JP4474644B2 - Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting - Google Patents

Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting Download PDF

Info

Publication number
JP4474644B2
JP4474644B2 JP2005014959A JP2005014959A JP4474644B2 JP 4474644 B2 JP4474644 B2 JP 4474644B2 JP 2005014959 A JP2005014959 A JP 2005014959A JP 2005014959 A JP2005014959 A JP 2005014959A JP 4474644 B2 JP4474644 B2 JP 4474644B2
Authority
JP
Japan
Prior art keywords
layer
type
hard coating
crystal
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005014959A
Other languages
Japanese (ja)
Other versions
JP2006218546A (en
Inventor
惠滋 中村
晃 長田
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005014959A priority Critical patent/JP4474644B2/en
Publication of JP2006218546A publication Critical patent/JP2006218546A/en
Application granted granted Critical
Publication of JP4474644B2 publication Critical patent/JP4474644B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、特に各種の鋼や鋳鉄などの被削材の断続切削加工を、高速切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   This invention is a surface-coated cermet cutting tool that exhibits excellent chipping resistance even when intermittent cutting of various materials such as steel and cast iron is performed under high-speed cutting conditions ( Hereinafter, it is related to a coated cermet tool.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足するAlとCrの複合酸化物[以下、α型(Al,Cr)23で示す)層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることも良く知られるところである。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer consisting of one or two or more layers of carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
(B) the upper layer has an average layer thickness of 1 to 15 μm and an α-type crystal structure in the state of chemical vapor deposition;
Composition formula: (Al 1-X Cr X ) 2 O 3, ( provided that an atomic ratio, X: 0.01 to 0.1),
A composite oxide of Al and Cr (hereinafter referred to as α-type (Al, Cr) 2 O 3 ) layer satisfying the following conditions:
There is known a coated cermet tool formed by vapor-depositing a hard coating layer composed of (a) and (b) above, and this coated cermet tool can be used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is well known that it is used.

また、上記の従来被覆サーメット工具において、硬質被覆層の上部層であるα型(Al,Cr)23層が、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件で蒸着形成されることも知られている。
さらに、上記の従来被覆サーメット工具の硬質被覆層の構成層は、一般に粒状結晶組織を有するが、下部層であるTi化合物層のうちのTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
Moreover, in the above conventional coated cermet tool, the α-type (Al, Cr) 2 O 3 layer, which is the upper layer of the hard coating layer, is obtained by a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
It is also known that vapor deposition is performed under the following conditions.
Furthermore, the constituent layer of the hard coating layer of the above conventional coated cermet tool generally has a granular crystal structure, but the TiCN layer of the Ti compound layer as the lower layer is used for the purpose of improving the strength of the layer itself. It is also known that a chemical vapor deposition system uses a mixed gas containing organic carbonitrides as a reaction gas and is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. to have a vertically grown crystal structure. It has been.

さらに、上記の被覆サーメット工具の硬質被覆層を構成するα型(Al,Cr)23層が、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造、すなわち図1にα型(Al,Cr)23の単位格子の原子配列が模式図[(a)は斜視図、(b)は横断面1〜9の平面図]で示される結晶構造を有する結晶粒で構成されることも知られている。
特開昭52−66508号公報 特開平6−8010号公報
Further, the α-type (Al, Cr) 2 O 3 layer constituting the hard coating layer of the above-mentioned coated cermet tool is a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al, Cr, and oxygen are present at lattice points. FIG. 1 shows a schematic diagram of the atomic arrangement of the unit cell of α-type (Al, Cr) 2 O 3 in FIG. 1 ((a) is a perspective view, (b) is a plan view of cross sections 1 to 9). It is also known that it is composed of crystal grains having a crystal structure.
JP 52-66508 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを断続切削加工を高速加工条件で行うのに用いた場合には、硬質被覆層を構成するα型(Al,Cr)23層が十分な耐衝撃性を具備するものでないために、前記硬質被覆層にチッピング(微少欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. In cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron, but especially when this is used to perform interrupted cutting under high speed processing conditions. Since the α type (Al, Cr) 2 O 3 layer constituting the hard coating layer does not have sufficient impact resistance, chipping (slight chipping) is likely to occur in the hard coating layer, As a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記のα型(Al,Cr)23層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記α型(Al,Cr)23層の耐衝撃性向上を図るべく研究を行った結果、
(a)上記の従来被覆サーメット工具の硬質被覆層を構成する下部層であるTi化合物層を形成した後で、例えば通常の化学蒸着装置にて、酸化クロム(以下、Crで示す)層を0.1〜3μmの平均層厚で蒸着形成し、この上に上部層であるα型(Al,Cr)23層を蒸着形成すると、この結果のα型(Al,Cr)23層は、前記中間層として形成したCr層によって結晶配向および組織に強い影響を受け、材質的に改質されて、高温強度が一段と向上し、すぐれた耐機械的衝撃性を具備するようになることから、硬質被覆層の上部層が前記中間層として形成したCr層上に蒸着形成されたα型(Al,Cr)23層(以下、「改質α型(Al,Cr)23層」という)、下部層が上記Ti化合物層で構成された被覆サーメット工具は、特に激しい機械的衝撃を伴なう高速断続切削加工でも、前記硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
In view of the above, the present inventors pay attention to the coated cermet tool in which the α-type (Al, Cr) 2 O 3 layer constitutes the upper layer of the hard coating layer, and particularly the α-type ( As a result of research to improve the impact resistance of the Al, Cr) 2 O 3 layer,
(A) After forming a Ti compound layer, which is a lower layer constituting the hard coating layer of the above-described conventional coated cermet tool, for example, in a normal chemical vapor deposition apparatus, chromium oxide (hereinafter referred to as Cr 2 O 3 ) When the layer is vapor-deposited with an average layer thickness of 0.1 to 3 μm and the α-type (Al, Cr) 2 O 3 layer as the upper layer is vapor-deposited thereon, the resulting α-type (Al, Cr) 2 The O 3 layer is strongly influenced by the crystal orientation and structure by the Cr 2 O 3 layer formed as the intermediate layer, and is reformed materially to further improve the high-temperature strength and to have excellent mechanical impact resistance. Therefore, an α-type (Al, Cr) 2 O 3 layer (hereinafter referred to as “modified α”) formed by vapor deposition on the Cr 2 O 3 layer formed as the intermediate layer as the upper layer of the hard coating layer. type (Al, Cr) of 2 O 3 layer "), the lower layer is composed of the Ti compound layer The coated cermet tool has excellent chipping resistance and exhibits excellent wear resistance over a long period of time, especially in high-speed intermittent cutting with severe mechanical impact. thing.

(b)上記の従来被覆サーメット工具の硬質被覆層の上部層を構成するα型(Al,Cr)23層(以下、「従来α型(Al,Cr)23層」という)と上記(a)の改質α型(Al,Cr)23層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角[図2(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記従来α型(Al,Cr)23層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質α型(Al,Cr)23層は、図4に例示される通り、Σ3の分布割合が60〜80%のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、上記中間層であるCr層の平均層厚によって変化すること。
なお、上記の改質α型(Al,Cr)23層および従来α型(Al,Cr)23層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると図3(a)〜(c)に示される通りとなる。
(B) an α-type (Al, Cr) 2 O 3 layer (hereinafter referred to as “conventional α-type (Al, Cr) 2 O 3 layer”) constituting the upper layer of the hard coating layer of the conventional coated cermet tool; Regarding the modified α-type (Al, Cr) 2 O 3 layer of (a) above,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the polished surface [FIG. 2 (a) shows the tilt angle of the crystal plane. (B) shows the case where the inclination angle is 45 degrees, all the inclination angles of the individual crystal grains including these angles are measured. In this case, the crystal grains Has a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al, Cr, and oxygen are present at lattice points as described above, and are adjacent to each other based on the measured tilt angle. Each of the constituent atoms forms one constituent atom between the crystal grains. The distribution of lattice points (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is 2 on the crystal structure of the corundum hexagonal close-packed crystal) Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist.) , When a constituent atomic shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 is created (in this case, the constituent atomic shared lattice point forms of Σ5, Σ9, Σ15, Σ25, and Σ27 are The conventional α-type (Al, Cr) 2 O 3 layer is a relatively low constituent atomic shared lattice point distribution graph having a Σ3 distribution ratio of 30% or less as illustrated in FIG. Before showing Reforming α-type (Al, Cr) 2 O 3 layer, as illustrated in FIG. 4, the distribution ratio of Σ3 showed extremely high atom sharing lattice point distribution graph of 60-80%, the distribution of this high Σ3 The ratio varies depending on the average layer thickness of the Cr 2 O 3 layer as the intermediate layer.
In the modified α-type (Al, Cr) 2 O 3 layer and the conventional α-type (Al, Cr) 2 O 3 layer, among the constituent atomic shared lattice point forms at the interface between adjacent crystal grains The unit forms of Σ3, Σ7, and Σ11 are illustrated in schematic diagrams as shown in FIGS.

(c)上記の改質α型(Al,Cr)23層は、α型(Al,Cr)23層自体が具備するすぐれた高温硬さと耐熱性に加えて、上記従来α型(Al,Cr)23層に比して一段と高い高温強度を具備するようになるので、これを硬質被覆層の上部層として蒸着形成してなる被覆サーメット工具は、同下部層であるTi化合物層が具備するすぐれた高温強度と相俟って、特に断続切削加工を高速切削条件で行うのに用いた場合にも、同じく前記従来α型(Al,Cr)23層を上部層として蒸着形成してなる従来被覆サーメット工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮すること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The modified α-type (Al, Cr) 2 O 3 layer described above is the conventional α-type in addition to the excellent high-temperature hardness and heat resistance of the α-type (Al, Cr) 2 O 3 layer itself. Compared with the (Al, Cr) 2 O 3 layer, it has a higher high-temperature strength, so that the coated cermet tool formed by vapor deposition as the upper layer of the hard coating layer is the Ti layer which is the lower layer. In combination with the excellent high-temperature strength of the compound layer, the conventional α-type (Al, Cr) 2 O 3 layer is also used as the upper layer, particularly when intermittent cutting is performed under high-speed cutting conditions. As compared with the conventional coated cermet tool formed by vapor deposition, the hard coating layer exhibits a superior chipping resistance.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)中間層が、0.1〜3μmの平均層厚を有するCr層、
(c)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60〜80%である構成原子共有格子点分布グラフを示す改質α型(Al,Cr)23層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) a Ti compound layer in which the lower layer is composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and has an overall average layer thickness of 3 to 20 μm,
(B) a Cr 2 O 3 layer in which the intermediate layer has an average layer thickness of 0.1 to 3 μm,
(C) the upper layer has an average layer thickness of 1 to 15 μm and an α-type crystal structure in the state of chemical vapor deposition;
Composition formula: (Al 1-X Cr X ) 2 O 3, ( provided that an atomic ratio, X: 0.01 to 0.1),
And using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the normal to the surface polished surface is Then, the inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains, is measured. In this case, the crystal grains are composed of Al, Cr, and oxygen at lattice points. Each of the constituent atoms has a crystal structure of a corundum hexagonal close-packed crystal structure in which each constituent atom exists, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains. The distribution of lattice points (constituent atom shared lattice points) that share one constituent atom between them is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is a corundum type) 2 or more due to the hexagonal close-packed crystal structure Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist). In the constituent atom sharing lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1, the constituent atom having the highest peak in Σ3 and the distribution ratio in the entire ΣN + 1 of the Σ3 is 60 to 80% Modified α-type (Al, Cr) 2 O 3 layer showing a shared lattice point distribution graph,
The hard coating layer formed by vapor-depositing the hard coating layer composed of the above (a) to (c) is characterized by a coated cermet tool that exhibits excellent chipping resistance in high-speed intermittent cutting.

以下に、この発明の被覆サーメット工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を説明する。
(a)下部層のTi化合物層
Ti化合物層は、中間層であるCr層を介して、上部層である改質α型(Al,Cr)23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体および前記Cr層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Hereinafter, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described.
(A) Ti compound layer of the lower layer The Ti compound layer exists as a lower layer of the modified α-type (Al, Cr) 2 O 3 layer that is the upper layer through the Cr 2 O 3 layer that is the intermediate layer. In addition to contributing to improving the high temperature strength of the hard coating layer due to its excellent high temperature strength, it adheres firmly to both the tool substrate and the Cr 2 O 3 layer, and thus the adhesion of the hard coating layer to the tool substrate However, if the average layer thickness is less than 3 μm, the above-mentioned effect cannot be fully exerted. On the other hand, if the average layer thickness exceeds 20 μm, particularly in high-speed cutting with high heat generation. Since it becomes easy to cause thermoplastic deformation and this causes uneven wear, the average layer thickness was determined to be 3 to 20 μm.

(b)中間層のCr
Cr層は、上記の通り上部層であるα型(Al,Cr)23層の蒸着時の結晶配向および組織に影響を及ぼし、その平均層厚を調整することによって前記α型(Al,Cr)23層の構成原子共有格子点分布グラフにおけるΣ3の分布割合を60〜80%とする作用を有するが、その平均層厚が0.1μm未満では前記Σ3の分布割合を60%以上にすることができず、この場合は所望のすぐれた高温強度を前記α型(Al,Cr)23層に確保することができず、一方、その平均層厚を3μmを越えて厚くしても、前記Σ3の分布割合が飽和し、これを80%以上にすることはできず、むしろ3μmを越えて厚くなり過ぎると、Cr層自身相対的に高温強度の高いものでないため、硬質被覆層の高温強度に急激に低下傾向が現れるようになることから、その平均層厚を0.1〜3μmと定めた。
(B) an intermediate layer Cr 2 O 3 layer Cr 2 O 3 layer of, affects the street α type which is the upper layer of the (Al, Cr) at the time of deposition of the 2 O 3 layer crystal orientation and structure, its By adjusting the average layer thickness, the α-type (Al, Cr) 2 O 3 layer has the effect of setting the distribution ratio of Σ3 in the constituent atomic shared lattice point distribution graph of 60 to 80%, but the average layer thickness is If it is less than 0.1 μm, the distribution ratio of Σ3 cannot be increased to 60% or more, and in this case, the desired excellent high-temperature strength cannot be ensured in the α-type (Al, Cr) 2 O 3 layer. whereas, even when the thickness of the average layer thickness beyond 3 [mu] m, the distribution ratio of Σ3 is saturated, which can not be more than 80%, when too thick rather beyond the 3 [mu] m, Cr 2 Hard coating layer because the O 3 layer itself is not relatively high-temperature strength Since the decreasing tendency appears rapidly in the high-temperature strength, the average layer thickness was determined to be 0.1 to 3 μm.

(c)上部層の改質α型(Al,Cr)23
上記の改質α型(Al,Cr)23層において、これの構成成分であるAlは層の高温硬さおよび耐熱性を向上させ、同Cr成分にはAl成分との共存において、さらに一段と耐熱性を向上させる作用を有するが、Crの含有割合を示すX値が原子比で0.01未満では前記作用に所望の向上効果を確保することができず、一方同X値が0.1を越えると高温強度に低下傾向が現れるようになることから、前記X値を0.01〜0.1と定めた。
また、上記の改質α型(Al,Cr)23層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り中間層であるCr層の平均層厚を調整することによって60〜80%とすることができるが、この場合Σ3の分布割合が60%未満では、高速断続切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度を確保することができず、したがってΣ3の分布割合は高ければ高いほど望ましいが、Σ3の分布割合を80%を越えて高くすることは中間層であるCr層の平均層厚と相俟って困難であることから、Σ3の分布割合を60〜80%と定めた。
さらに、上記改質α型(Al,Cr)23層は、上記の通りα型(Al,Cr)23層自体のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が1μm未満では前記改質α型(Al,Cr)23層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を1〜15μmと定めた。
(C) Modified α-type (Al, Cr) 2 O 3 layer of the upper layer In the above-mentioned modified α-type (Al, Cr) 2 O 3 layer, Al, which is a component of the modified α-type (Al, Cr) 2 O 3 layer, The Cr component has the effect of further improving the heat resistance in the coexistence of the Al component with the Cr component. However, when the X value indicating the Cr content ratio is less than 0.01 in terms of atomic ratio, the above effect is achieved. The desired improvement effect cannot be ensured. On the other hand, if the X value exceeds 0.1, the high temperature strength tends to decrease. Therefore, the X value is set to 0.01 to 0.1. .
In addition, the distribution ratio of Σ3 in the constituent atomic shared lattice point distribution graph of the modified α-type (Al, Cr) 2 O 3 layer adjusts the average layer thickness of the Cr 2 O 3 layer as an intermediate layer as described above. However, in this case, if the distribution ratio of Σ3 is less than 60%, it is possible to ensure excellent high-temperature strength that does not cause chipping in the hard coating layer by high-speed intermittent cutting. Therefore, the higher the distribution ratio of Σ3, the better. However, it is difficult to increase the distribution ratio of Σ3 beyond 80% in combination with the average layer thickness of the Cr 2 O 3 layer as an intermediate layer. For this reason, the distribution ratio of Σ3 was determined to be 60 to 80%.
Furthermore, the modified α-type (Al, Cr) 2 O 3 layer was further improved in addition to the excellent high-temperature hardness and heat resistance of the α-type (Al, Cr) 2 O 3 layer itself as described above. Although it has high-temperature strength, if the average layer thickness is less than 1 μm, the above-mentioned properties of the modified α-type (Al, Cr) 2 O 3 layer cannot be sufficiently provided in the hard coating layer, On the other hand, when the average layer thickness exceeds 15 μm, thermoplastic deformation that causes uneven wear tends to occur, and wear accelerates. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if it is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、各種の鋼や鋳鉄などの切削加工を、強い機械的衝撃を伴なう断続切削加工を高速切削条件で行うのに用いた場合にも、硬質被覆層の上部層を構成する改質α型(Al,Cr)23層が、(Al,Cr)23自身のもつすぐれた高温硬さと耐熱性に加えて、一段とすぐれた高温強度を具備することから、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated cermet tool according to the present invention can be used to cut various steels and cast irons, etc., when performing intermittent cutting with strong mechanical impact under high-speed cutting conditions. Since the modified α-type (Al, Cr) 2 O 3 layer to be configured has excellent high-temperature strength in addition to the excellent high-temperature hardness and heat resistance of (Al, Cr) 2 O 3 itself, It exhibits excellent chipping resistance and can further extend the service life.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で30時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, added with wax, ball mill mixed in acetone for 30 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで30時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 30 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、同じく表3に示される条件で、かつ表4に示される目標層厚でCr層を中間層として蒸着形成し、さらに同じく表3に示される条件でα型(Al,Cr)23層(a)〜(f)のうちのいずれかを表4に示される組み合わせおよび目標層厚で硬質被覆層の上部層として蒸着形成することにより、前記α型(Al,Cr)23層(a)〜(f)のいずれも中間層としての前記Cr層の作用で改質α型(Al,Cr)23層とした本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 4 under the conditions shown in Table 4 below are the conditions for forming the TiCN layer having the vertically elongated crystal structure described, and other conditions for forming the normal granular crystal structure. And a Ti compound layer having a target layer thickness as a lower layer of the hard coating layer, and then forming a Cr 2 O 3 layer as an intermediate layer under the conditions shown in Table 3 and with the target layer thickness shown in Table 4 Vapor-deposited and further coated with α-type (Al, Cr) 2 O 3 layers (a) to (f) under the conditions shown in Table 3 with the combinations and target layer thicknesses shown in Table 4 By vapor deposition as the upper layer of the layer Any of the α-type (Al, Cr) 2 O 3 layers (a) to (f) is modified α-type (Al, Cr) 2 O 3 layer by the action of the Cr 2 O 3 layer as an intermediate layer. Invented coated cermet tools 1 to 13 were produced, respectively.

また、比較の目的で、表5に示される通り、硬質被覆層の中間層としてのCr層の形成を行わない(この結果上部層としてのα型(Al,Cr)23層(a)〜(f)のいずれも従来α型(Al,Cr)23層で構成されることになる)以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。 For comparison purposes, as shown in Table 5, the formation of the Cr 2 O 3 layer as the intermediate layer of the hard coating layer is not performed (the result is the α-type (Al, Cr) 2 O 3 layer as the upper layer). Conventional coated cermet tools 1 to 13 were manufactured under the same conditions except that (a) to (f) are all formed of a conventional α-type (Al, Cr) 2 O 3 layer).

ついで、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の上部層を構成する改質α型(Al,Cr)23層および従来α型(Al,Cr)23層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質α型(Al,Cr)23層および従来α型(Al,Cr)23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
Subsequently, the modified α-type (Al, Cr) 2 O 3 layer and the conventional α-type (Al, For each of the Cr) 2 O 3 layers, a constituent atom shared lattice point distribution graph was created using a field emission scanning electron microscope.
That is, the atom sharing lattice point distribution graphs, the above modified α-type (Al, Cr) 2 O 3 layer and conventional α-type (Al, Cr) of the surface of the 2 O 3 layer in a state in which the polishing surface, A crystal which is set in a lens barrel of a field emission scanning electron microscope and exists in the measurement range of the surface polished surface with an electron beam having an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA on the polished surface. Irradiate each grain, and use an electron backscatter diffraction imaging apparatus, and a region of 30 × 50 μm at a spacing of 0.1 μm / step is the crystal plane of the crystal grain with respect to the normal of the surface polished surface The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane is measured, and based on the measured tilt angle obtained as a result, each of the constituent atoms is formed at the interface between adjacent crystal grains. Lattice points sharing one constituent atom between the crystal grains (configuration (Non-shared lattice points) distribution is calculated, and N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more in the crystal structure of the corundum hexagonal close-packed crystal) However, when the upper limit of N is 28 from the point of distribution frequency, there is no even number of 4, 8, 14, 24, and 26) When the existing constituent atom shared lattice point form is expressed as ΣN + 1, It was created by determining the distribution ratio of ΣN + 1 in the entire ΣN + 1.

この結果得られた各種の改質α型(Al,Cr)23層および従来(Al,Cr)23層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ表4,5にそれぞれ示した。 In the graph of constituent atomic shared lattice distributions of various modified α-type (Al, Cr) 2 O 3 layers and conventional (Al, Cr) 2 O 3 layers obtained as a result, the entire ΣN + 1 (from the above results, Σ3, The distribution ratios of Σ3 in the total distribution ratios of Σ7, Σ11, Σ13, Σ17, Σ19, Σ21, Σ23, and Σ29) are shown in Tables 4 and 5, respectively.

上記の各種の構成原子共有格子点分布グラフにおいて、表4,5にそれぞれ示される通り、本発明被覆サーメット工具の改質α型(Al,Cr)23層は、いずれもΣ3の占める分布割合が60〜80%である構成原子共有格子点分布グラフを示すのに対して、従来被覆サーメット工具の従来α型(Al,Cr)23層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆サーメット工具4の改質α型(Al,Cr)23層の構成原子共有格子点分布グラフ、図5は、従来被覆サーメット工具4の従来α型(Al,Cr)23層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-mentioned various constituent atomic share lattice point distribution graphs, as shown in Tables 4 and 5, each of the modified α-type (Al, Cr) 2 O 3 layer of the coated cermet tool of the present invention is a distribution occupied by Σ3. While the distribution graph of the constituent atomic shared lattice points is 60-80%, the conventional α-type (Al, Cr) 2 O 3 layer of the conventional coated cermet tool has a Σ3 distribution ratio of 30%. The following constituent atom shared lattice point distribution graph was shown.
4 is a graph showing the distribution of constituent atomic lattice points of the modified α-type (Al, Cr) 2 O 3 layer of the coated cermet tool 4 of the present invention, and FIG. , Cr) 2 O 3 layer, each showing a constituent atomic shared lattice point distribution graph.

また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement). , Each showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCr420Hの長さ方向等間隔4本縦溝入り丸棒、
切削速度:330m/min、
切り込み:1.5mm、
送り:0.15mm/rev、
切削時間:10分、
の条件(切削条件Aという)での合金鋼の湿式高速断続切削試験(通常の切削速度は150m/min)、
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min、
切り込み:2mm、
送り:0.2mm/rev、
切削時間:10分、
の条件(切削条件Bという)でのダクタイル鋳鉄の湿式高速断続切削試験(通常の切削速度は120m/min)、さらに、
被削材:JIS・S20Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:405m/min、
切り込み:1.5mm、
送り:0.12mm/rev、
切削時間:10分、
の条件(切削条件Cという)での炭素鋼の湿式高速断続切削試験(通常の切削速度は200m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, for the various coated cermet tools of the present invention coated cermet tool 1-13 and the conventional coated cermet tool 1-13, all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS · SCr420H lengthwise equidistant 4 round bars with vertical grooves,
Cutting speed: 330 m / min,
Incision: 1.5mm,
Feed: 0.15mm / rev,
Cutting time: 10 minutes,
Wet high-speed intermittent cutting test (normal cutting speed is 150 m / min) of alloy steel under the following conditions (referred to as cutting condition A),
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 300 m / min,
Cutting depth: 2mm,
Feed: 0.2mm / rev,
Cutting time: 10 minutes,
Wet high-speed intermittent cutting test (normal cutting speed is 120 m / min) of ductile cast iron under the following conditions (referred to as cutting condition B),
Work material: JIS / S20C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 405 m / min,
Incision: 1.5mm,
Feed: 0.12 mm / rev,
Cutting time: 10 minutes,
Wet high-speed intermittent cutting test (normal cutting speed is 200 m / min) of carbon steel under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.

Figure 0004474644
Figure 0004474644

Figure 0004474644
Figure 0004474644

Figure 0004474644
Figure 0004474644

Figure 0004474644
Figure 0004474644

Figure 0004474644
Figure 0004474644

Figure 0004474644
Figure 0004474644

表4〜6に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層が、Σ3の分布割合が60〜80%の構成原子共有格子点分布グラフを示す改質α型(Al,Cr)23層で構成され、機械的衝撃がきわめて高い鋼や鋳鉄の高速断続切削でも、前記改質α型(Al,Cr)23層が一段とすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来α型(Al,Cr)23層で構成された従来被覆サーメット工具1〜13においては、いずれも高速断続切削では硬質被覆層の耐機械的衝撃性が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 6, all of the coated cermet tools 1 to 13 of the present invention show a modified atomic shared lattice point distribution graph in which the upper layer of the hard coating layer has a Σ3 distribution ratio of 60 to 80%. consists of quality α-type (Al, Cr) 2 O 3 layer, even at high intermittent cutting of mechanical impact is very high steel or cast iron, the reforming α-type (Al, Cr) 2 O 3 layer is more excellent high temperature Since it has strength and excellent chipping resistance, the occurrence of chipping in the hard coating layer is remarkably suppressed, and it exhibits excellent wear resistance, whereas the upper layer of the hard coating layer has a distribution of Σ3 In the conventional coated cermet tools 1 to 13 composed of the conventional α-type (Al, Cr) 2 O 3 layer showing a constituent atomic shared lattice point distribution graph with a ratio of 30% or less, all of them are hard coated layers in high-speed intermittent cutting The mechanical shock resistance is insufficient For this reason, it is apparent that chipping occurs in the hard coating layer and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工は勿論のこと、特に高い高温強度が要求される高速断続切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention can be used not only for continuous cutting and intermittent cutting under normal conditions such as various types of steel and cast iron, but also for high-speed intermittent cutting that requires particularly high high-temperature strength. Since the hard coating layer exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, it is sufficient for improving the performance of cutting equipment, saving labor and energy, and reducing costs It can respond to satisfaction.

α型(Al,Cr)23層を構成するコランダム型六方最密晶の単位格子の原子配列を示す模式図にして、(a)は斜視図、(b)は横断面1〜9の平面図である。It is a schematic diagram showing the atomic arrangement of the unit cell of the corundum type hexagonal close-packed crystal constituting the α-type (Al, Cr) 2 O 3 layer, (a) is a perspective view, (b) is a cross section of 1-9 It is a top view. α型(Al,Cr)23層における結晶粒の(0001)面および(10-10)面の傾斜角の測定態様を示す概略説明図である。α-type (Al, Cr) is a schematic explanatory view showing the measurement mode of the crystal grains (0001) plane and (10-10) plane inclination angle of the 2 O 3 layer. 相互に隣接する結晶粒の界面における構成原子共有格子点形態の単位形態を示す模式図にして、(a)はΣ3、(b)はΣ7(c)はΣ11の単位形態をそれぞれ示す図である。FIG. 4 is a schematic diagram showing unit forms of constituent atomic shared lattice points at the interface between adjacent crystal grains, where (a) shows Σ3, (b) shows Σ7 (c) and Σ11 unit forms. . 本発明被覆サーメット工具4の改質α型(Al,Cr)23層の構成原子共有格子点分布グラフである。6 is a constituent atomic shared lattice point distribution graph of a modified α-type (Al, Cr) 2 O 3 layer of the coated cermet tool 4 of the present invention. 従来被覆サーメット工具4の従来α型(Al,Cr)23層の構成原子共有格子点分布グラフである。4 is a graph showing the distribution of constituent atomic shared lattice points of a conventional α-type (Al, Cr) 2 O 3 layer of a conventional coated cermet tool 4.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)中間層が、0.1〜3μmの平均層厚を有する酸化クロム層、
(c)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60〜80%である構成原子共有格子点分布グラフを示すAlとCrの複合酸化物層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and has an overall average of 3 to 20 μm. A Ti compound layer having a layer thickness,
(B) a chromium oxide layer in which the intermediate layer has an average layer thickness of 0.1 to 3 μm;
(C) The upper layer has an average layer thickness of 1 to 15 μm and an α-type crystal structure in a state of chemical vapor deposition;
Composition formula: (Al 1-X Cr X ) 2 O 3, ( provided that an atomic ratio, X: 0.01 to 0.1),
And using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the normal to the surface polished surface is Then, the inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains, is measured. In this case, the crystal grains are composed of Al, Cr, and oxygen at lattice points. Each of the constituent atoms has a crystal structure of a corundum hexagonal close-packed crystal structure in which each constituent atom exists, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains. The distribution of lattice points (constituent atom shared lattice points) that share one constituent atom between them is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is a corundum type) 2 or more due to the hexagonal close-packed crystal structure Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist). In the constituent atom sharing lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1, the constituent atom having the highest peak in Σ3 and the distribution ratio in the entire ΣN + 1 of the Σ3 is 60 to 80% A composite oxide layer of Al and Cr showing a shared lattice point distribution graph,
A surface-coated cermet cutting tool in which the hard coating layer formed by vapor deposition of the hard coating layer constituted by (a) to (c) above exhibits excellent chipping resistance in high-speed intermittent cutting.
JP2005014959A 2005-01-14 2005-01-24 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting Expired - Fee Related JP4474644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014959A JP4474644B2 (en) 2005-01-14 2005-01-24 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005007023 2005-01-14
JP2005014959A JP4474644B2 (en) 2005-01-14 2005-01-24 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2006218546A JP2006218546A (en) 2006-08-24
JP4474644B2 true JP4474644B2 (en) 2010-06-09

Family

ID=36981195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014959A Expired - Fee Related JP4474644B2 (en) 2005-01-14 2005-01-24 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Country Status (1)

Country Link
JP (1) JP4474644B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240667B2 (en) * 2009-03-10 2013-07-17 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance in high-speed continuous cutting of hard alloy steel
JP5240668B2 (en) * 2009-03-10 2013-07-17 三菱マテリアル株式会社 Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel

Also Published As

Publication number Publication date
JP2006218546A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4853121B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP5003308B2 (en) Surface coated cutting tool
JP4853120B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4793749B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP2006289546A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5067963B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4529578B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP4716253B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100225

R150 Certificate of patent or registration of utility model

Ref document number: 4474644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees