JP2007098503A - Cutting tool made of coated cemented carbide having hard coating layer exhibiting excellent chipping resistance in high speed deep cutting - Google Patents

Cutting tool made of coated cemented carbide having hard coating layer exhibiting excellent chipping resistance in high speed deep cutting Download PDF

Info

Publication number
JP2007098503A
JP2007098503A JP2005291003A JP2005291003A JP2007098503A JP 2007098503 A JP2007098503 A JP 2007098503A JP 2005291003 A JP2005291003 A JP 2005291003A JP 2005291003 A JP2005291003 A JP 2005291003A JP 2007098503 A JP2007098503 A JP 2007098503A
Authority
JP
Japan
Prior art keywords
layer
temperature
hard coating
cutting
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005291003A
Other languages
Japanese (ja)
Other versions
JP4730656B2 (en
Inventor
Keiji Nakamura
惠滋 中村
Akira Osada
晃 長田
Hisashi Honma
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005291003A priority Critical patent/JP4730656B2/en
Publication of JP2007098503A publication Critical patent/JP2007098503A/en
Application granted granted Critical
Publication of JP4730656B2 publication Critical patent/JP4730656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of coated cemented carbide having hard coating layer exhibiting excellent chipping resistance in high speed deep cutting. <P>SOLUTION: In this cutting tool made of coated cemented carbide, the hard coating layer is partially composed of a modified TiC layer and a modified TiCN layer. These layers both have the highest peak in Σ3 in a constitutive atom covalent lattice point distribution graph, which is created based upon the measured angles of inclination obtained by measuring angles of inclination to the normal of surface polishing surface of the normals of a (001) face and (011) face which are crystal faces of crystal grains having an NaCl type face-centered cubic structure using a field emission scanning electron microscope. Further, in the constitutive atom covalent lattice point distribution graph, the distribution percentage of Σ3 occupying the whole ΣN+1 is 60% or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に鋼や鋳鉄などの高速重切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance with a hard coating layer, particularly in high-speed heavy cutting of steel or cast iron.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成された、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、1〜15μmの平均層厚、および化学蒸着形成された状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al23層で示す)、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
特開平6−31503号公報
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Titanium carbide (hereinafter referred to as TiC) layer, titanium nitride (hereinafter also referred to as TiN) layer, titanium carbonitride (hereinafter referred to as TiCN) layer, all formed by chemical vapor deposition as the lower layer, A Ti compound layer consisting of one or more of a titanium carbonate (hereinafter referred to as TiCO) layer and a titanium carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm,
(B) As an upper layer, an average layer thickness of 1 to 15 μm, and an aluminum oxide layer having an α-type crystal structure in a state where chemical vapor deposition is formed (hereinafter referred to as an α-type Al 2 O 3 layer),
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
Japanese Unexamined Patent Publication No. 6-31503

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削効率の向上を目的として、切削速度を高速化し、かつ切り込みや送りなどを大きくする高速重切削条件での切削加工が行われる傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の厳しい高速重切削加工、すなわち切刃部にきわめて高い機械的負荷が加わる高速重切削加工に用いた場合、これを構成する硬質被覆層は下部層のTi化合物層による高温強度、同上部層の高温硬質層として知られるα型Al23層による高温硬さおよび耐熱性を具備するものの、前記Ti化合物層による高温強度が不十分であるために、前記の機械的高負荷に対して満足に対応することができず、この結果硬質被覆層にはチッピング(微小欠け)が発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable, while there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting speed has been increased for the purpose of improving cutting efficiency, and Cutting tends to be performed under high-speed heavy cutting conditions that increase cutting depth and feed, etc., but the above-mentioned conventional coated cermet tools can be used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron. There is no problem when it is used, but when it is used for high-speed heavy cutting with severe cutting conditions, that is, when it is used for high-speed heavy cutting where a very high mechanical load is applied to the cutting edge, the hard coating layer constituting this Has high-temperature strength due to the lower Ti compound layer, high-temperature hardness and heat resistance due to the α-type Al 2 O 3 layer known as the upper high-temperature hard layer, Due to insufficient high-temperature strength, it is not possible to satisfactorily cope with the above-mentioned mechanical high load, and as a result, chipping (minute chipping) is likely to occur in the hard coating layer. At present, the service life is reached in a short time.

そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の耐チッピング性向上をはかるべく、これの下部層であるTi化合物層のうちで高温強化層として知られるTiC層およびTiCN層、すなわちTi化合物層のうちで相対的に高い高温硬さと高温強度を有し、かつ前記TiCN層について示せば、図1(a)に模式図で示される通り、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造[なお、図1(b)は(011)面で切断した状態を示す]を有するTiCN層、および前記TiCN層の結晶構造における格子点の窒素が炭素で置換されたNaCl型面心立方晶の結晶構造を有するTiC層に着目し、研究を行った結果、
(a)従来被覆サーメット工具の硬質被覆層の下部層を構成するTiCN層(以下、従来TiCN層と云う)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:2〜10%、CHCN:0.5〜3%、N2:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:15〜25kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、TiCl:0.1〜0.8%、CHCN:0.05〜0.3%、Ar:10〜30%、H2:残り、
反応雰囲気温度:930〜1000℃、
反応雰囲気圧力:6〜13kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、TiClおよびCHCNを相対的に低く、かつN2ガスに代ってArガスを添加し、さらに雰囲気温度を相対的に高く、雰囲気圧力を低くした条件で蒸着形成すると、この結果形成されたTiCN層は、(以下、改質TiCN層と云う)は、高温強度が一段と向上したものになっているので、切刃部にきわめて高い機械的負荷が加わる高速重切削加工でも、前記硬質被覆層の耐チッピング性向上に寄与すること。
In view of the above, the present inventors have known as a high-temperature strengthening layer among the Ti compound layers, which are the lower layers, in order to improve the chipping resistance of the hard coating layer of the above-mentioned coated cermet tool. TiC layer and TiCN layer, that is, a Ti compound layer having a relatively high high-temperature hardness and high-temperature strength, and the TiCN layer, as shown in the schematic diagram of FIG. A TiCN layer having a crystal structure of NaCl-type face-centered cubic crystal in which each of the constituent atoms composed of Ti, carbon, and nitrogen is present [FIG. 1 (b) shows a state cut by the (011) plane], and As a result of conducting research by paying attention to a TiC layer having an NaCl type face centered cubic crystal structure in which nitrogen at lattice points in the crystal structure of the TiCN layer is replaced by carbon,
(A) The TiCN layer (hereinafter referred to as the conventional TiCN layer) constituting the lower layer of the hard coating layer of the conventional coated cermet tool is, for example, an ordinary chemical vapor deposition apparatus.
Reaction gas composition: by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 15-25 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition: by volume%, TiCl 4: 0.1~0.8%, CH 3 CN: 0.05~0.3%, Ar: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 930 to 1000 ° C.
Reaction atmosphere pressure: 6-13 kPa,
The reaction gas composition is relatively low in TiCl 4 and CH 3 CN, Ar gas is added instead of N 2 gas, and the ambient temperature is relatively The TiCN layer formed as a result (hereinafter referred to as a modified TiCN layer) has a further improved high-temperature strength. Contribute to the chipping resistance improvement of the hard coating layer even in high-speed heavy cutting where a very high mechanical load is applied to the part.

(b)同じく従来被覆サーメット工具の硬質被覆層の下部層を構成するTiC層(以下、従来TiC層と云う)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:2〜10%、CH:2〜10%、H2:残り、
反応雰囲気温度:950〜1000℃、
反応雰囲気圧力:20〜40kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、TiCl:0.5〜1.5%、CH:0.5〜3%、H2:残り、
反応雰囲気温度:1000〜1050℃、
反応雰囲気圧力:6〜15kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、TiClおよびCHを相対的に低く、かつ雰囲気温度を相対的に高く、雰囲気圧力を低くした条件で蒸着形成すると、この結果形成されたTiC層は、(以下、改質TiC層と云う)は、高温強度が一段と向上したものになっているので、切刃部にきわめて高い機械的負荷が加わる高速重切削加工でも、前記硬質被覆層の耐チッピング性向上に寄与すること。
(B) Similarly, the TiC layer (hereinafter referred to as the conventional TiC layer) constituting the lower layer of the hard coating layer of the conventional coated cermet tool is, for example, a normal chemical vapor deposition apparatus.
Reaction gas composition:% by volume, TiCl 4 : 2 to 10%, CH 4 : 2 to 10%, H 2 : remaining,
Reaction atmosphere temperature: 950 to 1000 ° C.
Reaction atmosphere pressure: 20-40 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition: by volume%, TiCl 4: 0.5~1.5%, CH 4: 0.5~3%, H 2: remainder,
Reaction atmosphere temperature: 1000 to 1050 ° C.
Reaction atmosphere pressure: 6-15 kPa,
In the reaction gas composition, the TiCl 4 and CH 4 are relatively low, the atmospheric temperature is relatively high, and the atmospheric pressure is low. The resulting TiC layer (hereinafter referred to as the modified TiC layer) has been further improved in high-temperature strength, so even in high-speed heavy cutting where a very high mechanical load is applied to the cutting edge, Contribute to improving the chipping resistance of the hard coating layer.

(c)上記の従来TiCN層および従来TiC層と、上記の改質TiCN層および改質TiC層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点に、TiCN層であればTiと炭素と窒素からなる構成原子、またTiC層であればTiと炭素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、前記改質TiCN層および改質TiC層は、図3,4に例示される通り、いずれもΣ3に最高ピークが存在し、かつ、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示すのに対して、前記従来TiCN層および従来TiC層は、図5,6に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示し、これらの高いΣ3の分布割合は、上記の蒸着条件を調整することにより変化すること。
(C) About the conventional TiCN layer and the conventional TiC layer, and the modified TiCN layer and the modified TiC layer.
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the surface polished surface (FIG. 2A shows (001) of the crystal planes. When the tilt angle of the surface is 0 degree and the tilt angle of the (011) plane is 45 degrees, the tilt angle of the (001) plane is 45 degrees and the tilt angle of the (011) plane is 0 degree. In this case, all the tilt angles of the crystal grains including these angles are measured. In this case, the crystal grains are at lattice points as described above, and Ti, carbon and nitrogen in the case of a TiCN layer. NaCl type face-centered cubic with Ti atoms and Ti atoms. Lattice points where each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result of The distribution of (constituent atom shared lattice points) is calculated, and the number of lattice points that do not share constituent atoms between the constituent atom shared lattice points is N (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal). ) Constituent atomic shared lattice point distribution is shown as ΣN + 1, and a constituent atomic shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1 (however, the upper limit is 28 due to frequency) was created. 3 and 4, the modified TiCN layer and the modified TiC layer both have the highest peak in Σ3, and the extremely high constituent atom sharing in which the distribution ratio of Σ3 is 60% or more. Grid distribution graph In contrast, the conventional TiCN layer and the conventional TiC layer, as illustrated in FIGS. 5 and 6, show a relatively low constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less, These high Σ3 distribution ratios should be changed by adjusting the above deposition conditions.

(d)上記の改質TiCN層および改質TiC層は、TiCN自体およびTiC自体が具備する高温硬さと高温強度に加えて、上記従来TiCN層および従来TiC層に比して一段と高い高温強度を有するので、前記改質TiCN層を硬質被覆層の下側高温強化層、前記改質TiC層を同上側高温強化層として蒸着形成してなる被覆サーメット工具は、同上部層である高温硬質層のα型Al23層が具備するすぐれた高温硬さおよび耐熱性と相俟って、特にきわめて高い負荷のかかる高速重切削加工でも、前記硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The modified TiCN layer and the modified TiC layer have a higher high-temperature strength than the conventional TiCN layer and the conventional TiC layer in addition to the high-temperature hardness and high-temperature strength of the TiCN itself and the TiC itself. Therefore, the coated cermet tool formed by vapor deposition using the modified TiCN layer as the lower high-temperature strengthened layer as the hard coating layer and the modified TiC layer as the upper high-temperature strengthened layer is formed of the high-temperature hard layer as the upper layer. Combined with the excellent high-temperature hardness and heat resistance of the α-type Al 2 O 3 layer, the hard coating layer exhibits excellent chipping resistance even in high-speed heavy cutting with extremely high load, To show excellent wear resistance over a long period of time.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、化学蒸着形成された硬質被覆層を、工具基体側から順に、
(a)0.1〜1μmの平均層厚を有するTiN層からなる基体密着層、
(b)2〜15μmの平均層厚を有するTiCN層からなる下側高温強化層、
(c)2〜10μmの平均層厚を有するTiC層からなる上側高温強化層、
(d)0.1〜1μmの平均層厚を有する、TiCO層およびTiCNO層のうちのいずれか1層、または両層からなる層間密着層、
(e)1〜15μmの平均層厚を有するα型Al23層からなる高温硬質層、
以上(a)〜(e)で構成すると共に、上記下側高温強化層および上側高温強化層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTiと炭素と窒素(下側高温強化層の場合)、またはTiと炭素(上側高温強化層の場合)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、いずれもΣ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質TiCN層および改質TiC層、
で構成してなる、高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results. A hard coating layer formed by chemical vapor deposition on the surface of a tool base made of a WC-base cemented carbide or TiCN-base cermet is provided on the tool base side. In order from
(A) a substrate adhesion layer comprising a TiN layer having an average layer thickness of 0.1 to 1 μm;
(B) a lower high-temperature reinforcing layer comprising a TiCN layer having an average layer thickness of 2 to 15 μm,
(C) an upper high-temperature reinforcing layer comprising a TiC layer having an average layer thickness of 2 to 10 μm,
(D) one of the TiCO layer and the TiCNO layer having an average layer thickness of 0.1 to 1 μm, or an interlayer adhesion layer composed of both layers,
(E) a high-temperature hard layer comprising an α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm,
With the above (a) to (e), the lower high-temperature reinforcing layer and the upper high-temperature reinforcing layer are
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains have Ti and carbon and nitrogen (in the case of the lower high-temperature strengthening layer) or Ti and carbon (upper side) at lattice points. In the case of a high-temperature strengthened layer), each of the atoms has a NaCl-type face-centered cubic crystal structure in which constituent atoms are present, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains, A distribution of lattice points (constituent atom shared lattice points) in which each constituent atom shares one constituent atom among the crystal grains is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points. (N is 2 on the crystal structure of NaCl type face centered cubic crystal) When the existing constituent atom shared lattice point form is expressed by ΣN + 1, the constituent atom sharing indicates the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit is 28 due to the frequency) In each of the lattice point distribution graphs, a modified TiCN layer and a modified TiC layer each showing a constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio of Σ3 to the entire ΣN + 1 is 60% or more ,
It is characterized by a coated cermet tool that exhibits excellent chipping resistance in a high-speed heavy cutting process with a hard coating layer.

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)TiN層(基体密着層)
TiN層は、工具基体および下側高温強化層である改質TiCN層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その平均層厚が0.1μm未満では、所望の密着性を確保することができず、一方前記密着性は1μmの平均層厚で十分であることから、その平均層厚を0.1〜1μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) TiN layer (substrate adhesion layer)
The TiN layer adheres firmly to both the tool substrate and the modified TiCN layer, which is the lower high-temperature reinforcing layer, and thus has an effect of improving the adhesion of the hard coating layer to the tool substrate. If the thickness is less than 0.1 μm, the desired adhesion cannot be ensured. On the other hand, an average layer thickness of 1 μm is sufficient for the adhesion, so the average layer thickness was determined to be 0.1 to 1 μm.

(b)改質TiCN層(下側高温強化層)
上記の改質TiCN層は、上記の通り、従来TiCN層に比して一段と高温強度の向上したもになっており、この特性は構成原子共有格子点分布グラフにおけるΣ3の分布割合が、蒸着条件を調整して60%以上となるようにすることによって可能となり、したがって、Σ3の分布割合が60%未満では、高速重切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことになることから、Σ3の分布割合を60%以上と定めた。
このように前記改質TiCN層は、上記の通りTiCN自体のもつ高温硬さと高温強度に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が2μm未満では所望のすぐれた高温強度向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2〜15μmと定めた。
(B) Modified TiCN layer (lower high-temperature reinforcing layer)
As described above, the modified TiCN layer has a further improved high-temperature strength as compared with the conventional TiCN layer. This characteristic indicates that the distribution ratio of Σ3 in the constituent atom sharing lattice distribution graph is the deposition condition. Therefore, when the distribution ratio of Σ3 is less than 60%, it is possible to achieve high temperature strength improvement effect that does not cause chipping in the hard coating layer in high speed heavy cutting. Therefore, the distribution ratio of Σ3 is determined to be 60% or more.
As described above, the modified TiCN layer has a further excellent high-temperature strength in addition to the high-temperature hardness and high-temperature strength of the TiCN itself as described above. However, when the average layer thickness is less than 2 μm, the desired excellent properties are obtained. However, if the average layer thickness exceeds 15 μm, thermoplastic deformation that causes uneven wear tends to occur and the wear accelerates. Therefore, the average layer thickness was determined to be 2 to 15 μm.

(c)改質TiC層(上側高温強化層)
上記の改質TiC層は、上記の改質TiCN層に比して、高温強度の点では及ばないが、相対的に高い高温硬さを有するので、硬質被覆層の耐摩耗性向上に寄与するほか、上記の通り、従来TiC層に比してすぐれた高温強度を有するので、高速重切削加工で、硬質被覆層の耐チッピング性向上にも寄与するが、これらの特性は、構成原子共有格子点分布グラフにおけるΣ3の分布割合が、蒸着条件を調整して60%以上となるようにすることによって可能となり、したがって、Σ3の分布割合が60%未満では、高速重切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。
このように前記改質TiC層は、TiC自体のもつ高温硬さに加えて、さらに従来TiC層に比して一段とすぐれた高温強度を有するようになるが、その平均層厚が2μm未満では所望のすぐれた高温硬さおよび高温強度を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が10μmを越えると、チッピングが発生し易くなることから、その平均層厚を2〜10μmと定めた。
(C) Modified TiC layer (upper high temperature strengthened layer)
The above-mentioned modified TiC layer does not reach the point of high-temperature strength as compared with the above-mentioned modified TiCN layer, but has a relatively high high-temperature hardness, and thus contributes to the improvement of the wear resistance of the hard coating layer. In addition, as described above, it has excellent high-temperature strength compared to the conventional TiC layer, so it contributes to the improvement of chipping resistance of the hard coating layer by high-speed heavy cutting. The distribution ratio of Σ3 in the point distribution graph can be adjusted to 60% or more by adjusting the vapor deposition conditions. Therefore, if the distribution ratio of Σ3 is less than 60%, the hard coating layer is formed by high-speed heavy cutting. Therefore, the distribution ratio of Σ3 was determined to be 60% or more because chipping does not occur and an excellent high-temperature strength improvement effect cannot be secured.
As described above, the modified TiC layer has a higher temperature strength than that of the conventional TiC layer in addition to the high temperature hardness of the TiC itself, but it is desirable if the average layer thickness is less than 2 μm. However, if the average layer thickness exceeds 10 μm, chipping is likely to occur, so that the average layer thickness is 2 to 2. It was determined to be 10 μm.

(d)TiCO層およびTiCNO層(層間密着層)
TiCO層およびTiCNO層は、上側高温強化層である改質TiC層および高温硬質層であるα型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その平均層厚が0.1μm未満では、所望の密着性を確保することができず、一方前記のすぐれた密着性は1μmの平均層厚で十分確保できることから、その平均層厚を0.1〜1μmと定めた。
(D) TiCO layer and TiCNO layer (interlayer adhesion layer)
The TiCO layer and the TiCNO layer adhere firmly to both the modified TiC layer, which is the upper high-temperature strengthening layer, and the α-type Al 2 O 3 layer, which is the high-temperature hard layer, thereby improving the adhesion of the hard coating layer to the tool substrate. However, if the average layer thickness is less than 0.1 μm, the desired adhesion cannot be ensured, while the excellent adhesion can be sufficiently ensured with an average layer thickness of 1 μm. The average layer thickness was determined to be 0.1 to 1 μm.

(e)α型Al23層(高温硬質層)
α型Al23層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を長期に亘って発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(E) α-type Al 2 O 3 layer (high-temperature hard layer)
The α-type Al 2 O 3 layer has excellent high-temperature hardness and heat resistance and contributes to improving the wear resistance of the hard coating layer. However, if the average layer thickness is less than 1 μm, the hard coating layer has sufficient wear resistance. On the other hand, if the average layer thickness exceeds 15 μm, the chipping tends to occur. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、機械的負荷がきわめて高い鋼や鋳鉄などの高速重切削加工でも、硬質被覆層の下側高温強化層および上側高温強化層が、従来TiCN層および従来TiC層に比して、一段とすぐれた高温強度を有する改質TiCN層および改質TiC層で構成されているので、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すものである。   The coated cermet tool of the present invention has a lower high-temperature strengthened layer and an upper high-temperature strengthened layer compared with the conventional TiCN layer and the conventional TiC layer even in high-speed heavy cutting such as steel and cast iron with extremely high mechanical load. In addition, since it is composed of a modified TiCN layer and a modified TiC layer having a further excellent high-temperature strength, the hard coating layer exhibits excellent wear resistance without occurrence of chipping.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG150612に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG150612 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG150612のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG150612 chip shapes were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、まず、硬質被覆層の基体密着層として、表3に示される条件で、表6に示される目標平均層厚のTiN層を形成し、ついで、表4に示される条件で、下側高温強化層および上側高温強化層として、改質TiCN層および改質TiC層を、表6に示される組み合わせおよび目標平均層厚で形成し、さらに、層間密着層として、同じく表3に示される条件で、TiCO層およびTiCNO層のいずれか、または両方を同じく表6に示される組み合わせおよび目標平均層厚で形成した状態で、同じく高温硬質層として、表3に示される条件で、表6に示される目標平均層厚のα型Al23層を形成することにより本発明被覆サーメット工具1〜12をそれぞれ製造した。 Next, on the surfaces of these tool bases A to F and tool bases a to f, a normal chemical vapor deposition apparatus is used. First, as the base adhesion layer of the hard coating layer, the conditions shown in Table 3 are used. A TiN layer having the target average layer thickness shown is formed, and then, under the conditions shown in Table 4, the modified TiCN layer and the modified TiC layer are shown in Table 6 as the lower high temperature strengthened layer and the upper high temperature strengthened layer. In addition, as an interlayer adhesion layer, either or both of the TiCO layer and the TiCNO layer, or both, are used as the interlayer adhesion layer under the conditions shown in Table 3. By forming the α-type Al 2 O 3 layer having the target average layer thickness shown in Table 6 under the conditions shown in Table 3 as the high-temperature hard layer in the state of being formed with a thickness, the coated cermet tool 1 to 1 of the present invention is formed. 12 Each was manufactured.

また、比較の目的で、表7に示される通り、硬質被覆層の下側高温強化層および上側高温強化層として、上記の改質TiCN層および改質TiC層に代って、表5に示される条件で、従来TiCN層および従来TiC層を形成する以外は、同一の条件で従来被覆サーメット工具1〜12をそれぞれ製造した。   For comparison purposes, as shown in Table 7, instead of the above-described modified TiCN layer and modified TiC layer, the lower high temperature strengthened layer and the upper high temperature strengthened layer of the hard coating layer are shown in Table 5. The conventional coated cermet tools 1 to 12 were manufactured under the same conditions except that the conventional TiCN layer and the conventional TiC layer were formed under the same conditions.

ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する改質TiCN層および改質TiC層、さらに従来TiCN層および従来TiC層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質TiCN層および改質TiC層、さらに従来TiCN層および従来TiC層の表面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を求めることにより作成した。
Next, the modified TiCN layer and the modified TiC layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool, and further the conventional TiCN layer and the conventional TiC layer, using a field emission scanning electron microscope. Each component atom shared lattice distribution graph was created.
That is, the above constituent atomic shared lattice point distribution graph is obtained when the surface of the modified TiCN layer and the modified TiC layer, and the surface of the conventional TiCN layer and the conventional TiC layer are polished surfaces, respectively. Set in the lens barrel, and irradiate the polishing surface with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees with an irradiation current of 1 nA on each crystal grain existing in the measurement range of the surface polishing surface, Using an electron backscatter diffraction image apparatus, a region of 30 × 50 μm is spaced at a spacing of 0.1 μm / step, and the (001) plane and (011) which are crystal planes of the crystal grains with respect to the normal line of the polished surface ) Measure the tilt angle formed by the normals of the surface, and based on the measured tilt angle obtained as a result, each of the constituent atoms forms one structure between the crystal grains at the interface between adjacent crystal grains. Share atoms The distribution of child points (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal) In the case where the existing constituent atom shared lattice point form is expressed as ΣN + 1, the distribution ratio is calculated by calculating the distribution ratio of each ΣN + 1 to the whole ΣN + 1 (however, the upper limit value is 28 due to the frequency).

この結果得られた各種の改質TiCN層および改質TiC層、さらに従来TiCN層および従来TiC層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(Nは2〜28の範囲内のすべての偶数)に占めるΣ3の分布割合をそれぞれ表8にそれぞれ示した。   In the resulting modified TiCN layer and modified TiC layer, and further in the constituent atomic shared lattice distribution graph of the conventional TiCN layer and the conventional TiC layer, the entire ΣN + 1 (N is an even number in the range of 2 to 28). Table 8 shows the distribution ratio of Σ3 in the table.

上記の各種の構成原子共有格子点分布グラフにおいて、表8にそれぞれ示される通り、本発明被覆サーメット工具1〜12の改質TiCN層および改質TiC層は、いずれもΣ3の占める分布割合が60%以上である構成原子共有格子点分布グラフを示すのに対して、従来被覆サーメット工具1〜12の従来TiCN層および従来TiC層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図3,4は、本発明被覆サーメット工具4の改質TiCN層(図3)および改質TiC層(図4)の構成原子共有格子点分布グラフ、図5,6は、従来被覆サーメット工具4の従来TiCN層の(図5)および従来TiC層(図6)構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-mentioned various constituent atomic share lattice point distribution graphs, as shown in Table 8, each of the modified TiCN layer and the modified TiC layer of the coated cermet tools 1 to 12 according to the present invention has a distribution ratio of Σ3 of 60. %, The conventional TiCN layer and the conventional TiC layer of the conventional coated cermet tools 1 to 12 both have a Σ3 distribution ratio of 30% or less. A point distribution graph was shown.
3 and 4 are graphs showing the distribution of constituent atomic shared lattice points of the modified TiCN layer (FIG. 3) and the modified TiC layer (FIG. 4) of the coated cermet tool 4 of the present invention, and FIGS. The conventional TiCN layer (FIG. 5) and the conventional TiC layer (FIG. 6) constituent atom share lattice point distribution graph of the tool 4 are shown, respectively.

さらに、上記の本発明被覆サーメット工具1〜12および従来被覆サーメット工具1〜12について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有することが確認され、また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Further, for the above-described coated cermet tools 1-12 of the present invention and the conventional coated cermet tools 1-12, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (layer When the longitudinal section was observed), it was confirmed that both the former and the latter had substantially the same composition as the target composition, and the thicknesses of the constituent layers of the hard coating layers of these coated cermet tools were measured using a scanning electron microscope. When measured using (same longitudinal section measurement), all showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜12および従来被覆サーメット工具1〜12について、
被削材:JIS・S10Cの丸棒、
切削速度:350m/min、
切り込み:7.5mm、
送り:0.35mm/rev、
切削時間:8分、
の条件(切削条件A)での炭素鋼の乾式連続高速高切り込み切削試験(通常の切削速度および切り込みは200m/minおよび3mm)、
被削材:JIS・SCr420Hの長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:7.5mm、
送り:0.3mm/rev、
切削時間:8分、
の条件(切削条件B)での合金鋼の乾式断続高速高切り込み切削試験(通常の切削速度および切り込みは200m/minおよび2mm)、
被削材:JIS・FCD500の丸棒、
切削速度:350m/min、
切り込み:3mm、
送り:0.8mm/rev、
切削時間:8分、
の条件(切削条件C)での鋳鉄の乾式連続高速高送り切削試験(通常の切削速度および送りは180m/minおよび0.4mm/rev)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, in the state where each of the various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated cermet tools 1 to 12 and the conventional coated cermet tools 1 to 12,
Work material: JIS / S10C round bar,
Cutting speed: 350 m / min,
Cutting depth: 7.5mm,
Feed: 0.35mm / rev,
Cutting time: 8 minutes
Dry continuous high-speed high-cut cutting test of carbon steel under the following conditions (cutting condition A) (normal cutting speed and cutting are 200 m / min and 3 mm),
Work material: JIS · SCr420H lengthwise equidistant four round grooved round bars,
Cutting speed: 350 m / min,
Cutting depth: 7.5mm,
Feed: 0.3mm / rev,
Cutting time: 8 minutes
Dry interrupted high-speed high-cut cutting test of alloy steel under the following conditions (cutting condition B) (normal cutting speed and cutting are 200 m / min and 2 mm),
Work material: JIS / FCD500 round bar,
Cutting speed: 350 m / min,
Incision: 3mm,
Feed: 0.8mm / rev,
Cutting time: 8 minutes
The dry continuous high-speed, high-feed cutting test (normal cutting speed and feed are 180 m / min and 0.4 mm / rev) of cast iron under the above conditions (cutting condition C). The width was measured. The measurement results are shown in Table 8.

Figure 2007098503
Figure 2007098503

Figure 2007098503
Figure 2007098503

Figure 2007098503
Figure 2007098503

Figure 2007098503
Figure 2007098503

Figure 2007098503
Figure 2007098503

Figure 2007098503
Figure 2007098503

Figure 2007098503
Figure 2007098503

Figure 2007098503
Figure 2007098503

表6〜8に示される結果から、本発明被覆サーメット工具1〜12は、いずれも硬質被覆層の下側高温強化層および上側高温強化層が、Σ3の分布割合が60%以上の構成原子共有格子点分布グラフを示す改質TiCN層および改質TiC層で構成され、機械的負荷がきわめて高い鋼や鋳鉄の高速重切削でも、前記改質TiCN層および改質TiC層が一段とすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層のチッピング発生が著しく抑制され、すぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層の下側高温強化層および上側高温強化層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来TiCN層および従来TiC層で構成された従来被覆サーメット工具1〜12においては、いずれも高速重切削では硬質被覆層の高温強度不足が原因で、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 6 to 8, in the coated cermet tools 1 to 12 of the present invention, the lower high-temperature reinforced layer and the upper high-temperature reinforced layer of the hard coating layer both share constituent atoms in which the distribution ratio of Σ3 is 60% or more. High-temperature strength consisting of a modified TiCN layer and a modified TiC layer showing a lattice point distribution graph, and the modified TiCN layer and the modified TiC layer are excellent in high-speed heavy cutting of steel and cast iron with extremely high mechanical load. Since it has excellent chipping resistance, the occurrence of chipping in the hard coating layer is remarkably suppressed, while excellent wear resistance is demonstrated over a long period of time. Conventional coated cermet tools 1 to 12 each composed of a conventional TiCN layer and a conventional TiC layer in which the reinforcing layer and the upper high-temperature reinforcing layer show a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less In both cases, in high-speed heavy cutting, it is clear that chipping occurs in the hard coating layer due to insufficient high-temperature strength of the hard coating layer, and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い高温強度が要求される高速重切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has a hard coating layer not only for continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also for high-speed heavy cutting that requires particularly high high-temperature strength. Since it exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, it is fully satisfactory for higher performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction. It can be done.

硬質被覆層の下側高温強化層を構成するTiCN層が有するNaCl型面心立方晶の結晶構造(上側高温強化層のTiC層は前記TiCN層のN原子がC原子に置換したもので同じ結晶構造を有する)を示す模式図である。The crystal structure of NaCl type face centered cubic crystal of the TiCN layer constituting the lower high temperature strengthening layer of the hard coating layer (the TiC layer of the upper high temperature strengthened layer is the same crystal in which N atoms in the TiCN layer are replaced by C atoms) It is a schematic diagram showing a structure. 硬質被覆層の下側高温強化層および上側高温強化層を構成するTiCN層およびTiC層における結晶粒の(001)面および(011)面の傾斜角の測定態様を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement aspect of the inclination angle of the (001) plane of a crystal grain and the (011) plane in the TiCN layer and TiC layer which comprise a lower high temperature reinforcement layer and an upper high temperature reinforcement layer of a hard coating layer. 本発明被覆サーメット工具4の硬質被覆層の下側高温強化層を構成する改質TiCN層の構成原子共有格子点分布グラフである。It is a constituent atomic share lattice point distribution graph of the modified TiCN layer which comprises the lower high temperature reinforcement layer of the hard coating layer of this invention coated cermet tool 4. FIG. 本発明被覆サーメット工具4の硬質被覆層の上側高温強化層を構成する改質TiC層の構成原子共有格子点分布グラフである。It is a structure atomic share lattice point distribution graph of the modified TiC layer which comprises the upper high temperature reinforcement layer of the hard coating layer of this invention coating | cover cermet tool 4. FIG. 従来被覆サーメット工具4の硬質被覆層の下側高温強化層を構成する従来TiCN層の構成原子共有格子点分布グラフである。6 is a constituent atomic shared lattice point distribution graph of a conventional TiCN layer constituting a lower high temperature strengthening layer of a hard coating layer of a conventional coated cermet tool 4. 従来被覆サーメット工具4の硬質被覆層の上側高温強化層を構成する従来TiC層の構成原子共有格子点分布グラフである。It is a structure atomic share lattice point distribution graph of the conventional TiC layer which comprises the upper high temperature reinforcement layer of the hard coating layer of the conventional coating cermet tool 4. FIG.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、化学蒸着形成された硬質被覆層を、工具基体側から順に、
(a)0.1〜1μmの平均層厚を有する窒化チタン層からなる基体密着層、
(b)2〜15μmの平均層厚を有する炭窒化チタン層からなる下側高温強化層、
(c)2〜10μmの平均層厚を有する炭化チタン層からなる上側高温強化層、
(d)0.1〜1μmの平均層厚を有する、炭酸化チタン層および炭窒酸化チタン層のうちのいずれか1層、または両層からなる層間密着層、
(e)1〜15μmの平均層厚および化学蒸着した状態でα型結晶構造を有する酸化アルミニウム層からなる高温硬質層、
以上(a)〜(e)で構成すると共に、上記上側高温強化層および下側高温強化層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTiと炭素(上側高温強化層の場合)、またはTiと炭素と窒素(下側高温強化層の場合)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、いずれもΣ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質炭化チタン層および改質炭窒化チタン層、
で構成したことを特徴とする高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
The hard coating layer formed by chemical vapor deposition on the surface of the tool base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet, in order from the tool base side,
(A) a substrate adhesion layer comprising a titanium nitride layer having an average layer thickness of 0.1 to 1 μm;
(B) a lower high-temperature reinforcing layer comprising a titanium carbonitride layer having an average layer thickness of 2 to 15 μm,
(C) an upper high-temperature reinforcing layer comprising a titanium carbide layer having an average layer thickness of 2 to 10 μm,
(D) an interlayer adhesion layer comprising any one of a titanium carbonate layer and a titanium carbonitride oxide layer having an average layer thickness of 0.1 to 1 μm, or both layers;
(E) a high-temperature hard layer composed of an aluminum oxide layer having an α-type crystal structure in an average layer thickness of 1 to 15 μm and chemical vapor deposition;
With the above (a) to (e), the upper high-temperature reinforcing layer and the lower high-temperature reinforcing layer are
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains have Ti and carbon (in the case of the upper high-temperature strengthening layer) or Ti, carbon and nitrogen (lower side) at lattice points. In the case of a high-temperature strengthened layer), each of the atoms has a NaCl-type face-centered cubic crystal structure in which constituent atoms are present, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains, A distribution of lattice points (constituent atom shared lattice points) in which each constituent atom shares one constituent atom among the crystal grains is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points. (N is 2 on the crystal structure of NaCl type face centered cubic crystal) When the existing configuration atom sharing lattice point form is expressed as ΣN + 1, the configuration atom sharing indicating the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit is 28 due to the frequency) In each of the lattice point distribution graphs, the modified titanium carbide layer and the modified coal showing the constituent atom sharing lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio of the Σ3 to the entire ΣN + 1 is 60% or more Titanium nitride layer,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance in a high-speed heavy-cutting process that features a hard coating layer.
JP2005291003A 2005-10-04 2005-10-04 Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting Expired - Fee Related JP4730656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291003A JP4730656B2 (en) 2005-10-04 2005-10-04 Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291003A JP4730656B2 (en) 2005-10-04 2005-10-04 Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting

Publications (2)

Publication Number Publication Date
JP2007098503A true JP2007098503A (en) 2007-04-19
JP4730656B2 JP4730656B2 (en) 2011-07-20

Family

ID=38025948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291003A Expired - Fee Related JP4730656B2 (en) 2005-10-04 2005-10-04 Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting

Country Status (1)

Country Link
JP (1) JP4730656B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307615A (en) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting work and its manufacturing method
JP2009056539A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068010A (en) * 1992-06-25 1994-01-18 Mitsubishi Materials Corp Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
JPH11302848A (en) * 1998-04-20 1999-11-02 Mitsubishi Materials Corp Throwaway cutting tip made of coated cemented carbide, excellent in chipping-off resistance
JP2003117706A (en) * 2001-10-04 2003-04-23 Hitachi Tool Engineering Ltd Covered tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068010A (en) * 1992-06-25 1994-01-18 Mitsubishi Materials Corp Cutting tool made of surface coating tungsten carbide group super hard alloy excellent in chipping resistance property
JPH11302848A (en) * 1998-04-20 1999-11-02 Mitsubishi Materials Corp Throwaway cutting tip made of coated cemented carbide, excellent in chipping-off resistance
JP2003117706A (en) * 2001-10-04 2003-04-23 Hitachi Tool Engineering Ltd Covered tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307615A (en) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting work and its manufacturing method
JP2009056539A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting

Also Published As

Publication number Publication date
JP4730656B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4518258B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716252B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2006334750A (en) SURFACE COATED CERMET CUTTING TOOL WHOSE THICK alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS HIGH CHIPPING RESISTANCE
JP5326845B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent heavy cutting.
JP4853121B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4756453B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4716254B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP4730656B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP2009056561A (en) Surface-coated cutting tool
JP2007331032A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping and abrasion resistance in high-speed intermittent cutting processing
JP5158560B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5309697B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4730656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees