JP4748444B2 - Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials - Google Patents

Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials Download PDF

Info

Publication number
JP4748444B2
JP4748444B2 JP2005303071A JP2005303071A JP4748444B2 JP 4748444 B2 JP4748444 B2 JP 4748444B2 JP 2005303071 A JP2005303071 A JP 2005303071A JP 2005303071 A JP2005303071 A JP 2005303071A JP 4748444 B2 JP4748444 B2 JP 4748444B2
Authority
JP
Japan
Prior art keywords
layer
crystal
hard coating
constituent
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005303071A
Other languages
Japanese (ja)
Other versions
JP2007111785A (en
Inventor
尚志 本間
晃 長田
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005303071A priority Critical patent/JP4748444B2/en
Publication of JP2007111785A publication Critical patent/JP2007111785A/en
Application granted granted Critical
Publication of JP4748444B2 publication Critical patent/JP4748444B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、硬質被覆層がすぐれた潤滑性を有し、したがって特に軟鋼やステンレス鋼、さらに高マンガン鋼などの粘性の高い難削材の高い発熱を伴う高速切削加工に用いた場合にも、切削時に切粉が切刃部に溶着することなく、すぐれた耐チッピング性を長期に亘って発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   This invention has excellent lubricity of the hard coating layer, and therefore, even when used for high-speed cutting with high heat generation of difficult-to-cut materials with high viscosity such as mild steel, stainless steel, and even high manganese steel, The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance over a long period of time without cutting chips adhering to the cutting edge during cutting.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム(以下、α型Al23層という)層、
以上(a)および(b)で構成された硬質被覆層を、化学蒸着装置で蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) As a lower layer, a titanium carbide (hereinafter referred to as TiC) layer, a titanium nitride (hereinafter also referred to as TiN) layer, a titanium carbonitride (hereinafter referred to as TiCN) layer, a titanium carbonate (hereinafter referred to as TiCO) A Ti compound layer consisting of one or two or more of the layers shown below and a titanium carbonitride oxide (hereinafter referred to as TiCNO) layer and having an overall average layer thickness of 3 to 20 μm,
(B) As an upper layer, an aluminum oxide (hereinafter referred to as α-type Al 2 O 3 layer) layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a chemical vapor deposited state;
There is known a coated cermet tool formed by vapor-depositing the hard coating layer constituted by the above (a) and (b) with a chemical vapor deposition apparatus, and this coated cermet tool is a continuous material such as various steels and cast irons. It is well known that it is used for cutting and intermittent cutting.

また、上記の被覆サーメット工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
Further, in the above-described coated cermet tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and further, the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを炭素鋼や低合金鋼、さらに普通鋳鉄などの切削を高速切削加工条件で行うのに用いた場合には、通常の切削性能を示し問題はないが、特に軟鋼やステンレス鋼、さらに高マンガン鋼などの粘性の高い難削材などの切削加工を、高熱発生を伴なう高速切削加工条件で行うのに用いた場合には、特に硬質被覆層の潤滑性不足が原因で、切粉が切刃部に溶着し易くなり、これが原因でチッピング(微少欠け)が発生し、この結果比較的短時間で使用寿命に至るのが現状である   In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. For coated cermet tools, when used for cutting carbon steel, low alloy steel, and ordinary cast iron under high-speed cutting conditions, there is no problem with normal cutting performance. Especially when cutting high viscosity difficult-to-cut materials such as stainless steel and high manganese steel under high-speed cutting conditions with high heat generation, the lubricity of the hard coating layer is insufficient. This makes it easier for chips to be welded to the cutting edge, which causes chipping (small chipping), resulting in a relatively short service life.

そこで、本発明者等は、上述のような観点から、特に上記粘性の高い難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具を開発すべく、上記の従来被覆サーメット工具の硬質被覆層に着目し、研究を行った結果、
(a)従来、一般に、酸化クロム(以下、Crで示す)層(以下、従来Cr層という)は、通常の化学蒸着装置で、
反応ガス組成:容量%で、CrCl:2〜4%、CO:4.5〜7%、HCl:2.5〜5%、H:残り、
反応雰囲気温度:950〜1020℃、
反応雰囲気圧力:6〜10kPa、
の条件(通常条件という)で形成され、かつ、格子点にCrおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造、すなわち図1にCrの単位格子の原子配列が模式図[(a)は斜視図、(b)は横断面1〜9の平面図]で示される結晶構造を有する結晶粒で構成されるが、黒鉛質材料と同等に潤滑性を有するものの、脆い材料であるために、被覆サーメット工具の硬質被覆層の表面層として適用し、高速切削加工に用いた場合、摩耗進行がきわめて速く、実用に供し得ないこと。
In view of the above, the present inventors have developed the above-described coated cermet tool that exhibits excellent chipping resistance with a hard coating layer excellent in high-speed cutting of highly viscous difficult-to-cut materials. As a result of conducting research by focusing on the hard coating layer of conventional coated cermet tools,
(A) Conventionally, in general, a chromium oxide (hereinafter referred to as Cr 2 O 3 ) layer (hereinafter referred to as a conventional Cr 2 O 3 layer) is a normal chemical vapor deposition apparatus.
Reaction gas composition: volume%, CrCl 3 : 2 to 4%, CO 2 : 4.5 to 7%, HCl: 2.5 to 5%, H 2 : remaining,
Reaction atmosphere temperature: 950-1020 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
And a crystal structure of a corundum hexagonal close-packed crystal in which constituent atoms composed of Cr and oxygen are present at lattice points, that is, atoms of a unit cell of Cr 2 O 3 in FIG. The arrangement is composed of crystal grains having a crystal structure shown in a schematic diagram [(a) is a perspective view, (b) is a plan view of a cross section 1 to 9], but has lubricity equivalent to that of a graphite material. However, since it is a brittle material, when it is applied as a surface layer of a hard coating layer of a coated cermet tool and used for high-speed cutting, the wear progress is extremely fast and cannot be put to practical use.

(b)一方、同じく通常の化学蒸着装置を用い、
反応ガス組成:容量%で、CrCl:2〜4%、ZrCl:0.15〜0.35%、CO:4.5〜7%、HCl:2.5〜5%、H:残り、
反応雰囲気温度:950〜1020℃、
反応雰囲気圧力:6〜10kPa、
の条件、すなわち上記(a)の通常条件において、上記の反応ガスにZrClを0.15〜0.35容量%の割合で添加し、これ以外は同一の条件で層の蒸着形成を行なうと、この結果形成された層[以下、Zr含有改質Cr系酸化物層と云い、改質(Cr,Zr)23層で示す]は、ZrをCrとの合量に占める割合で1〜10原子%の割合で置換含有し、上記の従来Cr23層のもつ結晶構造と同じコランダム型六方最密晶の結晶構造、すなわちCrの一部が1〜5原子%の割合でZrで置換されたコランダム型六方最密晶の結晶構造を有すると共に、これの具備する潤滑性と同等のすぐれた潤滑性を有し、さらに、一段と高温強度の向上したものになっており、したがって、これを上記の硬質被覆層の表面層として2〜10μmの平均層厚で蒸着形成してなる被覆サーメット工具は、上記の粘性の高い難削材の高い高熱発生を伴う高速切削加工でも、切刃部に切粉が溶着することがなく、この結果チッピングの発生なく、さらに具備するすぐれた高温強度によって摩耗進行が著しく抑制された状態を維持するので、すぐれた耐摩耗性を長期に亘って発揮するようになること。
(B) On the other hand, using a normal chemical vapor deposition apparatus,
Reaction gas composition:% by volume, CrCl 3 : 2 to 4%, ZrCl 4 : 0.15 to 0.35%, CO 2 : 4.5 to 7%, HCl: 2.5 to 5%, H 2 : remaining,
Reaction atmosphere temperature: 950-1020 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
Under the above conditions, that is, under the normal conditions of (a) above, ZrCl 4 is added to the above reaction gas at a ratio of 0.15 to 0.35% by volume, and the other layers are formed under the same conditions. The resulting layer [hereinafter referred to as a Zr-containing modified Cr-based oxide layer, which is indicated by a modified (Cr, Zr) 2 O 3 layer] is 1 in the proportion of Zr to the total amount of Cr. The crystal structure of the corundum hexagonal close-packed crystal is the same as the crystal structure of the conventional Cr 2 O 3 layer, that is, a part of Cr is 1 to 5 atomic%. And a corundum type hexagonal close-packed crystal structure substituted with the above, having excellent lubricity equivalent to the lubricity provided by this, and further improving the high-temperature strength. As a surface layer of the hard coating layer, 2-10 μm The coated cermet tool formed by vapor deposition with an average layer thickness does not cause chips to adhere to the cutting edge even in high-speed cutting with high heat generation of the above-mentioned highly viscous difficult-to-cut materials. No wear is generated, and the high temperature strength provided further maintains the state in which the progress of wear is remarkably suppressed, so that excellent wear resistance can be exhibited over a long period of time.

(c)上記(a)の従来Cr層と上記(b)の改質(Cr,Zr)23層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角[図2(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り格子点にCrとZrと酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記従来Cr23層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質(Cr,Zr)23層は、図4に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、前記(Cr,Zr)23層の形成条件を変化させることにより変化すること。
なお、上記の改質(Cr,Zr)23層および従来Cr23層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると図3(a)〜(c)に示される通りとなる。
以上(a)〜(c)に示される研究結果を得たのである。
(C) For the conventional Cr 2 O 3 layer of (a) and the modified (Cr, Zr) 2 O 3 layer of (b),
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the polished surface [FIG. 2 (a) shows the tilt angle of the crystal plane. (B) shows the case where the inclination angle is 45 degrees, all the inclination angles of the individual crystal grains including these angles are measured. In this case, the crystal grains Has a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Cr, Zr, and oxygen are present at lattice points as described above, and are adjacent to each other based on the measured tilt angle obtained as a result. At each grain interface, each of the constituent atoms shares one constituent atom between the grains. The distribution of lattice points (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is 2 or more on the crystal structure of the corundum hexagonal close-packed crystal) Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist), and the existing constituent atomic shared lattice point form is expressed as ΣN + 1, When a constituent atom shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1 is created (in this case, there are constituent atomic shared lattice point forms of Σ5, Σ9, Σ15, Σ25, and Σ27) In contrast to the conventional Cr 2 O 3 layer, as shown in FIG. 5, the distribution ratio of Σ3 shows a relatively low constituent atom shared lattice point distribution graph of 30% or less, Modification (Cr, Zr) As shown in FIG. 4, the 2 O 3 layer shows a very high constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 60% or more, and this high Σ3 distribution ratio is the above (Cr, Zr) 2. Changing by changing the formation conditions of the O 3 layer.
In the modified (Cr, Zr) 2 O 3 layer and the conventional Cr 2 O 3 layer, units of Σ3, Σ7, and Σ11 among constituent atomic shared lattice point forms at the interface between adjacent crystal grains When the form is illustrated by a schematic diagram, it is as shown in FIGS.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層として、1〜15μmの平均層厚を有するα型Al23層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、被覆サーメット工具において、
上記硬質被覆層の表面層として、2〜10μmの平均層厚を有し、かつCrの一部をCrとの合量に占める割合で1〜5原子%のZrで置換含有してなると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にCrとZrと酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質(Cr,Zr)23層、
を蒸着形成してなる、難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) As a lower layer, a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer and having an overall average layer thickness of 3 to 20 μm,
(B) an α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm as an upper layer;
In a coated cermet tool formed by vapor-depositing a hard coating layer composed of (a) and (b) above,
As the surface layer of the hard coating layer, it has an average layer thickness of 2 to 10 μm, and a part of Cr is substituted with 1 to 5 atomic% of Zr in a proportion of the total amount with Cr, Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the above, are measured. In this case, the crystal grains have constituent atoms composed of Cr, Zr, and oxygen at lattice points, respectively. Corundum-type hexagonal close-packed crystal structure, and based on the measured tilt angle obtained as a result, each of the constituent atoms forms one structure between the crystal grains at the interface between adjacent crystal grains. Distribution of lattice points that share atoms (constituent atom shared lattice points) The number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points is calculated (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but N When the upper limit of 28 is 28, the even number of 4, 8, 14, 24, and 26 does not exist.) When the existing constituent atom shared lattice point form is expressed as ΣN + 1, the distribution ratio of each ΣN + 1 to the entire ΣN + 1 Is a modified (Cr, Zr) showing a constituent atom sharing lattice distribution graph in which the highest peak exists in Σ3 and the distribution ratio of Σ3 to the entire ΣN + 1 is 60% or more. ) 2 O 3 layer,
It is characterized by a coated cermet tool that exhibits excellent chipping resistance with a hard coating layer by high-speed cutting of difficult-to-cut materials.

以下に、この発明の被覆サーメット工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を説明する。
(a)下部層のTi化合物層
Ti化合物層は、α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体とα型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Hereinafter, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described.
(A) Ti compound layer of the lower layer The Ti compound layer exists as a lower layer of the α-type Al 2 O 3 layer, and contributes to improving the high temperature strength of the hard coating layer by its excellent high temperature strength. The substrate and the α-type Al 2 O 3 layer are firmly adhered to each other, thereby improving the adhesion of the hard coating layer to the tool substrate. However, when the average layer thickness is less than 3 μm, the above-described operation is sufficiently achieved. On the other hand, if the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation especially in high-speed cutting with high heat generation, which causes uneven wear. Was determined to be 3 to 20 μm.

(b)上部層のα型Al23
α型Al23層は、Al23自体のもつすぐれた高温硬さと耐熱性によって、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、所望のすぐれた耐摩耗性を十分に発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(B) an upper layer α type the Al 2 O 3 layer α type the Al 2 O 3 layer of, by Al 2 O 3 hot hardness excellent with itself and heat resistance and contributes to improvement in wear resistance of the hard coating layer If the average layer thickness is less than 1 μm, the desired excellent wear resistance cannot be fully exhibited. On the other hand, if the average layer thickness exceeds 15 μm, chipping is likely to occur. The average layer thickness was determined to be 1 to 15 μm.

(c)表面層の改質(Cr,Zr)23
改質(Cr,Zr)23層は、上記の通り、その形成条件の反応ガスにおけるZrClの配合割合を0.15〜0.35容量%に調整することによりZrの置換含有割合を1〜5原子%とし、このようにZrを1〜5原子%の割合で置換含有した場合に、構成原子共有格子点分布グラフにおけるΣ3の分布割合が60%以上となるものである。したがって、Zrの置換含有割合が1原子%未満でも、また5原子%を越えてもΣ3の分布割合が60%未満となってしまい、特に粘性の高い難削材の高速切削加工で、摩耗進行を抑制し、長期に亘って潤滑性を保持するに十分な高温強度を確保することができず、この結果比較的早期に摩滅し、硬質被覆層にチッピングが発生し、これが原因で使用寿命に至るようになることから、Zrの置換含有割合を1〜5原子%と定めて、Σ3の分布割合が60%以上となるようにしたものである。また、その平均層厚が2μm未満では、所望のすぐれた潤滑性を十分に発揮させることができず、一方その平均層厚が10μmを越えて厚くなりすぎると、チッピング発生の原因となることから、その平均層厚を2〜10μmと定めた。
(C) Surface layer modification (Cr, Zr) 2 O 3 layer As described above, the modification (Cr, Zr) 2 O 3 layer has a ZrCl 4 content ratio of 0.15 in the reaction gas under the formation conditions. When the Zr substitution content is adjusted to 1 to 5 atom% by adjusting to 0.35% by volume, and Zr is substituted and contained at a rate of 1 to 5 atom% in this way, the constituent atom shared lattice point distribution graph In this case, the distribution ratio of Σ3 is 60% or more. Therefore, even if the substitutional content of Zr is less than 1 atomic% or exceeds 5 atomic%, the distribution ratio of Σ3 becomes less than 60%, and wear progresses particularly in high-speed cutting of highly difficult-to-cut materials. It is not possible to secure sufficient high-temperature strength to maintain lubricity over a long period of time, and as a result, it wears out relatively early and chipping occurs in the hard coating layer, which results in a service life. Therefore, the substitution content ratio of Zr is set to 1 to 5 atomic%, and the distribution ratio of Σ3 is set to 60% or more. Further, if the average layer thickness is less than 2 μm, the desired excellent lubricity cannot be sufficiently exhibited. On the other hand, if the average layer thickness exceeds 10 μm, it may cause chipping. The average layer thickness was determined to be 2 to 10 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、特に軟鋼やステンレス鋼、さらに高マンガン鋼などの粘性の高い難削材の高い発熱を伴う高速切削加工に用いた場合にも、硬質被覆層の表面層を構成する改質(Cr,Zr)23層が従来Cr23層と同等のすぐれた潤滑性に加えて、一段とすぐれた高温強度を具備することから、長期に亘ってすぐれた潤滑性を保持し、硬質被覆層の耐チッピング性向上に寄与し、使用寿命の一層の延命化を可能とするものである。 The coated cermet tool of the present invention is a modified material that constitutes the surface layer of a hard coating layer even when used for high-speed cutting with high heat generation of difficult-to-cut materials with high viscosity such as mild steel, stainless steel, and high manganese steel. The quality (Cr, Zr) 2 O 3 layer has excellent lubricity equivalent to that of the conventional Cr 2 O 3 layer, as well as excellent high-temperature strength. This contributes to the improvement of chipping resistance of the hard coating layer, and can further extend the service life.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で32時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.03mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the blending composition shown in Table 1, added with wax, ball milled in acetone for 32 hours, dried under reduced pressure, and pressed into a green compact of a predetermined shape at a pressure of 98 MPa. Then, this green compact was vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge portion was R: 0.03 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape defined in ISO · CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで32時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix for 32 hours with a ball mill, dry, and press-mold into green compact at 98 MPa pressure The green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion is subjected to a honing process of R: 0.03 mm. Tool bases a to f made of TiCN-based cermet having a chip shape conforming to ISO standards / CNMG 120212 were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、それぞれ表6に示される目標層厚のTi化合物層とα型Al23層を、同じく表6に示される組み合わせで、硬質被覆層の下部層および上部層として蒸着形成し、ついで、表4に示される条件で、表6に示される目標層厚の改質(Cr,Zr)23層を同じく表6に示される組み合わせで、硬質被覆層の表面層として蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). Table 6 shows the conditions for forming a TiCN layer having a vertically elongated crystal structure, and the other conditions for forming a normal granular crystal structure. A Ti compound layer having a target layer thickness and an α-type Al 2 O 3 layer are formed by vapor deposition as the lower layer and the upper layer of the hard coating layer in the same combination shown in Table 6, and then, under the conditions shown in Table 4, The coated cermet tools 1 to 13 of the present invention are formed by vapor-depositing the target layer thickness modification (Cr, Zr) 2 O 3 layer shown in Table 6 as the surface layer of the hard coating layer in the same combination shown in Table 6. Were manufactured respectively.

また、比較の目的で、改質(Cr,Zr)23層に代って、表5に示される条件で、表7に示される目標層厚の従来Cr23層を同じく表7に示される組み合わせで、硬質被覆層の表面層として蒸着形成する以外は同一の条件で比較被覆サーメット工具1〜13をそれぞれ製造した。 For the purpose of comparison, instead of the modified (Cr, Zr) 2 O 3 layer, the conventional Cr 2 O 3 layer having the target layer thickness shown in Table 7 under the conditions shown in Table 5 is also used. Comparative coating cermet tools 1 to 13 were produced under the same conditions except that the surface layer of the hard coating layer was formed by vapor deposition.

ついで、上記の本発明被覆サーメット工具および比較被覆サーメット工具の硬質被覆層の表面層を構成する改質(Cr,Zr)23層および従来Cr23層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質(Cr,Zr)23層および従来Cr23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記表面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
The modified (Cr, Zr) 2 O 3 layer and the conventional Cr 2 O 3 layer constituting the surface layer of the hard coating layer of the above-described coated cermet tool of the present invention and comparative coated cermet tool are then subjected to a field emission scanning electron microscope. Was used to create the constituent atom shared lattice point distribution graphs.
That is, the constituent atomic shared lattice point distribution graph shows a mirror of a field emission scanning electron microscope in a state where the surfaces of the modified (Cr, Zr) 2 O 3 layer and the conventional Cr 2 O 3 layer are polished surfaces. A crystal grain having a hexagonal crystal lattice that is set in a cylinder and exists in the measurement range of the surface polished surface with an electron beam having an acceleration voltage of 15 kV and an irradiation current of 1 nA at an incident angle of 70 degrees on the surface polished surface Individually irradiated, using an electron backscatter diffraction image apparatus, a 30 × 50 μm region at a spacing of 0.1 μm / step is the crystal plane of the crystal grain with respect to the normal of the polished surface ( The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane is measured, and based on the measured tilt angle obtained as a result, each of the constituent atoms is Cases that share one constituent atom between grains The distribution of points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is two or more on the crystal structure of the corundum hexagonal close-packed crystal) (Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist) When the existing constituent atom shared lattice point form is expressed as ΣN + 1 Each ΣN + 1 was created by calculating the distribution ratio of the entire ΣN + 1.

この結果得られた各種の改質(Cr,Zr)23層および従来Cr23層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ表6,7にそれぞれ示した。 As a result, in the constituent atomic share lattice point distribution graphs of various modified (Cr, Zr) 2 O 3 layers and conventional Cr 2 O 3 layers obtained as a result, the entire ΣN + 1 (from the above results, Σ3, Σ7, Σ11, Σ13, The distribution ratios of Σ3 in the total distribution ratios of Σ17, Σ19, Σ21, Σ23, and Σ29) are shown in Tables 6 and 7, respectively.

上記の各種の改質(Cr,Zr)23層および従来Cr23層の構成原子共有格子点分布グラフにおいて、表6,7にそれぞれ示される通り、本発明被覆サーメット工具の改質(Cr,Zr)23層は、いずれもΣ3の占める分布割合が60%以上の構成原子共有格子点分布グラフを示すのに対して、比較被覆サーメット工具の従来Cr23層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆サーメット工具2の硬質被覆層の表面層である改質(Cr,Zr)23層の構成原子共有格子点分布グラフ、図5は、比較被覆サーメット工具2の硬質被覆層の表面層である従来Cr23層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In the above-described various modified (Cr, Zr) 2 O 3 layers and conventional Cr 2 O 3 layer constituting atom sharing lattice point distribution graphs, as shown in Tables 6 and 7, the coated cermet tools of the present invention were modified. The (Cr, Zr) 2 O 3 layer shows a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 60% or more, whereas the conventional Cr 2 O 3 layer of the comparative coated cermet tool is In either case, the distribution graph of constituent atom shared lattice points with a Σ3 distribution ratio of 30% or less was shown.
FIG. 4 is a graph showing the distribution of constituent atomic shared lattice points of the modified (Cr, Zr) 2 O 3 layer, which is the surface layer of the hard coating layer of the coated cermet tool 2 of the present invention, and FIG. 2 shows a graph of distribution of constituent atomic shared lattice points of a conventional Cr 2 O 3 layer which is a surface layer of the hard coating layer.

さらに、上記の本発明被覆サーメット工具1〜13および比較被覆サーメット工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有することが確認され、また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。     Further, for the above-described coated cermet tools 1 to 13 and comparative coated cermet tools 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (layer When the longitudinal section was observed), it was confirmed that both the former and the latter had substantially the same composition as the target composition, and the thicknesses of the constituent layers of the hard coating layers of these coated cermet tools were measured using a scanning electron microscope. When measured using (same longitudinal section measurement), all showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆サーメット工具1〜13および比較被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SS540の丸棒、
切削速度:480m/min、
切り込み:3mm、
送り:0.3mm/rev、
切削時間:8分、
の条件(切削条件Aという)での軟鋼の乾式連続高速切削試験(通常の切削速度は240m/min)、
被削材:JIS・SUS420Fの長さ方向等間隔4本縦溝入丸棒、
切削速度:260m/min、
切り込み:2.5mm、
送り:0.25mm/rev、
切削時間:8分、
の条件(切削条件Bという)でのステンレス鋼の乾式断続高速切削試験(通常の切削速度は140m/min)、さらに、
被削材:JIS・SMn443の長さ方向等間隔4本縦溝入丸棒、
切削速度:370m/min、
切り込み:2mm、
送り:0.35mm/rev、
切削時間:8分、
の条件(切削条件Cという)での高マンガン鋼の乾式断続高速切削試験(通常の切削速度は210m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the above-mentioned various coated cermet tools of the present invention coated cermet tool 1-13 and comparative coated cermet tool 1-13, all are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS / SS540 round bar,
Cutting speed: 480 m / min,
Incision: 3mm,
Feed: 0.3mm / rev,
Cutting time: 8 minutes
Dry continuous high-speed cutting test (normal cutting speed is 240 m / min) of mild steel under the following conditions (referred to as cutting conditions A),
Work material: JIS / SUS420F lengthwise equidistant four round grooved round bars,
Cutting speed: 260 m / min,
Incision: 2.5mm,
Feed: 0.25mm / rev,
Cutting time: 8 minutes
In a dry interrupted high-speed cutting test (normal cutting speed is 140 m / min) of stainless steel under the conditions (referred to as cutting condition B),
Work material: JIS · SMn443 lengthwise equally spaced 4 bars with round grooves,
Cutting speed: 370 m / min,
Cutting depth: 2mm,
Feed: 0.35mm / rev,
Cutting time: 8 minutes
A dry intermittent high-speed cutting test (normal cutting speed is 210 m / min) of high manganese steel under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.

Figure 0004748444
Figure 0004748444

Figure 0004748444
Figure 0004748444

Figure 0004748444
Figure 0004748444

Figure 0004748444
Figure 0004748444

Figure 0004748444
Figure 0004748444

Figure 0004748444
Figure 0004748444

Figure 0004748444
Figure 0004748444

Figure 0004748444
Figure 0004748444

表6〜8に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の表面層が、Σ3の分布割合が60%以上の構成原子共有格子点分布グラフを示す改質(Cr,Zr)23層で構成され、前記改質(Cr,Zr)23層は、すぐれた潤滑性と高温強度を有することから、上記の粘性の高い難削材の高い高熱発生を伴う高速切削加工でも、切刃部に切粉が溶着しないすぐれた潤滑性が長期に亘って持続され、この結果硬質被覆層のチッピング発生が防止され、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層の表面層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来Cr23層で構成された比較被覆サーメット工具1〜13においては、いずれも上記の高速切削加工では、表面層の従来Cr23層が、潤滑性を有するものの、高温強度不足が原因で、早期に摩滅し、前記従来Cr23層の存在しない状態で切削加工が行なわれるようになるので、切削加工開始後、短時間で硬質被覆層にチッピングが発生し、これが原因で使用寿命に至ることが明らかである。 From the results shown in Tables 6 to 8, the coated cermet tools 1 to 13 of the present invention are all modified so that the surface layer of the hard coating layer shows a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 60% or more. It is composed of (Cr, Zr) 2 O 3 layer, and the modified (Cr, Zr) 2 O 3 layer has excellent lubricity and high-temperature strength. Even in high-speed machining with generation, excellent lubricity that prevents chips from welding to the cutting edge is maintained for a long period of time, and as a result, chipping of the hard coating layer is prevented, and excellent wear resistance is achieved over a long period of time. In contrast, the surface layer of the hard coating layer is a comparative coated cermet tool 1 to 1 composed of a conventional Cr 2 O 3 layer showing a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less. 13 is the above high-speed cutting process. Although the conventional Cr 2 O 3 layer of the surface layer has lubricity, it is worn out early due to insufficient high-temperature strength, and cutting is performed in the absence of the conventional Cr 2 O 3 layer. Therefore, it is clear that chipping occurs in the hard coating layer in a short time after the start of cutting, which leads to the service life.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に粘性の高い難削材の高い高熱発生を伴う高速切削加工でも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention is not only continuous cutting and intermittent cutting under normal conditions such as various steels and cast irons, but particularly high-speed cutting with high heat generation of highly viscous difficult-to-cut materials. However, since it exhibits excellent chipping resistance and excellent wear resistance over a long period of time, it is fully satisfied with high performance of cutting equipment, labor saving and energy saving of cutting work, and further cost reduction It can cope with.

改質(Cr,Zr)23層および従来Cr23層を構成するコランダム型六方最密晶の単位格子の原子配列を示す模式図にして、(a)は斜視図、(b)は横断面1〜9の平面図である。The schematic diagram showing the atomic arrangement of the unit cell of the corundum type hexagonal close-packed crystal constituting the modified (Cr, Zr) 2 O 3 layer and the conventional Cr 2 O 3 layer, (a) is a perspective view, (b) FIG. 3 is a plan view of cross sections 1-9. 改質(Cr,Zr)23層および従来Cr23層における結晶粒の(0001)面および(10-10)面の傾斜角の測定態様を示す概略説明図である。Is a schematic diagram illustrating a measurement mode of modification (Cr, Zr) 2 O 3 layer and crystal grains of the conventional Cr 2 O 3 layer (0001) plane and (10-10) plane inclination angle. 相互に隣接する結晶粒の界面における構成原子共有格子点形態の単位形態を示す模式図にして、(a)はΣ3、(b)はΣ7(c)はΣ11の単位形態をそれぞれ示す図である。FIG. 4 is a schematic diagram showing unit forms of constituent atomic shared lattice points at the interface between adjacent crystal grains, where (a) shows Σ3, (b) shows Σ7 (c) and Σ11 unit forms. . 本発明被覆サーメット工具2の硬質被覆層の表面層を構成する改質(Cr,Zr)23層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a modified (Cr, Zr) 2 O 3 layer constituting the surface layer of the hard coating layer of the coated cermet tool 2 of the present invention. 比較被覆サーメット工具2の硬質被覆層の表面層を構成する従来Cr23層の構成原子共有格子点分布グラフである。 3 is a constituent atomic shared lattice point distribution graph of a conventional Cr 2 O 3 layer constituting a surface layer of a hard coating layer of a comparative coated cermet tool 2.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、炭化チタン層、窒化チタン層、炭窒化チタン層、炭酸化チタン層、および炭窒酸化チタン層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、表面被覆サーメット製切削工具において、
上記硬質被覆層の表面層として、2〜10μmの平均層厚を有し、かつCrの一部をCrとの合量に占める割合で1〜5原子%のZrで置換含有してなると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にCrとZrと酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示すZr含有改質Cr系酸化物層、
を蒸着形成してなる、難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, it consists of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carbonate layer, and a titanium carbonitride oxide layer, and an overall average of 3 to 20 μm A Ti compound layer having a layer thickness,
(B) As an upper layer, an aluminum oxide layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
In the surface-coated cermet cutting tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,
As the surface layer of the hard coating layer, it has an average layer thickness of 2 to 10 μm, and a part of Cr is substituted with 1 to 5 atomic% of Zr in a proportion of the total amount with Cr, Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the above, are measured. In this case, the crystal grains have constituent atoms composed of Cr, Zr, and oxygen at lattice points, respectively. Corundum-type hexagonal close-packed crystal structure, and based on the measured tilt angle obtained as a result, each of the constituent atoms forms one structure between the crystal grains at the interface between adjacent crystal grains. Distribution of lattice points that share atoms (constituent atom shared lattice points) The number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points is calculated (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but N When the upper limit of 28 is 28, the even number of 4, 8, 14, 24, and 26 does not exist.) When the existing constituent atom shared lattice point form is expressed as ΣN + 1, the distribution ratio of each ΣN + 1 to the entire ΣN + 1 A Zr-containing modified Cr system showing a constituent atom sharing lattice distribution graph in which the highest peak exists in Σ3 and the distribution ratio of the Σ3 to the entire ΣN + 1 is 60% or more Oxide layer,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed cutting of difficult-to-cut materials.
JP2005303071A 2005-10-18 2005-10-18 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials Expired - Fee Related JP4748444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303071A JP4748444B2 (en) 2005-10-18 2005-10-18 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005303071A JP4748444B2 (en) 2005-10-18 2005-10-18 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Publications (2)

Publication Number Publication Date
JP2007111785A JP2007111785A (en) 2007-05-10
JP4748444B2 true JP4748444B2 (en) 2011-08-17

Family

ID=38094428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303071A Expired - Fee Related JP4748444B2 (en) 2005-10-18 2005-10-18 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Country Status (1)

Country Link
JP (1) JP4748444B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246596A (en) * 2004-02-05 2005-09-15 Mitsubishi Materials Corp Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
JP4720418B2 (en) * 2005-10-11 2011-07-13 三菱マテリアル株式会社 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Also Published As

Publication number Publication date
JP2007111785A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4716252B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4853121B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP4888709B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2009166193A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2007331032A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping and abrasion resistance in high-speed intermittent cutting processing
JP2006341320A (en) SURFACE COATED CERMET CUTTING TOOL WHOSE THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP2009279694A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP2007098503A (en) Cutting tool made of coated cemented carbide having hard coating layer exhibiting excellent chipping resistance in high speed deep cutting
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4720995B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110425

R150 Certificate of patent or registration of utility model

Ref document number: 4748444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees