JP2006231433A - Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting - Google Patents

Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting Download PDF

Info

Publication number
JP2006231433A
JP2006231433A JP2005046377A JP2005046377A JP2006231433A JP 2006231433 A JP2006231433 A JP 2006231433A JP 2005046377 A JP2005046377 A JP 2005046377A JP 2005046377 A JP2005046377 A JP 2005046377A JP 2006231433 A JP2006231433 A JP 2006231433A
Authority
JP
Japan
Prior art keywords
layer
hard coating
inclination angle
coated cermet
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005046377A
Other languages
Japanese (ja)
Other versions
JP4534790B2 (en
Inventor
Hisashi Honma
尚志 本間
Akira Osada
晃 長田
Keiji Nakamura
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005046377A priority Critical patent/JP4534790B2/en
Publication of JP2006231433A publication Critical patent/JP2006231433A/en
Application granted granted Critical
Publication of JP4534790B2 publication Critical patent/JP4534790B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cermet cutting tool with a hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting. <P>SOLUTION: The surface-coated cermet cutting tool is composed by forming the hard coating layer on the surface of a tool base body. The hard coating layer is composed of the following lower and upper layers (a) and (b), namely, (a) as the lower layer is a Ti compound layer composed of two or more layers of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer that are all formed by chemical vapor deposition and having a total average layer thickness of 3-20 μm, and (b) as the upper layer is an Al<SB>2</SB>O<SB>3</SB>layer having a total average layer thickness of 1-15 μm and formed by chemical vapor deposition. One of two or more layers in the Ti compound layer (a) is the TiCN layer having an average layer thickness of 2.5-15 μm and showing a specific inclination angle frequency distribution graph. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、特に鋼や鋳鉄などの高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance with a hard coating layer, particularly in high-speed intermittent cutting of steel or cast iron.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有する化学蒸着形成された酸化アルミニウム(以下、Al23で示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
特開平6−31503号公報
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, all of which are formed by chemical vapor deposition as the lower layer, A Ti compound layer composed of two or more layers of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer formed by chemical vapor deposition in which the upper layer has an average layer thickness of 1 to 15 μm;
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
Japanese Unexamined Patent Publication No. 6-31503

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し機械的衝撃の加わる高速断続切削に用いた場合、これを構成する硬質被覆層は下部層のTi化合物層による高温強度、同上部層のAl23層による高温硬さおよび耐熱性を具備するものの、前記Ti化合物層による高温強度が不十分であるために、機械的衝撃に対して満足に対応することができず、この結果硬質被覆層にはチッピング(微小欠け)が発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron. When it is used for high-speed intermittent cutting with repeated mechanical impacts at extremely short pitches, the hard coating layer that composes this is the high-temperature strength of the lower Ti compound layer and the high-temperature hardness of the upper Al 2 O 3 layer. However, since the high-temperature strength of the Ti compound layer is insufficient, it cannot respond satisfactorily to mechanical impacts. Since the ping (small chipping) tends to occur, at present, leading to a relatively short time service life.

そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の耐チッピング性向上をはかるべく、これの下部層であるTi化合物層のうちのTiCN層に着目し、研究を行った結果、
(a)通常、上記の従来被覆サーメット工具の硬質被覆層の下部層であるTi化合物層を構成するTiCN層(以下、「従来TiCN層」という)は、通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl:2〜10%、CHCN:0.5〜3%、N:10〜30%、H:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件で形成されるが、同じく被覆サーメット工具の硬質被覆層の下部層であるTi化合物層を構成するTiCN層を、同じく通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl:0.2〜1%、CHCN:0.3〜2%、C:1〜3%、N:10〜30%、H:残り、
反応雰囲気温度:700〜780℃、
反応雰囲気圧力:25〜40kPa、
の条件で形成すると、この結果形成されたTiCN層(以下、「改質TiCN層」という)は、すぐれた高温強度を有し、すぐれた耐機械的衝撃性を具備するようになることから、硬質被覆層の上部層が前記Al23層、下部層が上記Ti化合物層で構成され、かつ前記Ti化合物層のうちの1層が前記改質TiCN層からなる被覆サーメット工具は、特に激しい機械的衝撃を伴なう高速断続切削加工でも、前記硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
In view of the above, the present inventors have focused on the TiCN layer of the Ti compound layer, which is the lower layer, in order to improve the chipping resistance of the hard coating layer of the coated cermet tool. , As a result of research,
(A) Usually, the TiCN layer (hereinafter referred to as “conventional TiCN layer”) constituting the Ti compound layer, which is the lower layer of the hard coating layer of the conventional coated cermet tool, is a normal chemical vapor deposition apparatus,
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
The TiCN layer constituting the Ti compound layer, which is the lower layer of the hard coating layer of the coated cermet tool, is also formed by the same chemical vapor deposition apparatus.
Reaction gas composition - by volume%, TiCl 4: 0.2~1%, CH 3 CN: 0.3~2%, C 2 H 4: 1~3%, N 2: 10~30%, H 2: remaining,
Reaction atmosphere temperature: 700-780 ° C.
Reaction atmosphere pressure: 25-40 kPa,
The resulting TiCN layer (hereinafter referred to as “modified TiCN layer”) has excellent high temperature strength and excellent mechanical impact resistance. The coated cermet tool in which the upper layer of the hard coating layer is composed of the Al 2 O 3 layer, the lower layer is composed of the Ti compound layer, and one of the Ti compound layers is composed of the modified TiCN layer is particularly severe. Even in high-speed intermittent cutting with mechanical impact, the hard coating layer exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time.

(b)上記の従来TiCN層と改質TiCN層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来TiCN層は、図3に例示される通り、{110}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質TiCN層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、反応ガス中に構成成分として添加したCの含有割合によってグラフ横軸の傾斜角区分に現れる位置が変わること。 (B) Using the field emission scanning electron microscope, the conventional TiCN layer and the modified TiCN layer are within the measurement range of the surface polished surface as shown in the schematic explanatory diagrams of FIGS. 1 (a) and 1 (b). The crystal grains having an existing cubic crystal lattice are irradiated with an electron beam, and the inclination angle formed by the normal of the {110} plane, which is the crystal plane of the crystal grain, is made with respect to the normal of the surface polished surface. Measured and divided the measured inclination angle within the range of 0 to 45 degrees among the measured inclination angles for each pitch of 0.25 degrees, and the number of inclination angles obtained by totalizing the frequencies existing in each section When the distribution graph is created, the conventional TiCN layer shows an unbiased inclination angle number distribution graph within the range of the measured inclination angle of the {110} plane within the range of 0 to 45 degrees as illustrated in FIG. In contrast, the modified TiCN layer is inclined as illustrated in FIG. Appear sharp highest peak in a specific position of the segment, the sharp highest peak, the added C 2 H 4 of the content changes that position appears at the inclination angle section of the graph the horizontal axis by a component in the reaction gas.

(c)上記の改質TiCN層は、上記の通り、反応ガス中に新たにCを1〜3%の割合で加え、一方同反応ガス中のTiClの含有割合は0.2〜1%と相対的に低くし、さらに反応雰囲気温度は700〜780℃と相対的に低く、かつ反応雰囲気圧力は25〜40kPaと相対的に高くした条件で形成され、形成された前記改質TiCN層は、上記傾斜角度数分布グラフにおいて、シャープな最高ピークが傾斜角区分の0〜10度の範囲内に現れると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50〜75%の割合を占める傾斜角度数分布グラフを示すようになるが、この場合、試験結果によれば、反応ガス中のCの含有割合が1%未満でも、3%を越えて高くなっても、最高ピークの現れる傾斜角区分が0〜10度の範囲から外れてしまい、また反応雰囲気温度が780℃を越えたり、あるいは反応雰囲気圧力が25kPa未満であったりすると、0〜10度の範囲内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の50%未満となってしまい、いずれの場合もTiCN層にすぐれた高温強度を確保することができず、さらに反応雰囲気温度が700℃未満であったり、あるいは反応雰囲気圧力が40kPaを越えたりすると、層の蒸着形成速度が著しく低下し、コストの点で望ましくなく、一方0〜10度の範囲内に存在する度数の合計割合を75%を越えて高くすることはTiCN層形成上困難であること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) As described above, the modified TiCN layer is newly added with C 2 H 4 at a ratio of 1 to 3% in the reaction gas, while the content ratio of TiCl 4 in the reaction gas is 0.2%. The reforming was formed under the conditions that the reaction atmosphere temperature was relatively low as 700 to 780 ° C. and the reaction atmosphere pressure was relatively high as 25 to 40 kPa. In the TiCN layer, the sharpest peak appears in the range of 0 to 10 degrees of the tilt angle section in the above tilt angle distribution graph, and the sum of the frequencies existing in the range of 0 to 10 degrees is the tilt angle. An inclination angle frequency distribution graph occupying a ratio of 50 to 75% of the entire frequency in the number distribution graph is shown. In this case, according to the test result, the content ratio of C 2 H 4 in the reaction gas is 1%. Even if less than 3% is high However, if the inclination angle section where the highest peak appears is out of the range of 0 to 10 degrees, the reaction atmosphere temperature exceeds 780 ° C., or the reaction atmosphere pressure is less than 25 kPa, 0 to 10 degrees. The total ratio of the frequencies existing in the range is less than 50% of the entire frequencies in the tilt angle frequency distribution graph, and in any case, the high-temperature strength superior to the TiCN layer cannot be ensured, and further the reaction If the atmospheric temperature is less than 700 ° C. or the reaction atmospheric pressure exceeds 40 kPa, the deposition rate of the layer is significantly reduced, which is undesirable in terms of cost, while the frequency existing in the range of 0 to 10 degrees. It is difficult to make the TiCN layer higher than 75%.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成されたTiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有する化学蒸着形成されたAl層、
以上(a)および(b)で構成された硬質被覆層を形成してなる表面被覆サーメット製切削工具において、上記(a)の2層以上のTi化合物層のうちの1層を、2.5〜15μmの平均層厚を有し、かつ、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50〜75%の割合を占める傾斜角度数分布グラフを示す改質TiCN層、
で構成してなる、高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) Ti having a total average layer thickness of 3 to 20 μm, wherein the lower layer is composed of two or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer formed by chemical vapor deposition. Compound layer,
(B) Al 2 O 3 layer formed by chemical vapor deposition with an upper layer having an average layer thickness of 1 to 15 μm,
In the surface-coated cermet cutting tool formed by forming the hard coating layer composed of (a) and (b) above, one of the two or more Ti compound layers of (a) above is 2.5. Having an average layer thickness of ˜15 μm, and
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angle formed by the normal of the {110} plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the inclination angle number distribution graph obtained by summing up the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 0 to 10 degrees and also exists within the range of 0 to 10 degrees. A modified TiCN layer showing a tilt angle frequency distribution graph in which the total frequency to be accounted for 50 to 75% of the total frequency in the tilt angle frequency distribution graph,
It is characterized by a coated cermet tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting.

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)Ti化合物層(下部層)
Ti化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と上部層であるAl23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) Ti compound layer (lower layer)
The Ti compound layer itself has high-temperature strength, and the presence of the Ti compound layer makes the hard coating layer have high-temperature strength, and firmly adheres to both the tool base and the upper Al 2 O 3 layer. Therefore, it has an effect of improving the adhesion of the hard coating layer to the tool base, but if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exhibited, while the total average layer thickness is If it exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly by high-speed intermittent cutting accompanied by generation of high heat, which causes uneven wear. Therefore, the total average layer thickness is set to 3 to 20 μm.

(b)改質TiCN層
上記の通り、反応ガスの構成成分であるCの含有割合を1〜3%とすることにより、0〜10度の傾斜角区分範囲内に測定傾斜角の最高ピークが現れ、かつ反応雰囲気温度を700〜780℃、反応雰囲気圧力を25〜40kPaとすることにより、前記0〜10度の傾斜角区分内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の50〜75%となる傾斜角度数分布グラフを示す改質TiCN層が形成されるようになり、この結果として改質TiCN層はすぐれた高温強度を具備するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度を硬質被覆層に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
(B) Modified TiCN layer As described above, by setting the content ratio of C 2 H 4 which is a component of the reaction gas to 1 to 3%, the measured inclination angle is within the inclination angle range of 0 to 10 degrees. When the highest peak appears, the reaction atmosphere temperature is 700 to 780 ° C., and the reaction atmosphere pressure is 25 to 40 kPa, the total ratio of frequencies existing in the inclination angle section of 0 to 10 degrees is the inclination angle number distribution. A modified TiCN layer showing an inclination angle distribution graph that is 50 to 75% of the total frequency in the graph is formed, and as a result, the modified TiCN layer has excellent high-temperature strength. If the average layer thickness is less than 2.5 μm, the hard coating layer cannot be provided with the desired high-temperature strength. On the other hand, if the average layer thickness exceeds 15 μm, thermoplastic deformation that causes uneven wear occurs. No longer, since the so wear is accelerated, it determined the average layer thickness and 2.5~15Myuemu.

(c)Al23層(上部層)
Al23層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(C) Al 2 O 3 layer (upper layer)
The Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and contributes to improving the wear resistance of the hard coating layer. However, if the average layer thickness is less than 1 μm, the hard coating layer has sufficient wear resistance. On the other hand, if the average layer thickness exceeds 15 μm and becomes too thick, chipping tends to occur. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、機械的熱的衝撃がきわめて高い鋼や鋳鉄などの高速断続切削でも、硬質被覆層の下部層のうちの1層である改質TiCN層がすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すものである。   The coated cermet tool according to the present invention has a high-temperature strength in which the modified TiCN layer which is one of the lower layers of the hard coating layer is excellent even in high-speed intermittent cutting such as steel and cast iron with extremely high mechanical and thermal shock. Since it exhibits excellent chipping resistance, it exhibits excellent wear resistance without occurrence of chipping in the hard coating layer.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape defined in ISO · CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件にて、硬質被覆層の下部層として改質TiCN層を含むTi化合物層を、表6に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、上部層としてAl23層を同じく表6に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, on the surfaces of these tool bases A to F and tool bases a to f, modified TiCN is used as a lower layer of the hard coating layer under the conditions shown in Tables 3 and 4 using a normal chemical vapor deposition apparatus. The Ti compound layer including the layers is formed by vapor deposition in the combination shown in Table 6 with the target layer thickness, and the Al 2 O 3 layer is also shown in Table 6 as the upper layer under the same conditions as shown in Table 3. The coated cermet tools 1 to 13 according to the present invention were manufactured by vapor deposition with a target layer thickness in combination.

また、比較の目的で、表7に示される通り、硬質被覆層の下部層および上部層として同じく表3,5に示される条件で、同じく表7に示される目標層厚の従来TiCN層を含むTi化合物層およびAl23層を蒸着形成することにより従来被覆サーメット工具1〜13をそれぞれ製造した。 For comparison purposes, as shown in Table 7, the hard coating layer includes the conventional TiCN layer having the target layer thickness shown in Table 7 under the conditions shown in Tables 3 and 5 as the lower layer and the upper layer. Conventionally coated cermet tools 1 to 13 were produced by depositing a Ti compound layer and an Al 2 O 3 layer, respectively.

ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する改質TiCN層および従来TiCN層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の改質TiCN層および従来TiCN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, an inclination angle number distribution graph was prepared for each of the modified TiCN layer and the conventional TiCN layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool using a field emission scanning electron microscope. .
That is, the tilt angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope with the surfaces of the modified TiCN layer and the conventional TiCN layer being polished surfaces, and 70 ° on the polished surface. An electron backscatter diffraction imaging apparatus is irradiated by irradiating an electron beam with an acceleration voltage of 15 kV at an incident angle of 1 nA with an irradiation current of 1 nA on each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface. Using a 30 × 50 μm region at an interval of 0.1 μm / step, the inclination angle formed by the normal of the {110} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the polished surface. Based on this measurement result, among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees, and the frequencies existing in each section are tabulated. Created by.

この結果得られた各種の改質TiCN層および従来TiCN層の傾斜角度数分布グラフにおいて、{110}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合をそれぞれ表6,7にそれぞれ示した。   In the gradient angle distribution graphs of the various modified TiCN layers and conventional TiCN layers obtained as a result, the {110} plane has the highest peak, and the tilt angle within the range of 0 to 10 degrees. Tables 6 and 7 show the ratios of the existing tilt angle numbers to the tilt angle number distribution graph as a whole.

上記の各種の傾斜角度数分布グラフにおいて、表6,7にそれぞれ示される通り、本発明被覆サーメット工具の改質TiCN層は、いずれも{110}面の測定傾斜角の分布が0〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が50〜75%である傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具の従来TiCN層は、いずれも{110}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆サーメット工具8の改質TiCN層の傾斜角度数分布グラフ、図3は、従来被覆サーメット工具8の従来TiCN層の傾斜角度数分布グラフをそれぞれ示すものである。
In each of the various inclination angle distribution graphs described above, as shown in Tables 6 and 7, all of the modified TiCN layers of the coated cermet tool of the present invention have a measured inclination angle distribution on the {110} plane of 0 to 10 degrees. An inclination angle number distribution graph in which the highest peak appears in the inclination angle section in the range of 0 and the ratio of the inclination angle numbers existing in the inclination angle section in the range of 0 to 10 degrees is 50 to 75%. On the other hand, the conventional TiCN layers of the conventional coated cermet tools are all unbiased in the distribution of the measured inclination angle of the {110} plane within the range of 0 to 45 degrees, the highest peak does not exist, and 0 to 10 degrees. The inclination angle number distribution graph in which the ratio of the inclination angle number existing in the inclination angle section within the range is 30% or less was also shown.
FIG. 2 is a graph showing the inclination angle distribution of the modified TiCN layer of the coated cermet tool 8 of the present invention, and FIG. 3 is a graph showing the inclination angle distribution of the conventional TiCN layer of the conventional coated cermet tool 8.

さらに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTi化合物層とAl23層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, for the above-described coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analysis device (layer When the longitudinal section was observed), it was confirmed that both the former and the latter were composed of a Ti compound layer and an Al 2 O 3 layer having substantially the same composition as the target composition. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、
被削材:JIS・S30Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:440m/min、
切り込み:1.0mm、
送り:0.20mm/rev、
切削時間:8分、
の条件(切削条件A)での炭素鋼の湿式高速断続切削試験(通常の切削速度は300m/min)、
被削材:JIS・SCM415の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min、
切り込み:1.2mm、
送り:0.20mm/rev、
切削時間:8分、
の条件(切削条件B)での合金鋼の湿式高速断続切削試験(通常の切削速度は250m/min)、
被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒、
切削速度:370m/min、
切り込み:1.5mm、
送り:0.15mm/rev、
切削時間:8分、
の条件(切削条件C)でのダクタイル鋳鉄の湿式高速断続切削試験(通常の切削速度は250m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, with the various coated cermet tools described above, the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 in the state where all the above-mentioned various coated cermet tools are screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS / S30C lengthwise equal length 4 round bar with round groove,
Cutting speed: 440 m / min,
Cutting depth: 1.0 mm,
Feed: 0.20mm / rev,
Cutting time: 8 minutes
Wet high-speed intermittent cutting test of carbon steel under the above conditions (cutting condition A) (normal cutting speed is 300 m / min),
Work material: JIS / SCM415 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 400 m / min,
Cutting depth: 1.2mm,
Feed: 0.20mm / rev,
Cutting time: 8 minutes
Wet high-speed intermittent cutting test (normal cutting speed is 250 m / min) of alloy steel under the above conditions (cutting condition B),
Work material: JIS / FCD450 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 370 m / min,
Incision: 1.5mm,
Feed: 0.15mm / rev,
Cutting time: 8 minutes
Wet high-speed intermittent cutting test (normal cutting speed is 250 m / min) of ductile cast iron under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.

Figure 2006231433
Figure 2006231433

Figure 2006231433
Figure 2006231433

Figure 2006231433
Figure 2006231433

Figure 2006231433
Figure 2006231433

Figure 2006231433
Figure 2006231433

Figure 2006231433
Figure 2006231433

Figure 2006231433
Figure 2006231433

Figure 2006231433
Figure 2006231433

表6〜8に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の下部層のうちの1層が、{110}面の傾斜角が0〜10度の範囲内の傾斜角区分で最高ピークを示すと共に、前記0〜10度の傾斜角区分範囲内に存在する度数の合計割合が50〜75%を占める傾斜角度数分布グラフを示す改質TiCN層で構成され、機械的衝撃がきわめて高い鋼や鋳鉄の高速断続切削でも、前記改質TiCN層がすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のうちの1層が、{110}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来TiCN層で構成された従来被覆サーメット工具1〜13においては、いずれも高速断続切削では硬質被覆層の耐機械的衝撃性が不十分であるために、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 6 to 8, in the coated cermet tools 1 to 13 of the present invention, one of the lower layers of the hard coating layer is within the range where the inclination angle of the {110} plane is 0 to 10 degrees. And a modified TiCN layer showing an inclination angle distribution graph in which the total ratio of the frequencies existing in the inclination angle division range of 0 to 10 degrees occupies 50 to 75%. Even in high-speed intermittent cutting of steel and cast iron with extremely high mechanical impact, the modified TiCN layer has excellent high-temperature strength and excellent chipping resistance, so that chipping at the cutting edge is significantly suppressed. In contrast to the excellent wear resistance, one of the lower layers of the hard coating layer is unbiased within the range of the measured inclination angle of the {110} plane in the range of 0 to 45 degrees, Inclination angle number distribution graph without the highest peak In the conventional coated cermet tools 1 to 13 composed of the conventional TiCN layer, since the mechanical impact resistance of the hard coating layer is insufficient in high-speed interrupted cutting, chipping occurs at the cutting edge portion. It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高温強度が要求される高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has excellent chipping resistance not only for continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also for high-speed interrupted cutting particularly requiring high-temperature strength. Since it exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

硬質被覆層を構成する各種TiCN層における結晶粒の{110}面の傾斜角の測定範囲を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement range of the inclination angle of the {110} plane of the crystal grain in the various TiCN layers which comprise a hard coating layer. 本発明被覆サーメット工具8の硬質被覆層の下部層を構成する改質TiCN層の{110}面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the {110} plane of the modified TiCN layer constituting the lower layer of the hard coating layer of the coated cermet tool 8 of the present invention. 従来被覆サーメット工具8の硬質被覆層下部層を構成する従来TiCNの{110}面の傾斜角度数分布グラフである。6 is a graph showing the inclination angle number distribution of the {110} plane of conventional TiCN constituting the hard coating layer lower layer of the conventional coated cermet tool 8.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成されたTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有する化学蒸着形成された酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる表面被覆サーメット製切削工具において、
上記(a)の2層以上のTi化合物層のうちの1層を、2.5〜15μmの平均層厚を有し、かつ、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の50〜75%の割合を占める傾斜角度数分布グラフを示す炭窒化チタン層、
で構成したことを特徴とする高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer formed by chemical vapor deposition, A Ti compound layer having a total average layer thickness of 20 μm,
(B) an aluminum oxide layer formed by chemical vapor deposition in which the upper layer has an average layer thickness of 1 to 15 μm;
In the cutting tool made of surface-coated cermet formed by forming the hard coating layer composed of (a) and (b) above,
One of the two or more Ti compound layers of (a) above has an average layer thickness of 2.5 to 15 μm, and
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal grain is normal to the surface polished surface. The tilt angle formed by the normal of the {110} plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the inclination angle number distribution graph obtained by summing up the frequencies existing in each section, the highest peak exists in the inclination angle section within the range of 0 to 10 degrees and also exists within the range of 0 to 10 degrees. A titanium carbonitride layer showing an inclination angle frequency distribution graph in which the total frequency to be occupied accounts for 50 to 75% of the entire frequency in the inclination angle frequency distribution graph,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting characterized by comprising
JP2005046377A 2005-02-23 2005-02-23 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Expired - Fee Related JP4534790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005046377A JP4534790B2 (en) 2005-02-23 2005-02-23 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005046377A JP4534790B2 (en) 2005-02-23 2005-02-23 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2006231433A true JP2006231433A (en) 2006-09-07
JP4534790B2 JP4534790B2 (en) 2010-09-01

Family

ID=37039644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005046377A Expired - Fee Related JP4534790B2 (en) 2005-02-23 2005-02-23 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Country Status (1)

Country Link
JP (1) JP4534790B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006426A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP2009056561A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool
JP2009056560A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool
JP2010017785A (en) * 2008-07-09 2010-01-28 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exerting superior chipping resistance
JP2010036331A (en) * 2008-08-08 2010-02-18 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer demonstrating superior chipping resistance
CN102626795A (en) * 2011-02-03 2012-08-08 三菱综合材料株式会社 Surface covering cutting tool of rigid covering layer
WO2012132032A1 (en) 2011-03-31 2012-10-04 住友電工ハードメタル株式会社 Surface-coated cutting tool and method for manufacturing same
WO2012144088A1 (en) 2011-04-21 2012-10-26 住友電工ハードメタル株式会社 Surface-coated cutting tool and method for manufacturing same
US20130171474A1 (en) * 2011-12-28 2013-07-04 Research Institute Of Industrial Science & Technology Hard coating layer and method for forming the same
WO2014054591A1 (en) * 2012-10-01 2014-04-10 日立ツール株式会社 Hard film coating tool and method for manufacturing said tool
JP2014087862A (en) * 2012-10-29 2014-05-15 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer for exhibiting excellent peeling resistance and chipping resistance by high-speed intermittent cutting work
US8741428B2 (en) 2011-04-21 2014-06-03 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and manufacturing method thereof
JP2015100870A (en) * 2013-11-22 2015-06-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting
US9228258B2 (en) 2011-03-31 2016-01-05 Hitachi Tool Engineering, Ltd. Hard-coated member and its production method, and indexable rotary tool comprising it
JP2019520225A (en) * 2016-06-21 2019-07-18 サンドビック インテレクチュアル プロパティー アクティエボラーグ CVD coated cutting tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838806B2 (en) * 2011-12-28 2016-01-06 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195268A (en) * 1987-02-10 1988-08-12 Mitsubishi Metal Corp Cutting tool made of surface coated sintered hard alloy
JPH11256336A (en) * 1998-03-10 1999-09-21 Hitachi Metals Ltd Titanium carbonitride-coated tool
JP2003211305A (en) * 2002-01-21 2003-07-29 Mitsubishi Materials Corp Cutting tool made of surface coating cemented carbide having hard coating layer showing excellent abration resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195268A (en) * 1987-02-10 1988-08-12 Mitsubishi Metal Corp Cutting tool made of surface coated sintered hard alloy
JPH11256336A (en) * 1998-03-10 1999-09-21 Hitachi Metals Ltd Titanium carbonitride-coated tool
JP2003211305A (en) * 2002-01-21 2003-07-29 Mitsubishi Materials Corp Cutting tool made of surface coating cemented carbide having hard coating layer showing excellent abration resistance

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006426A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP2009056561A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool
JP2009056560A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool
JP2010017785A (en) * 2008-07-09 2010-01-28 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exerting superior chipping resistance
JP2010036331A (en) * 2008-08-08 2010-02-18 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer demonstrating superior chipping resistance
CN102626795A (en) * 2011-02-03 2012-08-08 三菱综合材料株式会社 Surface covering cutting tool of rigid covering layer
WO2012132032A1 (en) 2011-03-31 2012-10-04 住友電工ハードメタル株式会社 Surface-coated cutting tool and method for manufacturing same
US9228258B2 (en) 2011-03-31 2016-01-05 Hitachi Tool Engineering, Ltd. Hard-coated member and its production method, and indexable rotary tool comprising it
US8801817B2 (en) 2011-03-31 2014-08-12 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and manufacturing method thereof
US8741428B2 (en) 2011-04-21 2014-06-03 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and manufacturing method thereof
WO2012144088A1 (en) 2011-04-21 2012-10-26 住友電工ハードメタル株式会社 Surface-coated cutting tool and method for manufacturing same
CN102858483A (en) * 2011-04-21 2013-01-02 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same
US9187648B2 (en) * 2011-12-28 2015-11-17 Research Institute Of Industrial Science & Technology Hard coating layer and method for forming the same
US20130171474A1 (en) * 2011-12-28 2013-07-04 Research Institute Of Industrial Science & Technology Hard coating layer and method for forming the same
WO2014054591A1 (en) * 2012-10-01 2014-04-10 日立ツール株式会社 Hard film coating tool and method for manufacturing said tool
JPWO2014054591A1 (en) * 2012-10-01 2016-08-25 三菱日立ツール株式会社 Hard film coated tool and manufacturing method thereof
US9534292B2 (en) 2012-10-01 2017-01-03 Hitachi Tool Engineering, Ltd. Hard-coated tool and its production method
JP2014087862A (en) * 2012-10-29 2014-05-15 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer for exhibiting excellent peeling resistance and chipping resistance by high-speed intermittent cutting work
JP2015100870A (en) * 2013-11-22 2015-06-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting
JP2019520225A (en) * 2016-06-21 2019-07-18 サンドビック インテレクチュアル プロパティー アクティエボラーグ CVD coated cutting tool

Also Published As

Publication number Publication date
JP4534790B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4534790B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4518258B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4466841B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4474646B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006334721A (en) SURFACE COATED CERMET CUTTING TOOL WITH THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2009006426A (en) Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4811782B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP5326845B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent heavy cutting.
JP4756453B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4793750B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer
JP2006326730A (en) CUTTING TOOL OF SURFACE-COATED CERMET WITH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER ACHIEVING EXCELLENT CHIPPING RESISTANCE
JP5029099B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP2005246597A (en) Surface coated cubic boron nitride sintered material-made cutting tool having excellent chipping resistance in hard coated layer
JP2009056561A (en) Surface-coated cutting tool
JP4474647B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2005238437A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting
JP4483510B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2008168419A (en) Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance in heavy cutting
JP2006218546A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2005279914A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP4438559B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP4793629B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4534790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees