JP5158560B2 - Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting - Google Patents

Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting Download PDF

Info

Publication number
JP5158560B2
JP5158560B2 JP2007105337A JP2007105337A JP5158560B2 JP 5158560 B2 JP5158560 B2 JP 5158560B2 JP 2007105337 A JP2007105337 A JP 2007105337A JP 2007105337 A JP2007105337 A JP 2007105337A JP 5158560 B2 JP5158560 B2 JP 5158560B2
Authority
JP
Japan
Prior art keywords
layer
plane
hard coating
cutting
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007105337A
Other languages
Japanese (ja)
Other versions
JP2008168419A (en
Inventor
西田  真
斉 功刀
剛 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007105337A priority Critical patent/JP5158560B2/en
Publication of JP2008168419A publication Critical patent/JP2008168419A/en
Application granted granted Critical
Publication of JP5158560B2 publication Critical patent/JP5158560B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、切刃部に対して、特に高い熱的・機械的負荷が加わる鋼や鋳鉄などの重切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting processing such as steel and cast iron that is particularly subjected to a high thermal and mechanical load on the cutting edge portion (hereinafter referred to as “cutting blade”). (Referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニウム(以下、Alで示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆工具が知られており、この被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer consisting of two or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm, in which the upper layer is formed by chemical vapor deposition;
A coated tool formed by forming a hard coating layer composed of the above (a) and (b) is known, and this coated tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that

また、上記の被覆工具において、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
In the above-mentioned coated tool, the TiCN layer constituting the Ti compound layer which is the lower layer is mixed gas containing organic carbonitride as a reaction gas in a normal chemical vapor deposition apparatus for the purpose of improving the strength of the layer itself. It is also known that the film is formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. to have a vertically grown crystal structure.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切刃部に大きな熱的・機械的負荷がかかる高送り、高切り込みの重切削条件に用いた場合、これを構成する硬質被覆層は下部層のTi化合物層による高温強度、同上部層のAl層による高温硬さおよび耐熱性を具備するものの、前記Ti化合物層による高温強度が不十分であるために、硬質被覆層にはチッピング(微小欠け)が発生し易くなり、その結果、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated tools, there is no problem when this is used for continuous cutting or interrupted cutting under normal conditions such as steel or cast iron. When used for feed and high cutting heavy cutting conditions, the hard coating layer constituting this has high temperature strength by the lower Ti compound layer, high temperature hardness and heat resistance by the upper Al 2 O 3 layer. However, since the high temperature strength by the Ti compound layer is insufficient, the hard coating layer is likely to be chipped (small chipping), and as a result, the service life is reached in a relatively short time. .

そこで、本発明者等は、上述のような観点から、上記の被覆工具の硬質被覆層の耐チッピング性向上をはかるべく、これの下部層であるTi化合物層を構成するTiCN層、特に、Ti化合物層のうちで相対的に高い高温硬さと高温強度を有し、かつ図1(a)に模式図で示される通り、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造(なお、図1(b)は(011)面で切断した状態を示す)を有する縦長成長結晶組織をもつTiCN層(以下、l−TiCN層という)に着目し、研究を行った結果、
(a)従来被覆工具の硬質被覆層を構成する下部層としてのl−TiCN層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:2〜10%、CHCN:0.5〜3%、N:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件(通常条件という)で蒸着形成されるが、この蒸着条件を変更し、
まず、第1ステップとして、
反応ガス組成:容量%で、TiCl:5〜15%、CN:0.7〜2.5%、N:7〜20%、H2:残り、
反応雰囲気温度:700〜850℃、
反応雰囲気圧力:6〜20kPa、
の条件で、蒸着層の層厚が目標層厚の約20%の層厚となるまで蒸着し、
その後、第2ステップとして、
反応ガス組成:容量%で、TiCl:3〜12%、CHCN:0.2〜2%、CN:0.1〜0.5%、Ar:10〜30%、H2:残り、
反応雰囲気温度:700〜850℃、
反応雰囲気圧力:6〜20kPa、
の条件で、目標層厚になるまで蒸着形成すると、このような第1ステップ及び第2ステップの条件で順次形成されたl−TiCN層(以下、「改質TiCN層」という)は、切削加工時に層に発生する応力を緩和・吸収する作用を有し、高温強度が一段と向上することから、硬質被覆層の上部層が前記Al層で構成され、また、下部層がTiC層、TiN層、TiCN層、l−TiCN層、TiCO層、およびTiCNO層のうちの2層以上のTi化合物層からなり、かつ前記Ti化合物層のうちの少なくとも一つの層が前記改質TiCN層で構成された被覆工具は、特に大きな熱的・機械的負荷がかかる重切削加工でも、前記硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
In view of the above, the inventors of the present invention, from the above viewpoint, in order to improve the chipping resistance of the hard coating layer of the above-mentioned coated tool, the TiCN layer constituting the Ti compound layer, which is the lower layer of the hard coating layer, in particular, Ti NaCl having a relatively high high-temperature hardness and high-temperature strength among the compound layers, and having constituent atoms composed of Ti, carbon, and nitrogen at lattice points, respectively, as schematically shown in FIG. Focusing on a TiCN layer (hereinafter referred to as an l-TiCN layer) having a vertically grown crystal structure having a crystal structure of a mold face centered cubic crystal (FIG. 1 (b) shows a state cut by the (011) plane). , As a result of research,
(A) The l-TiCN layer as the lower layer constituting the hard coating layer of the conventional coated tool is, for example, a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
Vapor deposition is performed under the conditions (normal conditions), but this vapor deposition condition is changed,
First, as the first step,
Reaction gas composition: by volume%, TiCl 4: 5~15%, C 3 H 3 N: 0.7~2.5%, N 2: 7~20%, H 2: remainder,
Reaction atmosphere temperature: 700-850 ° C.
Reaction atmosphere pressure: 6-20 kPa,
Under the conditions, vapor deposition is performed until the layer thickness of the vapor deposition layer is about 20% of the target layer thickness,
Then, as the second step,
Reaction gas composition: by volume%, TiCl 4: 3~12%, CH 3 CN: 0.2~2%, C 3 H 3 N: 0.1~0.5%, Ar: 10~30%, H 2 : the rest,
Reaction atmosphere temperature: 700-850 ° C.
Reaction atmosphere pressure: 6-20 kPa,
When the vapor deposition is performed until the target layer thickness is reached under the above conditions, the l-TiCN layer (hereinafter referred to as “modified TiCN layer”) sequentially formed under the conditions of the first step and the second step is cut. Since it has the action of relaxing and absorbing the stress generated in the layer from time to time and the high temperature strength is further improved, the upper layer of the hard coating layer is composed of the Al 2 O 3 layer, and the lower layer is a TiC layer, It is composed of two or more Ti compound layers of a TiN layer, a TiCN layer, a 1-TiCN layer, a TiCO layer, and a TiCNO layer, and at least one of the Ti compound layers is composed of the modified TiCN layer The resulting coated tool will exhibit excellent chipping resistance even during heavy cutting, especially when heavy thermal and mechanical loads are applied, and will exhibit excellent wear resistance over a long period of time. .

(b)上記の従来被覆工具の硬質被覆層の下部層を構成するl−TiCN層(以下、「従来TiCN層」という)と上記(a)の改質TiCN層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、縦断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求めた場合に、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を粒界であるとして設定し、その上で電界放出型査電子顕微鏡を用い、上記改質TiCN層の縦断面研磨面を、例えば、高さ15μm×幅30μmの範囲で測定し、粒界として識別される部分のうち前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界の長さ(μm。以下、GBLという)を求め、さらに、このGBLと改質TiCN層の層厚(μm。以下、Tで示す)の比(即ち、GBL/T)を求めると、前記従来TiCN層は、表5に示される通り、GBL/Tは小さな値であるのに対して、前記改質TiCN層は、表4に示される通り、GBL/Tが295〜520という大きな値を示し、この高いGBL/Tの値は、成膜時の反応ガス組成、反応雰囲気温度、反応雰囲気圧力の組み合わせによって変化すること。
(B) About the 1-TiCN layer (henceforth "conventional TiCN layer") which comprises the lower layer of the hard coating layer of said conventional coated tool, and the modified TiCN layer of said (a),
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the vertical cross-section polished surface is irradiated with an electron beam, The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the vertical cross-section polished surface (FIG. When the tilt angle of the (001) plane is 0 degree and the tilt angle of the (011) plane is 45 degrees, the tilt angle of the (001) plane is 45 degrees and the tilt angle of the (011) plane is 0 degree. In this case, all inclination angles of the crystal grains including these angles are measured. In this case, the crystal grains are composed of Ti, carbon, and nitrogen at lattice points as described above. It has a NaCl-type face-centered cubic crystal structure in which each atom exists, and based on the measured tilt angle obtained as a result, When the angles at which the (001) plane normal lines and the (011) plane normal lines intersect each other at the interface between the adjacent crystal grains are obtained, the (001) plane normal lines, and (011) The case where the angle between the normals of the planes is 2 degrees or more is set as a grain boundary, and using the field emission electron microscope, the vertical cross-section polished surface of the modified TiCN layer is For example, the angle between the normal lines of the (001) planes and the normal lines of the (011) planes is 15 degrees or more among the portions that are measured as a height 15 μm × width 30 μm and are identified as grain boundaries. When the length of the grain boundary (μm, hereinafter referred to as GBL) is obtained, and the ratio of the thickness of the GBL to the modified TiCN layer (μm, hereinafter denoted by T) (that is, GBL / T) is determined. As shown in Table 5, the conventional TiCN layer has a small GBL / T. On the other hand, as shown in Table 4, the modified TiCN layer shows a large value of GBL / T of 295 to 520, and this high GBL / T value is a reaction gas during film formation. Change depending on the combination of composition, reaction atmosphere temperature, and reaction atmosphere pressure.

(c)上記の改質TiCN層は、TiCN自体が具備する高温硬さと高温強度に加えて、切削加工時に改質TiCN層に発生する応力の緩和・吸収作用を有するので、上記従来TiCN層に比して一段と高い高温強度を有し、そして、これを硬質被覆層の下部層として蒸着形成してなる被覆工具は、同上部層であるAl層が具備するすぐれた高温硬さおよび耐熱性と相俟って、特に切刃部に対して大きな熱的・機械的負荷がかかる高送りや高切り込みなどの重切削条件に用いた場合にも、同じく前記従来TiCN層を蒸着形成してなる従来被覆工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) Since the above-mentioned modified TiCN layer has the effect of relaxing and absorbing stress generated in the modified TiCN layer during cutting in addition to the high-temperature hardness and high-temperature strength of the TiCN itself, A coated tool having a higher high-temperature strength than the above-mentioned and formed by vapor deposition as a lower layer of the hard coating layer has excellent high-temperature hardness and an Al 2 O 3 layer as the upper layer. Combined with heat resistance, the conventional TiCN layer is also vapor-deposited when used in heavy cutting conditions such as high feed and high cutting, which require a large thermal and mechanical load on the cutting edge. Compared to conventional coated tools, the hard coating layer will exhibit even better chipping resistance.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる表面被覆切削工具において、
上記(a)のTi化合物層のうちの少なくとも一つの層を、2.5〜15μmの平均層厚を有し、かつ、
電界放出型走査電子顕微鏡を用い、上記層の縦断面研磨面の幅30μmの測定範囲内に存在する結晶粒個々に電子線を照射して、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、また、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を粒界であるとして設定した上で、電界放出型査電子顕微鏡を用い、層の縦断面研磨面における測定領域について、粒界として識別される部分のうち前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界の長さ(μm)を求め、この粒界の長さ(μm)と測定したTi化合物層の層厚(μm)との比の値が295〜520を示す縦長成長結晶組織をもつ炭窒化チタン層、
で構成したことを特徴とする重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(被覆工具)、
に特徴を有するものである。
This invention was made based on the above research results,
On the surface of the tool base composed of WC-based cemented carbide or TiCN-based cermet,
(A) The lower layer is composed of two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer, all formed by chemical vapor deposition, and 3 A Ti compound layer having a total average layer thickness of ˜20 μm,
(B) an aluminum oxide layer having an average layer thickness of 1 to 15 μm, wherein the upper layer is formed by chemical vapor deposition;
In the surface-coated cutting tool formed with the hard coating layer composed of (a) and (b) above,
At least one of the Ti compound layers of (a) has an average layer thickness of 2.5 to 15 μm, and
Using a field emission scanning electron microscope, each of the crystal grains existing within the measurement range of 30 μm in width of the vertical cross-section polished surface of the layer was irradiated with an electron beam, and the normal to the vertical cross-section polished surface was The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, is measured, and the normal line of the (001) plane at the interface between adjacent crystal grains is determined based on the measured tilt angles. And the (011) plane normals intersect with each other, and the (001) plane normals and (011) plane normals intersect with each other at an angle of 2 degrees or more. Then, using a field emission electron microscope, the normal of the (001) plane among the parts identified as grain boundaries in the measurement region on the vertical cross-section polished surface of the layer, and (011 ) The angle where the normals of the surfaces intersect is 15 degrees or more The grain boundary length (μm) is obtained, and the ratio of the grain boundary length (μm) to the measured thickness of the Ti compound layer (μm) has a vertically grown crystal structure showing 295 to 520 Titanium carbonitride layer,
A surface-coated cutting tool (coated tool) that exhibits excellent chipping resistance with a hard coating layer that is characterized by comprising
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層(Ti化合物層)
TiC層、TiN層、TiCN層(l−TiCN層も含む)、TiCO層、TiCNO層と後記改質TiCN層からなるTi化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と上部層であるAl層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴う高速断続切削でチッピングを起し易くなることから、その合計平均層厚を3〜20μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated tool of the present invention are numerically limited as described above will be described below.
(A) Lower layer (Ti compound layer)
Ti compound layer consisting of TiC layer, TiN layer, TiCN layer (including 1-TiCN layer), TiCO layer, TiCNO layer and modified TiCN layer described later has high-temperature strength itself, and due to its presence, hard coating layer In addition to having high-temperature strength, it firmly adheres to both the tool base and the upper Al 2 O 3 layer, thereby contributing to improved adhesion of the hard coating layer to the tool base. When the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exhibited. On the other hand, when the total average layer thickness exceeds 20 μm, chipping is likely to occur particularly in high-speed intermittent cutting with high heat generation. Therefore, the total average layer thickness was determined to be 3 to 20 μm.

(b)下部層の改質TiCN層
下部層の改質TiCN層を構成する結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有しているが、改質TiCN層について、電界放出型走査電子顕微鏡を用い、縦断面研磨面の測定範囲内に存在する改質TiCN層の結晶粒個々に電子線を照射して、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、さらに、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を粒界であるとして設定した上で、電界放出型査電子顕微鏡により、改質TiCN層の縦断面研磨面を、測定領域、例えば、高さ15μm×幅30μmの範囲、で測定し、粒界として識別される部分のうちで前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界についてその粒界の長さGBL(μm)を求め、そして、GBL(μm)と、改質TiCN層の層厚T(μm)との比を求めると、GBL/Tは295〜520という値を示し、そして、GBL/Tが295〜520という大きな値を示す改質TiCN層は、重切削加工により、切刃部に対して大きな熱的・機械的負荷が加わったとしても、その際に生じる応力を緩和・吸収する作用を有し、一段とすぐれた高温強度を備えるようになるため、硬質被覆層にチッピングが発生する危険性を大幅に低減することができるが、GBL/T値が295未満の小さな値では、上記応力の緩和・吸収作用を期待することはできず、一方、GBL/T値が520を超えるものについては、改質TiCN層自体に脆化傾向がみられるようになるため、GBL/Tの値を295〜520と定めた。
なお、従来TiCN層におけるGBL/Tの値は、100〜200程度の小さな値(表5参照)であって、応力の緩和・吸収作用を有さないTiCN層であるため、重切削加工においては硬質被覆層にチッピングの発生が見られた(表6参照)。
また、前記改質TiCN層は、上記の通りTiCN自体のもつ高温硬さと高温強度に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が2.5μm未満では所望のすぐれた応力の緩和・吸収作用、高温強度向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、チッピングが発生し易くなることから、その平均層厚を2.5〜15μmと定めた。
(B) Modified TiCN layer of the lower layer The crystal grains constituting the modified TiCN layer of the lower layer have a crystal structure of NaCl type face centered cubic crystal in which constituent atoms composed of Ti, carbon, and nitrogen are present at lattice points, respectively. However, for the modified TiCN layer, using a field emission scanning electron microscope, each crystal grain of the modified TiCN layer existing within the measurement range of the vertical cross-section polished surface is irradiated with an electron beam, The inclination angles formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, are measured with respect to the normal line of the longitudinal cross-section polished surface. The angles at which the (001) plane normals and the (011) plane normals intersect at the interface between adjacent crystal grains are obtained, and the (001) plane normals and the (011) plane If the angle between the two normals is 2 degrees or more After setting the combination as a grain boundary, the vertical cross-section polished surface of the modified TiCN layer was measured in a measurement region, for example, a range of 15 μm in height × 30 μm in width, using a field emission electron microscope. Among the parts identified as boundaries, the grain boundary length GBL (μm) of the grain boundaries in which the normals of the (001) planes and the normal lines of the (011) planes intersect is 15 degrees or more. When the ratio between GBL (μm) and the thickness T (μm) of the modified TiCN layer is determined, GBL / T shows a value of 295 to 520, and GBL / T is 295 to 520. The modified TiCN layer showing a large value has the action of relaxing and absorbing the stress generated at that time even if a large thermal / mechanical load is applied to the cutting edge part by heavy cutting. To have excellent high-temperature strength The risk of chipping in the hard coating layer can be greatly reduced. However, when the GBL / T value is less than 295, the stress relaxation / absorption action cannot be expected. When the / T value exceeds 520, the modified TiCN layer itself tends to become brittle, so the GBL / T value was set to 295 to 520.
In addition, since the value of GBL / T in the conventional TiCN layer is a small value of about 100 to 200 (see Table 5) and is a TiCN layer that does not have a stress relaxation / absorption function, Chipping was observed in the hard coating layer (see Table 6).
In addition to the high temperature hardness and high temperature strength of TiCN itself as described above, the modified TiCN layer has a further excellent high temperature strength. However, if the average layer thickness is less than 2.5 μm, it is desirable. Since the hard coating layer cannot be sufficiently provided with excellent stress relaxation / absorption action and high-temperature strength improvement effect, on the other hand, if its average layer thickness exceeds 15 μm, chipping tends to occur. The thickness was determined to be 2.5-15 μm.

(c)上部層(Al層)
Al層からなる上部層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(C) Upper layer (Al 2 O 3 layer)
The upper layer composed of the Al 2 O 3 layer has excellent high-temperature hardness and heat resistance and contributes to improving the wear resistance of the hard coating layer. However, if the average layer thickness is less than 1 μm, it is sufficient for the hard coating layer. On the other hand, since the wear resistance cannot be exhibited, and when the average layer thickness exceeds 15 μm, chipping tends to occur. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明の被覆工具は、大きな発熱を伴うとともに、切刃部に対して大きな機械的負荷がかかる鋼や鋳鉄などの重切削加工でも、硬質被覆層の下部層のうちの少なくとも一つの層を構成する改質TiCN層が、応力の緩和・吸収作用を有し、一段とすぐれた高温強度を備えることから、硬質被覆層にチッピングの発生がなく、すぐれた耐摩耗性を示すものである。   The coated tool of the present invention constitutes at least one layer of the lower layer of the hard coating layer even in heavy cutting such as steel and cast iron that is accompanied by a large heat generation and requires a large mechanical load on the cutting edge portion. The modified TiCN layer has a stress relieving / absorbing action and has a further excellent high-temperature strength. Therefore, the hard coating layer has no chipping and exhibits excellent wear resistance.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of WC-based cemented carbide having an insert shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having an insert shape of standard / CNMG12041 were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層として、改質TiCN層を除くTi化合物層を表3に示される条件で蒸着形成し、
ついで、前記改質TiCN層を、
まず、第1ステップとして、
反応ガス組成:容量%で、TiCl:5〜15%の範囲内の所定量、CN:0.7〜2.5%の範囲内の所定量、N:7〜20%の範囲内の所定量、H2:残り、
反応雰囲気温度:700〜850℃の範囲内の所定温度、
反応雰囲気圧力:6〜20kPaの範囲内の所定圧力、
の条件で、目標層厚の約20%の層厚となるまで蒸着成膜し、
その後、第2ステップとして、
反応ガス組成:容量%で、TiCl:3〜12%の範囲内の所定量、CHCN:0.2〜2%の範囲内の所定量、CN:0.1〜0.5%の範囲内の所定量、Ar:10〜30%の範囲内の所定量、H2:残り、
反応雰囲気温度:700〜850℃の範囲内の所定温度、
反応雰囲気圧力:6〜20kPaの範囲内の所定圧力、
の条件で、表4に示される組み合わせで、かつ同じく表4に示される目標層厚で蒸着形成し、その後同じく表3に示される条件にて、上部層としてのAl層を同じく表4に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。
Next, a Ti compound layer excluding the modified TiCN layer is shown in Table 3 as the lower layer of the hard coating layer on the surfaces of the tool bases A to F and the tool bases a to f using a normal chemical vapor deposition apparatus. Formed under the conditions
Next, the modified TiCN layer is
First, as the first step,
By volume%, TiCl 4:: Reaction gas composition predetermined amount in the range 5-15% of, C 3 H 3 N: a predetermined amount in the range of 0.7~2.5%, N 2: 7~20% A predetermined amount within the range, H 2 : remaining,
Reaction atmosphere temperature: a predetermined temperature within a range of 700 to 850 ° C.,
Reaction atmosphere pressure: a predetermined pressure in the range of 6 to 20 kPa,
Under the conditions, vapor deposition is performed until the layer thickness reaches about 20% of the target layer thickness,
Then, as the second step,
Reaction gas composition:% by volume, TiCl 4 : predetermined amount in the range of 3-12%, CH 3 CN: predetermined amount in the range of 0.2-2%, C 3 H 3 N: 0.1-0 A predetermined amount within a range of 5%, Ar: a predetermined amount within a range of 10 to 30%, H 2 : remaining,
Reaction atmosphere temperature: a predetermined temperature within a range of 700 to 850 ° C.,
Reaction atmosphere pressure: a predetermined pressure in the range of 6 to 20 kPa,
Under the conditions shown in Table 4 and with the target layer thickness shown in Table 4, and after that, the Al 2 O 3 layer as the upper layer is also shown under the conditions shown in Table 3. The coated tools 1 to 13 of the present invention were produced by vapor deposition with the combination shown in FIG.

また、比較の目的で、硬質被覆層の下部層として、従来TiCN層を除くTi化合物層を表3に示される条件で、また、前記従来TiCN層を、
反応ガス組成:容量%で、TiCl:2〜10%の範囲内の所定量、CHCN:0.5〜3%の範囲内の所定量、N:10〜30%の範囲内の所定量、H2:残り、
反応雰囲気温度:800〜900℃の範囲内の所定温度、
反応雰囲気圧力:6kPa、
の条件で、表5に示される組み合わせで、かつ同じく表5に示される目標層厚で蒸着形成し、さらに上部層としてのAl層を、表3に示される条件で、かつ目標層厚で蒸着形成することにより従来被覆工具1〜13をそれぞれ製造した。
Further, for comparison purposes, as a lower layer of the hard coating layer, a Ti compound layer excluding the conventional TiCN layer under the conditions shown in Table 3, and the conventional TiCN layer,
Reaction gas composition:% by volume, TiCl 4 : predetermined amount in the range of 2 to 10%, CH 3 CN: predetermined amount in the range of 0.5 to 3%, N 2 : in the range of 10 to 30% Predetermined amount, H 2 : remaining,
Reaction atmosphere temperature: a predetermined temperature in the range of 800 to 900 ° C,
Reaction atmosphere pressure: 6 kPa,
Under the conditions shown in Table 5 and with the target layer thickness shown in Table 5 as well, and an Al 2 O 3 layer as the upper layer is formed under the conditions shown in Table 3 and the target layer. Conventionally, the coated tools 1 to 13 were manufactured by vapor deposition with a thickness.

ついで、上記の本発明被覆工具と従来被覆工具の硬質被覆層を構成する改質TiCN層および従来TiCN層について、電界放出型走査電子顕微鏡を用いて、上記各層の縦断面研磨面のGBL(μm)を測定し、そして、GBL(μm)と、改質TiCN層の層厚(μm)の比を求めた。
すなわち、上記の改質TiCN層および従来TiCN層の縦断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記縦断面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、所定測定領域を0.1μm/stepの間隔で、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、さらに、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を粒界であるとして設定した上で、電界放出型走査電子顕微鏡により、改質TiCN層の縦断面研磨面の測定領域(高さ15μm×幅30μmの範囲の領域)を走査し、該測定領域内で、粒界として識別される部分のうちで前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界についてその粒界の長さGBL(μm)を求めた。そして、GBL(μm)と、改質TiCN層の層厚T(μm)との比の値(改質TiCN層の単位層厚当たりの粒界の長さに相当)を求めた。
Next, with respect to the modified TiCN layer and the conventional TiCN layer constituting the hard coating layer of the present invention-coated tool and the conventional coated tool, using a field emission scanning electron microscope, the GBL (μm ) Was measured, and the ratio of GBL (μm) to the layer thickness (μm) of the modified TiCN layer was determined.
That is, the modified TiCN layer and the conventional TiCN layer are set in a lens barrel of a field emission scanning electron microscope in a state where the vertical cross section of the TiCN layer is a polished surface, and accelerated to 15 kV at an incident angle of 70 degrees on the polished surface. A voltage electron beam is irradiated at an irradiation current of 1 nA to individual crystal grains existing within the measurement range of the vertical cross-section polished surface, and a predetermined measurement region is set to 0.1 μm / step using an electron backscatter diffraction image apparatus. At an interval, the inclination angle formed by the normal lines of the (001) plane and (011) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the vertical cross-section polished surface, and the measured inclination obtained as a result Based on the angles, the angles at which the (001) plane normal lines and the (011) plane normal lines intersect each other at the interface between adjacent crystal grains are obtained. , And (011) plane normals When the crossing angle is 2 degrees or more is set as a grain boundary, a field-emission scanning electron microscope is used to measure the longitudinally polished surface of the modified TiCN layer (a region in the range of 15 μm in height × 30 μm in width) ), And in the measurement region, among the parts identified as grain boundaries, the (001) plane normals and the (011) plane normals intersect at an angle of 15 degrees or more. The grain boundary length GBL (μm) was obtained. Then, the value of the ratio between GBL (μm) and the layer thickness T (μm) of the modified TiCN layer (corresponding to the length of the grain boundary per unit layer thickness of the modified TiCN layer) was determined.

この結果得られた各種の改質TiCN層および従来TiCNについてのGBL,T,GBL/Tの値を、それぞれ表4、5に示した。   Tables 4 and 5 show the values of GBL, T, and GBL / T for various modified TiCN layers and conventional TiCN obtained as a result.

表4、5にそれぞれ示される通り、本発明被覆工具の改質TiCN層は、いずれもGBL/Tの値が295〜520の範囲内の数値であるのに対して、従来被覆工具の従来TiCN層は、いずれもGBL/Tの値が295未満であった。   As shown in Tables 4 and 5, respectively, the modified TiCN layer of the coated tool of the present invention has a GBL / T value in the range of 295 to 520, whereas the conventional TiCN of the conventional coated tool. All the layers had a GBL / T value of less than 295.

さらに、上記の本発明被覆工具1〜13および従来被覆工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTi化合物層とAl層からなることが確認された。
また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
Further, regarding the above-described coated tools 1 to 13 of the present invention and the conventional coated tools 1 to 13, the hard coating layer was observed using an electron beam microanalyzer (EPMA) and an Auger spectrometer (longitudinal section of the layer). As a result, it was confirmed that both the former and the latter were composed of a Ti compound layer and an Al 2 O 3 layer having substantially the same composition as the target composition.
Moreover, when the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (similarly longitudinal section measurement), the average layer thickness (5 The average value of point measurement) was shown.

つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13および従来被覆工具1〜13について、
被削材:JIS・S35Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min、
切り込み: 1.0 mm、
送り: 0.55 mm/rev、
切削時間: 5 分、
の条件(切削条件A)での炭素鋼の乾式高送り断続切削試験(通常の切削速度、送りは、それぞれ、250m/min、0.25mm/rev)、
被削材:JIS・SNCM220の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 350 m/min、
切り込み: 4.0 mm、
送り: 0.3 mm/rev、
切削時間: 5 分、
の条件(切削条件B)での合金鋼の乾式高切り込み断続切削試験(通常の切削速度、切り込みは、それぞれ、250m/min、1.5mm)、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 450 m/min、
切り込み: 1.5 mm、
送り: 0.5 mm/rev、
切削時間: 5 分、
の条件(切削条件C)での鋳鉄の乾式高送り断続切削試験(通常の切削速度、送りは、それぞれ、250m/min、0.3mm/rev)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, in the state where all of the above various coated tools are screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 1 to 13 and the conventional coated tools 1 to 13,
Work material: JIS-S35C lengthwise equal length 4 round fluted round bars,
Cutting speed: 400 m / min,
Cutting depth: 1.0 mm,
Feed: 0.55 mm / rev,
Cutting time: 5 minutes,
Carbon steel dry high feed intermittent cutting test under the following conditions (cutting condition A) (normal cutting speed and feed are 250 m / min and 0.25 mm / rev, respectively),
Work material: JIS / SNCM220 lengthwise equal 4 round bars with longitudinal grooves,
Cutting speed: 350 m / min,
Cutting depth: 4.0 mm,
Feed: 0.3 mm / rev,
Cutting time: 5 minutes,
Of high-cut intermittent cutting of alloy steel under the above conditions (cutting condition B) (normal cutting speed and cutting are 250 m / min and 1.5 mm, respectively),
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 450 m / min,
Cutting depth: 1.5 mm,
Feed: 0.5 mm / rev,
Cutting time: 5 minutes,
The dry high feed intermittent cutting test (normal cutting speed and feed are 250 m / min and 0.3 mm / rev, respectively) of the cast iron under the above conditions (cutting condition C). The surface wear width was measured. The measurement results are shown in Table 6.

Figure 0005158560
Figure 0005158560

Figure 0005158560
Figure 0005158560

Figure 0005158560
Figure 0005158560

Figure 0005158560
Figure 0005158560

Figure 0005158560
Figure 0005158560

Figure 0005158560
Figure 0005158560

表4〜6に示される結果から、本発明被覆工具1〜13は、いずれも硬質被覆層の下部層のうちの少なくとも一つの層が、GBL/T=295〜520である改質TiCN層で構成され、熱的・機械的負荷がきわめて高い鋼や鋳鉄の重切削加工でも、前記改質TiCN層が応力の緩和・吸収作用を有し、一段とすぐれた高温強度を備えることから、すぐれた耐チッピング性を発揮し、硬質被覆層のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のうちのTiCN層が、GBL/T値が295未満である従来TiCN層で構成された従来被覆工具1〜13においては、硬質被覆層の熱的・機械的負荷に対する耐性がいずれも不十分であるために、重切削加工では硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 4 to 6, all of the coated tools 1 to 13 of the present invention are modified TiCN layers in which at least one of the lower layers of the hard coating layer is GBL / T = 295 to 520. Even in heavy cutting of steel and cast iron, which is constructed and has extremely high thermal and mechanical loads, the modified TiCN layer has a stress relaxation / absorption action, and has a superior high-temperature strength. Demonstrates chipping properties, the occurrence of chipping in the hard coating layer is remarkably suppressed, and exhibits excellent wear resistance, whereas the TiCN layer of the lower layer of the hard coating layer has a GBL / T value of less than 295 In the conventional coated tools 1 to 13 composed of a certain conventional TiCN layer, the hard coating layer has insufficient resistance to thermal and mechanical loads, so chipping occurs in the hard coating layer in heavy cutting. And It is clear that lead to comparatively short time service life.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、高い熱的・機械的負荷がかかり一段と優れた高温強度が要求される重切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is required not only for continuous cutting and intermittent cutting under normal conditions such as various types of steel and cast iron, but also for higher thermal and mechanical loads, which require even higher high-temperature strength. The hard coating layer exhibits excellent chipping resistance even during heavy cutting, and exhibits excellent cutting performance over a long period of time. It can cope with cost reduction sufficiently satisfactorily.

硬質被覆層の下部層を構成するTiCN層が有するNaCl型面心立方晶の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the NaCl type face centered cubic crystal which the TiCN layer which comprises the lower layer of a hard coating layer has. 硬質被覆層の下部層を構成するTiCN層における結晶粒の(001)面および(011)面の傾斜角の測定態様を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement aspect of the inclination angle of the (001) plane of a crystal grain and the (011) plane in the TiCN layer which comprises the lower layer of a hard coating layer.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる表面被覆切削工具において、
上記(a)のTi化合物層のうちの少なくとも一つの層を、2.5〜15μmの平均層厚を有し、かつ、
電界放出型走査電子顕微鏡を用い、上記層の縦断面研磨面の幅30μmの測定範囲内に存在する結晶粒個々に電子線を照射して、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、また、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を粒界であるとして設定した上で、電界放出型査電子顕微鏡を用い、層の縦断面研磨面における測定領域について、粒界として識別される部分のうち前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界の長さ(μm)を求め、この粒界の長さ(μm)と測定したTi化合物層の層厚(μm)との比の値が295〜520を示す縦長成長結晶組織をもつ炭窒化チタン層、
で構成したことを特徴とする重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer, all formed by chemical vapor deposition, and 3 A Ti compound layer having a total average layer thickness of ˜20 μm,
(B) an aluminum oxide layer having an average layer thickness of 1 to 15 μm, wherein the upper layer is formed by chemical vapor deposition;
In the surface-coated cutting tool formed with the hard coating layer composed of (a) and (b) above,
At least one of the Ti compound layers of (a) has an average layer thickness of 2.5 to 15 μm, and
Using a field emission scanning electron microscope, each of the crystal grains existing within the measurement range of 30 μm in width of the vertical cross-section polished surface of the layer was irradiated with an electron beam, and the normal to the vertical cross-section polished surface was The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, is measured, and the normal line of the (001) plane at the interface between adjacent crystal grains is determined based on the measured tilt angles. And the (011) plane normals intersect with each other, and the (001) plane normals and (011) plane normals intersect with each other at an angle of 2 degrees or more. Then, using a field emission electron microscope, the normal of the (001) plane among the parts identified as grain boundaries in the measurement region on the vertical cross-section polished surface of the layer, and (011 ) The angle where the normals of the surfaces intersect is 15 degrees or more The grain boundary length (μm) is obtained, and the ratio of the grain boundary length (μm) to the measured thickness of the Ti compound layer (μm) has a vertically grown crystal structure showing 295 to 520 Titanium carbonitride layer,
A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting, characterized by comprising
JP2007105337A 2006-12-14 2007-04-12 Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting Active JP5158560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105337A JP5158560B2 (en) 2006-12-14 2007-04-12 Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006337563 2006-12-14
JP2006337563 2006-12-14
JP2007105337A JP5158560B2 (en) 2006-12-14 2007-04-12 Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting

Publications (2)

Publication Number Publication Date
JP2008168419A JP2008168419A (en) 2008-07-24
JP5158560B2 true JP5158560B2 (en) 2013-03-06

Family

ID=39696987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105337A Active JP5158560B2 (en) 2006-12-14 2007-04-12 Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting

Country Status (1)

Country Link
JP (1) JP5158560B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783061B2 (en) * 2012-01-23 2015-09-24 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP6048669B2 (en) * 2013-03-26 2016-12-21 三菱マテリアル株式会社 Surface-coated cutting tool with a hard coating layer that exhibits excellent wear resistance in high-speed cutting of ductile cast iron, etc.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4284201B2 (en) * 2004-01-29 2009-06-24 京セラ株式会社 Surface covering member and cutting tool
JP4716251B2 (en) * 2005-03-24 2011-07-06 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel
JP2006281361A (en) * 2005-03-31 2006-10-19 Kyocera Corp Surface coated member and surface coated cutting tool

Also Published As

Publication number Publication date
JP2008168419A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4518258B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4716251B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5326845B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent heavy cutting.
JP4853121B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4756453B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5023896B2 (en) Surface coated cutting tool
JP5158560B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP5088477B2 (en) Surface coated cutting tool
JP5088476B2 (en) Surface coated cutting tool
JP4474647B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4730656B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP5088475B2 (en) Surface coated cutting tool
JP5267766B2 (en) Surface coated cutting tool
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP5682500B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP4752536B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance in high-speed intermittent cutting of high-hardness materials.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121202

R150 Certificate of patent or registration of utility model

Ref document number: 5158560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3