+N))は、原子比で0.35〜0.55とすることが望ましい。   In addition, regarding C and N, which are constituents other than Ti and Cr in the modified (Ti, Cr) CN layer, the C component improves the hardness of the layer, and the N component improves high temperature strength. By coexisting these two components, it becomes a carbonitride layer having high hardness and excellent strength. Therefore, the content ratio of the N component in the layer is the total amount with the C component. If the ratio (= N / (C + N)) is less than 0.35 (however, the atomic ratio), the desired strength cannot be ensured. On the other hand, if the content ratio exceeds 0.55, relatively C Since the content ratio of the component becomes too small and the desired high hardness cannot be obtained, the content ratio of the N component with respect to the total amount with the C component in the modified (Ti, Cr) CN layer (= N / (C + N) ) May be 0.35 to 0.55 in atomic ratio Masui.

なお、本発明は、硬質被覆層を、少なくとも、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなるTi化合物層(但し、このうちの少なくとも1層は前記従来TiCN層である)と、前記改質(Ti,Cr)CN層とで構成することが必要であるが、従来TiCN層と改質(Ti,Cr)CN層とを相隣接して設けることは必ずしも必要でなく、また、従来TiCN層、改質(Ti,Cr)CN層を硬質被覆層のうちの第何層として設けるかについても特に制限するものではなく、その設けた位置によって硬質被覆層全体としての作用効果に大きな変化が生じるものではない。 In the present invention, the hard coating layer is formed of at least one of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer. Layer is the conventional TiCN layer) and the modified (Ti, Cr) CN layer, but the conventional TiCN layer and the modified (Ti, Cr) CN layer are adjacent to each other. It is not always necessary to provide the TiCN layer and the modified (Ti, Cr) CN layer as the hard coating layer. As a result, there is no significant change in the function and effect of the hard coating layer as a whole.

(d)Al23
被覆工具の耐摩耗性改善を図るため、硬質被覆層の表面構成層としてAl23層を設けることは従来から良く知られているが、本発明においても、Ti化合物層あるいは改質(Ti,Cr)CN層の表面にAl23層をさらに蒸着形成することにより、硬質被覆層の表面をAl23層で構成することができ、これによって、本発明の被覆工具の耐摩耗性のより一層の改善を図ることができる。
また、Al23層としては、α型Al23層、κ型Al23層等種々の結晶構造のAl23層が知られているが、これらの結晶構造のいずのAl23層を蒸着被覆しても良く、その結晶構造については特に制限されるものではない。
ただ、Al23層を蒸着形成する際に、その平均層厚が1μm未満では、硬質被覆層のさらなる耐摩耗性向上を期待することはできず、一方、その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚は1〜15μmとすることが必要である。
(D) Al 2 O 3 layer In order to improve the wear resistance of the coated tool, it is conventionally well known that an Al 2 O 3 layer is provided as a surface constituent layer of the hard coating layer. By further forming an Al 2 O 3 layer on the surface of the Ti compound layer or the modified (Ti, Cr) CN layer, the surface of the hard coating layer can be composed of the Al 2 O 3 layer. The wear resistance of the coated tool of the present invention can be further improved.
As the the Al 2 O 3 layer, alpha type the Al 2 O 3 layer, but the Al 2 O 3 layer of κ type the Al 2 O 3 layer such various crystal structures are known, Izu these crystal structures The Al 2 O 3 layer may be vapor deposited and the crystal structure is not particularly limited.
However, when the Al 2 O 3 layer is formed by vapor deposition, if the average layer thickness is less than 1 μm, further improvement in wear resistance of the hard coating layer cannot be expected, while the average layer thickness exceeds 15 μm. If the thickness is too large, chipping is likely to occur. Therefore, the average layer thickness needs to be 1 to 15 μm.

さらに、切削工具の使用前後の識別を目的として、例えば、黄金色の色調を有するTiN層を最外表面層としてさらに蒸着形成することも可能であるが、識別効果という点からは、TiN層の平均層厚は0.1〜1μmあれば十分である。   Furthermore, for the purpose of identification before and after the use of the cutting tool, for example, a TiN layer having a golden color tone can be further vapor-deposited as the outermost surface layer. An average layer thickness of 0.1-1 μm is sufficient.

この発明の被覆工具は、高熱発生を伴うとともに、断続的に大きな衝撃的・機械的な負荷が繰り返しかかる鋼や鋳鉄等の高速断続切削でも、硬質被覆層を構成するTi化合物層の少なくとも1層が従来TiCN層で構成されているためすぐれた高温強度を有し、また、改質(Ti,Cr)CN層がすぐれた高温強度に加えてすぐれた耐熱性を有するため、その結果、硬質被覆層は長期に亘ってすぐれた耐チッピング性とすぐれた耐摩耗性を発揮するようになる。   The coated tool of the present invention has at least one Ti compound layer that constitutes a hard coating layer even in high-speed intermittent cutting of steel, cast iron or the like that is accompanied by high heat generation and repeatedly repeatedly undergoes large impact and mechanical loads. Has a high temperature strength because it is conventionally composed of a TiCN layer, and a modified (Ti, Cr) CN layer has an excellent heat resistance in addition to an excellent high temperature strength, resulting in a hard coating. The layer will exhibit excellent chipping resistance and excellent wear resistance over time.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.3〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle size of 0.3 to 3 μm as raw material powder These raw material powders are blended into the blending composition shown in Table 1, further added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then formed into a compact with a predetermined shape at a pressure of 98 MPa. The green compact was press-molded and vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge portion had R: 0.07 mm. The tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG12041 were manufactured by performing the honing process.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix with a ball mill for 24 hours, dry, and press-mold into a green compact at 98 MPa pressure Then, this green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.09 mm. Tool bases a to f made of TiCN-based cermet having a chip shape conforming to ISO standards / CNMG 120212 were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、硬質被覆層として、Ti化合物層(このうちの少なくとも一層は従来TiCN層)と改質(Ti,Cr)CN層とを、表3、表4、表6に示される条件で、表7に示される組み合わせおよび目標層厚で蒸着形成し、さらに、その表面に、表3に示される条件かつ表7に示される目標層厚でAl23層を蒸着形成することにより本発明被覆工具1〜13を製造した。 Next, on the surfaces of these tool bases A to F and tool bases a to f, an ordinary chemical vapor deposition apparatus is used, and a hard coating layer is formed as a Ti compound layer (of which at least one layer is a conventional TiCN layer) and a modification. A (Ti, Cr) CN layer is formed by vapor deposition under the conditions shown in Table 3, Table 4, and Table 6 with the combinations and target layer thicknesses shown in Table 7, and the surface is shown in Table 3. The coated tools 1 to 13 of the present invention were manufactured by vapor-depositing Al 2 O 3 layers under the conditions and the target layer thicknesses shown in Table 7.

また、比較の目的で、硬質被覆層としてTi化合物層(このうちの少なくとも一層は従来TiCN層)と、従来(Ti,Cr)CN層とを表3、表4、表5に示される条件で、表8に示される組み合わせおよび目標層厚で蒸着形成し、さらに、その表面に、表3に示される条件かつ表8に示される目標層厚でAl23層を蒸着形成することにより比較被覆工具1〜13を製造した。 For comparison purposes, a Ti compound layer (at least one of which is a conventional TiCN layer) and a conventional (Ti, Cr) CN layer as hard coating layers and the conditions shown in Table 3, Table 4, and Table 5 are used. Comparison is made by vapor-depositing with the combinations and target layer thicknesses shown in Table 8 and further depositing an Al 2 O 3 layer on the surface with the conditions shown in Table 3 and the target layer thicknesses shown in Table 8. Coated tools 1-13 were produced.

ついで、上記の本発明被覆工具および比較被覆工具の硬質被覆層を構成する従来TiCN層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の従来TiCN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
次に、本発明被覆工具の硬質被覆層を構成する改質(Ti,Cr)CN層および比較被覆工具の硬質被覆層を構成する従来(Ti,Cr)CN層について、前記と同様に、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記改質(Ti,Cr)CN層および従来(Ti,Cr)CN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, an inclination angle number distribution graph was created using a field emission scanning electron microscope for the conventional TiCN layer constituting the hard coating layer of the above-described coated tool of the present invention and the comparative coated tool.
That is, the tilt angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope with the surface of the conventional TiCN layer as a polished surface, and 15 kV at an incident angle of 70 degrees on the polished surface. A 30 × 50 μm electron backscatter diffraction image apparatus was used to irradiate an electron beam with an acceleration voltage of 1 nA with an irradiation current of 1 nA on each crystal grain having a cubic crystal lattice existing within the measurement range of the polished surface. Is measured at an interval of 0.1 μm / step with respect to the normal of the surface-polished surface and the inclination angle formed by the normal of the {112} plane which is the crystal plane of the crystal grain. Based on the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees were divided for each pitch of 0.25 degrees, and the frequencies existing in each section were totaled.
Next, for the modified (Ti, Cr) CN layer that constitutes the hard coating layer of the coated tool of the present invention and the conventional (Ti, Cr) CN layer that constitutes the hard coating layer of the comparative coated tool, An inclination angle number distribution graph was prepared using an emission scanning electron microscope.
That is, the surface of the modified (Ti, Cr) CN layer and the conventional (Ti, Cr) CN layer is used as a polished surface, and is set in a lens barrel of a field emission scanning electron microscope. An electron backscatter diffraction image apparatus by irradiating an electron beam with an acceleration voltage of 15 kV at an incident angle of 1 degree with an irradiation current of 1 nA on each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface. Is used to measure the inclination angle formed by the normal of the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal of the polished surface at an interval of 0.1 μm / step in a 30 × 50 μm region Based on the measurement results, the measurement inclination angles within the range of 0 to 45 degrees out of the measurement inclination angles are divided for each pitch of 0.25 degrees, and the frequencies existing in each division are tabulated. Created by.

本発明被覆工具5の従来TiCN層の{112}面について求めた傾斜角度数分布グラフを図3に示し、また、本発明被覆工具5の改質(Ti,Cr)CN層の{111}面について求めた傾斜角度数分布グラフを図4に示し、また、比較被覆工具5の従来(Ti,Cr)CN層の{111}面について求めた傾斜角度数分布グラフを図5に示す。
また、従来TiCN層の{112}面、従来(Ti,Cr)CN層および改質(Ti,Cr)CN層の{111}面について求めた傾斜角度数分布グラフにおける最高ピークの存在する傾斜角区分および最高ピークの度数割合を、表7,8にそれぞれ示す。
An inclination angle number distribution graph obtained for the {112} plane of the conventional TiCN layer of the present coated tool 5 is shown in FIG. 3, and the {111} plane of the modified (Ti, Cr) CN layer of the present coated tool 5 An inclination angle number distribution graph obtained with respect to is shown in FIG. 4, and an inclination angle number distribution graph obtained with respect to the {111} plane of the conventional (Ti, Cr) CN layer of the comparative coated tool 5 is shown in FIG.
Further, the inclination angle where the highest peak exists in the inclination angle number distribution graph obtained for the {112} plane of the conventional TiCN layer, the {111} plane of the conventional (Ti, Cr) CN layer and the modified (Ti, Cr) CN layer. Tables 7 and 8 show the frequency ratio of the classification and the highest peak, respectively.

表7に示されるとおり、本発明被覆工具1〜13の従来TiCN層の{112}面の最高ピークの度数割合、改質(Ti,Cr)CN層の{111}面の最高ピークの度数割合は、いずれも45%以上を示している。

これに対して、表8に示されるように、比較被覆工具1〜13の従来TiCN層の{112}面の最高ピークの度数割合は45%以上を示しているものの、従来(Ti,Cr)CN層の{111}面の最高ピークの度数割合はいずれも30%未満の値となっている。
As shown in Table 7, the highest peak frequency ratio of the {112} plane of the conventional TiCN layer of the present coated tools 1 to 13 and the highest peak frequency ratio of the {111} plane of the modified (Ti, Cr) CN layer. Indicates 45% or more.

On the other hand, as shown in Table 8, although the frequency ratio of the highest peak of the {112} plane of the conventional TiCN layer of the comparative coated tools 1 to 13 is 45% or more, the conventional (Ti, Cr) The frequency ratio of the highest peak on the {111} plane of the CN layer is less than 30%.

さらに、上記の本発明被覆工具1〜13および比較被覆工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者は目標組成と実質的に同じ組成を有するTi化合物層と、従来TiCN層および改質(Ti,Cr)CN層からなり、後者についても目標組成と実質的に同じ組成を有するTi化合物層と、従来TiCN層および従来(Ti,Cr)CN層とからなることが確認された。また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。なお、表面層として蒸着形成したAl23層についても、目標層厚と実質的に同じ平均層厚(5点測定の平均値)が測定された。 Further, for the above-described coated tools 1 to 13 and comparative coated tools 1 to 13 described above, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (longitudinal section of the layer). The former is composed of a Ti compound layer having substantially the same composition as the target composition, a conventional TiCN layer and a modified (Ti, Cr) CN layer, and the latter is also substantially the same as the target composition. It was confirmed that the Ti compound layer had a conventional TiCN layer and a conventional (Ti, Cr) CN layer. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (similarly longitudinal section measurement), the average layer thickness (5 The average value of point measurement) was shown. For the Al 2 O 3 layer formed by vapor deposition as the surface layer, the average layer thickness (average value of five-point measurement) substantially the same as the target layer thickness was measured.

つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13および比較被覆工具1〜13について、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min、
切り込み: 1.5 mm、
送り: 0.24 mm/rev、
切削時間: 8 分、
の条件(切削条件Aという)での合金鋼の湿式高速断続切削試験(通常の切削速度は、250 m/min)、
被削材:JIS・S40Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min、
切り込み: 1.5 mm、
送り: 0.35 mm/rev、
切削時間: 10 分、
の条件(切削条件Bという)での炭素鋼の湿式高速断続切削試験(通常の切削速度は、250 m/min)、
被削材:JIS・FCD350の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min、
切り込み: 1.5 mm、
送り: 0.25 mm/rev、
切削時間: 8 分、
の条件(切削条件Cという)でのダクタイル鋳鉄の湿式高速断続切削試験(通常の切削速度は、250 m/min)、
を行い、
いずれの切削試験(水溶性切削油使用)でも切刃の逃げ面摩耗幅を測定した。この測定結果を表9に示した。
Next, in the state where each of the above various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 1 to 13 and the comparative coated tools 1 to 13 are as follows:
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 400 m / min,
Cutting depth: 1.5 mm,
Feed: 0.24 mm / rev,
Cutting time: 8 minutes,
Wet high-speed intermittent cutting test (normal cutting speed is 250 m / min) of alloy steel under the following conditions (referred to as cutting condition A),
Work material: JIS · S40C lengthwise equal length 4 round bar with round groove,
Cutting speed: 400 m / min,
Cutting depth: 1.5 mm,
Feed: 0.35 mm / rev,
Cutting time: 10 minutes,
Wet high-speed intermittent cutting test of carbon steel under the above conditions (referred to as cutting condition B) (normal cutting speed is 250 m / min),
Work material: JIS / FCD350 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 400 m / min,
Cutting depth: 1.5 mm,
Feed: 0.25 mm / rev,
Cutting time: 8 minutes,
Wet high-speed intermittent cutting test (normal cutting speed is 250 m / min) under the conditions (referred to as cutting condition C),
And
In any cutting test (using water-soluble cutting oil), the flank wear width of the cutting edge was measured. The measurement results are shown in Table 9.

Figure 0005003308
Figure 0005003308

Figure 0005003308
Figure 0005003308

Figure 0005003308
Figure 0005003308

Figure 0005003308
Figure 0005003308

Figure 0005003308
Figure 0005003308

Figure 0005003308
Figure 0005003308

Figure 0005003308
Figure 0005003308

Figure 0005003308
Figure 0005003308

Figure 0005003308
Figure 0005003308

表7〜9に示される結果から、本発明被覆工具1〜13は、いずれも硬質被覆層の従来TiCN層の{112}面の最高ピークの度数割合が45%以上であり、これがすぐれた高温強度を有し、さらに、改質(Ti,Cr)CN層の{111}面の最高ピークの度数割合が45%以上を示し、これがすぐれた高温強度とともにすぐれた耐熱性を有することから、高熱発生を伴い、かつ、大きな衝撃的・機械的負荷がかかる鋼や鋳鉄などの高速断続切削加工でも、硬質被覆層はすぐれた高温強度と耐熱性を具備し、その結果として、硬質被覆層がすぐれた耐チッピング性とすぐれた耐摩耗性を発揮するのに対して、硬質被覆層として改質(Ti,Cr)CN層を備えない従来被覆工具1〜13においては、従来(Ti,Cr)CN層の{111}面の最高ピークの度数割合が30%未満であるため、高速断続切削加工においては、硬質被覆層の特に耐熱性が不十分であり、熱塑性変形による偏摩耗の発生等により、硬質被覆層の耐摩耗性が劣ったものとなるか、あるいは、チッピングの発生により、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 7 to 9, the coated tools 1 to 13 of the present invention all have a high peak frequency ratio of 45% or more of the {112} plane of the conventional TiCN layer of the hard coating layer, which is excellent at high temperature. It has high strength, and the frequency ratio of the highest peak of the {111} plane of the modified (Ti, Cr) CN layer is 45% or more, which has excellent high temperature strength and excellent heat resistance. The hard coating layer has excellent high-temperature strength and heat resistance even in high-speed intermittent cutting such as steel and cast iron, which are accompanied by large impacts and mechanical loads. As a result, the hard coating layer is excellent. In the conventional coated tools 1 to 13 that do not have a modified (Ti, Cr) CN layer as a hard coating layer, while exhibiting excellent chipping resistance and excellent wear resistance, the conventional (Ti, Cr) CN {111 of layers Since the frequency ratio of the highest peak of the surface is less than 30%, the heat resistance of the hard coating layer is particularly insufficient in high-speed intermittent cutting, and the resistance of the hard coating layer is increased due to the occurrence of uneven wear due to thermoplastic deformation. It is apparent that the wear life is inferior or that the service life is reached in a relatively short time due to the occurrence of chipping.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、大きな発熱を伴い、しかも、切刃部に大きな衝撃的・機械的負荷がかかる高速断続切削加工でも、硬質被覆層がすぐれた耐チッピング性ばかりかすぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention not only performs continuous cutting and intermittent cutting under normal conditions such as various steels and cast irons, but also generates a large amount of heat, and also has a large impact / mechanical effect on the cutting edge. Even in high-speed interrupted cutting with high load, the hard coating layer exhibits not only excellent chipping resistance but also excellent wear resistance, and exhibits excellent cutting performance over a long period of time. In addition, it is possible to sufficiently satisfy the labor-saving and energy-saving of the cutting process and the cost reduction.

硬質被覆層を構成する従来TiCN層における結晶粒の{112}面の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle of the {112} plane of the crystal grain in the conventional TiCN layer which comprises a hard coating layer. 硬質被覆層を構成する改質(Ti,Cr)CN層における結晶粒の{111}面の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle of the {111} plane of the crystal grain in the modification | reformation (Ti, Cr) CN layer which comprises a hard coating layer. 本発明被覆工具5の硬質被覆層を構成する従来TiCN層の{112}面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the {112} plane of the conventional TiCN layer which comprises the hard coating layer of this invention coated tool 5. 本発明被覆工具5の硬質被覆層を構成する改質(Ti,Cr)CN層の{111}面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the {111} plane of the modified (Ti, Cr) CN layer constituting the hard coating layer of the present coated tool 5. 比較被覆工具5の硬質被覆層を構成する従来(Ti,Cr)CN層の{111}面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the {111} plane of the conventional (Ti, Cr) CN layer constituting the hard coating layer of the comparative coating tool 5.

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、4〜20μmの合計平均層厚を有する硬質被覆層として、少なくとも、Ti化合物層とTiとCrの炭窒化物層とを蒸着形成した表面被覆切削工具において、
(a)Ti化合物層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、
(b)上記Ti化合物層のうちの少なくとも1層は、2〜10μmの平均層厚を有し、かつ、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すTiの炭窒化物層であり、
(c)上記TiとCrの炭窒化物層は、2〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XCr)CNで表した場合、原子比で、X:0.12〜0.2を満足するTiとCrの炭窒化物層であり、
さらに、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すTiとCrの炭窒化物層である、
ことを特徴とする表面被覆切削工具。
At least a Ti compound layer and a Ti and Cr carbonitride as a hard coating layer having a total average layer thickness of 4 to 20 μm on the surface of a tool base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet In a surface-coated cutting tool in which a layer is formed by vapor deposition,
(A) The Ti compound layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer,
(B) At least one of the Ti compound layers has an average layer thickness of 2 to 10 μm, and a cubic crystal existing within the measurement range of the surface polished surface using a field emission scanning electron microscope. The crystal grains having a lattice are irradiated with an electron beam, and the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface-polished surface. In the inclination angle number distribution graph formed by dividing the measured inclination angles within the range of 0 to 45 degrees out of the inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each section, 0 The highest peak exists in the inclination angle section within the range of -10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire degrees in the inclination angle frequency distribution graph. Ti carbonitride layer showing an inclination angle distribution graph Yes,
(C) The Ti and Cr carbonitride layer has an average layer thickness of 2 to 15 μm, and
When represented by composition formula: (Ti 1-X Cr X ) CN, it is a carbonitride layer of Ti and Cr that satisfies X: 0.12-0.2 in atomic ratio,
Further, by using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the normal line of the surface polishing surface is The inclination angle formed by the normal line of the {111} plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set every pitch of 0.25 degrees. In the inclination angle number distribution graph obtained by summing up the frequencies existing in each section, the highest peak is present in the inclination angle section in the range of 0 to 10 degrees, and within the range of 0 to 10 degrees. Is a Ti and Cr carbonitride layer showing an inclination angle distribution graph that occupies a ratio of 45% or more of the entire frequencies in the inclination angle distribution graph.
A surface-coated cutting tool characterized by that.
前記4〜20μmの合計平均層厚を有する硬質被覆層の表面に、さらに、1〜15μmの平均層厚の酸化アルミニウム層を蒸着形成したことを特徴とする、請求項1記載の表面被覆切削工具。   The surface-coated cutting tool according to claim 1, wherein an aluminum oxide layer having an average layer thickness of 1 to 15 µm is further deposited on the surface of the hard coating layer having a total average layer thickness of 4 to 20 µm. .
JP2007168864A 2007-06-27 2007-06-27 Surface coated cutting tool Expired - Fee Related JP5003308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168864A JP5003308B2 (en) 2007-06-27 2007-06-27 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168864A JP5003308B2 (en) 2007-06-27 2007-06-27 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2009006427A JP2009006427A (en) 2009-01-15
JP5003308B2 true JP5003308B2 (en) 2012-08-15

Family

ID=40322057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168864A Expired - Fee Related JP5003308B2 (en) 2007-06-27 2007-06-27 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5003308B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023897B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5023898B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5009940B2 (en) 2009-01-15 2012-08-29 パナソニック株式会社 Electric shaver
WO2023162682A1 (en) * 2022-02-28 2023-08-31 京セラ株式会社 Coated tool and cutting tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249277B2 (en) * 1993-12-17 2002-01-21 東芝タンガロイ株式会社 Wear resistant coating
JP4004133B2 (en) * 1998-03-10 2007-11-07 日立ツール株式会社 Titanium carbonitride coated tool
JP4466841B2 (en) * 2004-06-30 2010-05-26 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4756453B2 (en) * 2005-06-01 2011-08-24 三菱マテリアル株式会社 Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4811781B2 (en) * 2005-06-02 2011-11-09 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Also Published As

Publication number Publication date
JP2009006427A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5023839B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP6139057B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4747388B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4730522B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP5003308B2 (en) Surface coated cutting tool
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5023896B2 (en) Surface coated cutting tool
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4793749B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5029099B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP5023897B2 (en) Surface coated cutting tool
JP5023895B2 (en) Surface coated cutting tool
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4748361B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP5019258B2 (en) Surface coated cutting tool
JP5892380B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed intermittent cutting
JP5019257B2 (en) Surface coated cutting tool
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5067963B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4483510B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5003308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees